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Abstract

Transient anomalous diffusion may be modeled by a tempered frac-
tional diffusion equation. A reflecting boundary condition enforces mass
conservation on a bounded interval. In this work, explicit and implicit
Euler schemes for tempered fractional diffusion with discrete reflecting or
absorbing boundary conditions are constructed. Discrete reflecting bound-
aries are formulated such that the Euler schemes conserve mass. Condi-
tional stability of the explicit Euler methods and unconditional stability
of the implicit Euler methods are established. Analytical steady-state so-
lutions involving the Mittag-Leffler function are derived and shown to be
consistent with late-time numerical solutions. Several numerical examples
are presented to demonstrate the accuracy and usefulness of the proposed
numerical schemes.
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1. Introduction

The space-fractional diffusion equation with order 1 < α < 2 mod-
els anomalous super-diffusion, where a particle plume spreads faster than
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1562 A. Lischke, J.F. Kelly, M.M. Meerschaert

a plume modeled by the traditional diffusion equation. In the stochas-
tic model underlying the space-fractional equation, the probability distri-
bution of jump length follows a power law, hence some of its moments
are undefined. Exponential tempering is used to cool these long jumps,
and the resulting transient super-diffusion model is known as the tempered
fractional diffusion (TFD) equation. The resulting plume exhibits super-
and/or sub-diffusive spreading over some range of times, with a return to
classical spreading for large times, which is referred to as transient anoma-
lous diffusion.

Transient anomalous sub- and super-diffusion may be modeled with
tempered time-fractional [30] and space-fractional [3] derivatives, respec-
tively. Many applications in turbulence modeling [6, 13], astrophysics [5],
economics [26], and plasma physics [19] exhibit power-law scaling over a
range of space or time scales, with a return to Fickian diffusion at large
distances or times, respectively. In sub-surface hydrology, complex geo-
logical media may contain both low-permeability deposits and preferen-
tial flow paths, which may be quantified by a combination of tempered
space-fractional and time-fractional derivatives [42]. In river-flow hydrol-
ogy, a quantitative comparison of various fractional calculus models applied
to contaminant transport demonstrated that a tempered fractional model
best captured the heavy-tailed breakthrough curves with a return to Fick-
ian diffusion at late times [20]. A recent summary of quantum transport in
one-dimensional mesoscopic systems showed that tempered fractional equa-
tions characterize media that is homogeneous at a large scale and fractal at
an intermediate scale [35]. In all of these examples, the tempered fractional
equation is formulated on the real line with no attention paid to the finite
boundary.

Mass-conserving, reflecting boundary conditions for fractional PDEs
(FPDEs) are needed to model anomalous diffusion in bounded domains.
For example, super-diffusive dispersion in disordered porous media is ob-
served in underground aquifers [4] and in rivers [7]. Reflecting boundary
conditions have recently been used for both the forward [41] and backward
[43] modeling of contaminant transport in aquifers and rivers. A recent
series of papers [1, 2, 21] developed analytical and numerical methods for
physically meaningful boundary conditions associated with space-fractional
diffusion equations without tempering. These reflecting boundary condi-
tions are based on a discrete representation of the fractional diffusion pro-
cess in a bounded domain, where mass may impact the boundary from
points far inside the domain. These boundary conditions were recently ap-
plied to surface hydrology in rivers using a fractional advection dispersion
equation (FADE) [45].
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Finite difference methods for space-tempered fractional diffusion mod-
els with Dirichlet (absorbing) boundary conditions have been studied in
[9, 11, 23, 36]. In these articles, versions of tempered Grünwald-Letnikov
finite difference schemes were presented for solving tempered fractional dif-
fusion equations with Dirichlet boundary conditions. In [10], reflecting
boundaries for tempered fractional diffusion operators were discussed in
the context of demonstrating the well-posedness of PDEs with generalized
boundary conditions. Unlike the boundary conditions proposed in [1] and
[21], the reflecting conditions discussed in [10] are imposed at all points out-
side the domain, and hence differ qualitatively from the discrete boundary
conditions proposed in the current paper. Although a reflecting boundary
condition for tempered space-fractional equations was proposed in [45], a
finite-difference scheme for this equation was not provided. To date, no nu-
merical methods have been published that approximate the solution to tem-
pered fractional diffusion models with mass-conserving reflecting boundary
conditions.

In this work, explicit and implicit Euler methods for tempered space-
fractional diffusion equations on a finite interval are developed with an
emphasis on discrete reflecting boundary conditions. Conditional stability
of the explicit schemes and unconditional stability of the implicit schemes
for all combinations of reflecting and absorbing boundary conditions are
proved, thereby extending the stability results of [3] to the tempered case.
An analytical steady-state solution is derived and compared with numeri-
cal results using discrete reflecting boundary conditions. The highlight of
this paper is discrete, mass-conserving boundary conditions for tempered
space-fractional diffusion equations that are implemented within explicit
and implicit finite-difference schemes.

Section 2 contains the notation and definitions of the fractional inte-
grals and derivatives used in this work. In Section 3, consistent implicit and
explicit Euler methods for tempered fractional diffusion equations are de-
rived. Stability of the Euler schemes with reflecting or absorbing conditions
is established in Section 4. Steady-state solutions for the tempered frac-
tional diffusion equations with reflecting boundary conditions are discussed
in Section 5. Section 6 contains numerical examples demonstrating the ef-
fect of the tempering parameter, the consistency of the numerical schemes
with the steady-state solution, and convergence studies of the implicit and
explicit Euler schemes.

2. Tempered fractional diffusion equations

Tempered fractional derivatives can be defined by modifying the clas-
sical Riemann-Liouville fractional derivative.
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1564 A. Lischke, J.F. Kelly, M.M. Meerschaert

Definition 2.1. ([12]) On the real line, the positive Riemann-Liouville
(RL) derivative of order n− 1 < α < n with n ∈ N is defined

D
α
+f(x) =

dn

dxn
I
n−α
+ f(x) =

1

Γ(n− α)

dn

dxn

∫ x

−∞
(x− y)n−α−1f(y) dy, (2.1)

where I
n−α
+ is the positive Riemann-Liouville fractional integral. On a

bounded interval [L,R], the positive Riemann-Liouville derivative becomes

D
α
L+f(x) =

dn

dxn
I
n−α
L+ f(x) =

1

Γ(n− α)

dn

dxn

∫ x

L
(x− y)n−α−1f(y) dy, (2.2)

with L < x < R.

The tempered Riemann-Liouville (TRL) fractional derivative is defined
by multiplying the power-law convolution kernel of the Riemann-Liouville
derivative (2.2) by a decaying exponential function.

Definition 2.2. Let λ > 0. Then the positive tempered Riemann-
Liouville derivative of order n − 1 < α < n with n ∈ N on the interval
[L,R] is defined by

D
α,λ
L+ f(x) = e−λx

D
α
L+(e

λxf(x))

=
1

Γ(n− α)

dn

dxn

∫ x

L

e−λ(x−y)

(x− y)−n+α+1
f(y) dy.

(2.3)

The TRL derivative on an unbounded domain D
α,λ
+ f(x) is recovered by

setting the lower limit of integration in (2.3) to −∞.

The tempered Riemann-Liouville derivative has been studied in [10, 36,
39, 40] as a tempered fractional diffusion operator.

The traditional fractional diffusion equation ∂tp(x, t) = CD
α
+p(x, t),

(x, t) ∈ R× [0,+∞) with diffusion coefficient C > 0, order 1 < α ≤ 2, and
point-source initial condition p(x, 0) = δ(x) has as its solution p(x, t) that
is the transition density of a positively skewed α-stable Lévy motion for
which all moments of order two or larger are infinite [16]. To address the
issue of infinite moments, one can temper the process by multiplying its
density p(x, t) by a decaying exponential, i.e., e−λxp(x, t), where λ > 0 is
the tempering parameter that is chosen according to the application. The
function f(x, t) = e−λxp(x, t) solves the tempered fractional differential
equation

∂tf(x, t) = CD
α,λ
+ f(x, t) (x, t) ∈ R× [0,+∞), (2.4)

subject to f(x, 0) = δ(x). This tempered fractional differential equation
has been extensively studied in the literature [10, 23, 24, 36, 38, 39, 40].
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Remark 2.1. The spatial Fourier transform (FT) f̂(k) = F [f(x)] =∫∞
−∞ f(x)e−ikx dx of the TRL on an unbounded domain is computed using
the shift property of Fourier transforms and the well-known FT of the RL

derivative F [Dα
+f(x)

]
= (ik)αf̂(k), yielding F

[
D
α,λ
+ f(x)

]
= (λ+ ik)α [27,

Section 7.4]. Also see Eq. (2.5) in [23].

Applying a spatial FT to (2.4) and invoking this property yields ∂tf̂(k, t)

= C (λ+ ik)α f̂(k, t), which has solution

f̂(k, t) = eCt[(λ+ik)α ], (2.5)

assuming an impulse initial condition.

Remark 2.2. The model (2.4) does not conserve mass. To see this,
denote the total mass at time t by M(t) =

∫∞
−∞ f(x, t) dx. The total mass

M(t) may be computed by setting k = 0 in (2.5), i.e., M(t) = eCλαt. Since
M is not constant, mass is not conserved. This model cannot accurately
be called a diffusion equation, since mass is added to the system over time.

In the remainder of this work, we focus on mass-preserving models of
tempered fractional diffusion.

2.1. Normalized tempered fractional diffusion. In order to construct
a mass-preserving model, the tempered pdf e−λxp(x, t) must be normalized.
Using the Fourier transform of f as written in Remark 2.2, the normalized
tempered pdf is defined as the function pλ(x, t) with Fourier transform
p̂λ(k, t) = eCt[(λ+ik)α−λα]. This expression was achieved by normalizing by
M(t) in order for pλ(x, t) to have unit mass. Taking the time derivative of
p̂λ(k, t) yields

∂tp̂λ(k, t) = C[(λ+ ik)α − λα]p̂λ(k, t), (2.6)

and applying the inverse Fourier transform to both sides of (2.6) yields the
normalized tempered fractional diffusion equation

∂tpλ(x, t) = C(Dα,λ
+ pλ(x, t)− λαpλ(x, t)). (2.7)

The point-source solution of (2.7) subject to pλ(x, 0) = δ(x) is given by

pλ(x, t) = e−Ctλα
e−λxfα(x,Ct), (2.8)

where fα(x, t) is a positively-skewed α-stable density [46] given by the in-
verse FT

fα(x, t) =
1

2π

∫ ∞

−∞
et(ik)

α
eikx dk. (2.9)
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1566 A. Lischke, J.F. Kelly, M.M. Meerschaert

Definition 2.3. We refer to the operator D
α,λ
+ pλ(x, t) − λαpλ(x, t)

with 1 < α ≤ 2 as the normalized tempered Riemann-Liouville (NTRL)
derivative.

2.2. Centered normalized tempered RL derivative. Recall that the
Fourier transform of pλ(x, t) is e

Ct[(λ+ik)α−λα] and note that the transition
density pλ(x, t) is infinitely differentiable since the positively-skewed sta-
ble density fα(x, t) is also infinitely differentiable [46]. Then the mean is
computed as∫ ∞

−∞
xpλ(x, t) dx =

∫ ∞

−∞
i
d

dk
(e−ikx)

∣∣∣∣
k=0

pλ(x, t) dx = i
d

dk
eCt[(λ+ik)α−λα]

∣∣∣∣
k=0

= −Ctαλα−1.

To center the density on the real line, the centered normalized tempered
stable density pλ,0(x, t) is defined as the function with the Fourier transform

p̂λ,0(k, t) = eCt[(λ+ik)α−λα−ikαλα−1], (2.10)

so that the mean of pλ,0(x, t) is zero. As before, taking the time derivative
followed by the inverse Fourier transform of each side of (2.10) yields

∂tpλ,0(x, t) = C
(
D
α,λ
+ pλ,0(x, t)− λαpλ,0(x, t)− αλα−1∂xpλ,0(x, t)

)
.

(2.11)

The point-source solution of (2.11) is given by

pλ(x, t) = eCt(α−1)λα
e−λxfα(x− Ctαλα−1, Ct). (2.12)

Definition 2.4. We refer to the tempered fractional diffusion operator

D
α,λ
+ pλ,0(x, t) − λαpλ,0(x, t) − αλα−1∂xpλ,0(x, t) with 1 < α ≤ 2 as the

centered normalized tempered Riemann-Liouville (CNTRL) derivative.

3. Euler methods for tempered fractional diffusion

In this section, explicit and implicit Euler methods are developed for
tempered fractional diffusion equations (2.7) and (2.11) with reflecting
boundary conditions. Our approach, which extends that of Baeumer et al.
[1], requires that mass leaving the domain should instead come to rest at
the boundary (an inelastic collision), which is enforced in the discretization.
Particles undergoing tempered fractional diffusion may reach the boundary
of the domain from interior nodes far from the boundary, resulting in a
nonlocal flux.
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MASS-CONSERVING TEMPERED FRACTIONAL . . . 1567

3.1. Grünwald-Letnikov approximations. The Riemann-Liouville frac-
tional derivative (2.1) of order 1 < α ≤ 2 can be approximated according
to the shifted Grünwald-Letnikov (GL) formula (see [29, Remark 2.2] and
[27, Proposition 2.1])

D
α
+u(x, t) = h−α

∞∑
i=0

gαi u(x− (i− 1)h, t) +O(h), (3.1)

where the shift is necessary for stability [28]. The Grünwald weights are
defined

gαi = (−1)i
(
α

i

)
=

(−1)iΓ(α+ 1)

Γ(i+ 1)Γ(α − i+ 1)
.

These weights have the following properties for 1 < α ≤ 2 [1]: (i) gαi > 0
for all i �= 1, (ii) gα1 = −α < 0, and (iii)

∑∞
i=0 g

α
i = 0.

To approximate the NTRL derivative (2.3) on the real line R, the GL
formula is [3]

D
α,λ
+ u(x, t)− λαu(x, t) = h−α

∞∑
i=0

gαi e
−λh(i−1)u(x− (i− 1)h, t)

−h−αeλh
(
1− e−λh

)α
u(x, t) +O(h).

(3.2)

As h → 0, the term h−αeλh(1 − e−λh)α converges to λα so that this ap-
proximation converges to the NTRL derivative (2.3) [3]. Extending this ap-
proximation to the centered normalized tempered RL derivative is straight-
forward by approximating the first derivative term with a first-order finite
difference.

3.2. Normalized tempered fractional diffusion equation. We de-
velop explicit and implicit Euler schemes for the normalized TFD equa-
tion (2.7) on the bounded domain [L,R] with mass-conserving (reflecting)
and absorbing (zero Dirichlet) boundary conditions. Stable Crank-Nicolson
[3] and higher-order schemes [23] for tempered fractional equations have
previously been developed, but only for the case of absorbing boundary
conditions.

First, the interval [L,R] is discretized into n + 1 points as L = x0 <
x1 < · · · < xn = R, where the grid spacing is h = xi − xi−1 = (R − L)/n.
Similarly, the interval [0, T ] is discretized into m + 1 points as 0 = t1 <
t2 < · · · < tm = T , where the time step is Δt = tk − tk−1 = T/m. Let
uki = u(xi, tk). The explicit Euler scheme is written

uk+1
j − ukj
Δt

= Ch−α
j+1∑
i=0

biju
k
i , (3.3)
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1568 A. Lischke, J.F. Kelly, M.M. Meerschaert

where the coefficients bij are proportional to mass moving from position xi
to position xj , and are determined as follows.

The mass at position xi and time tk is given by huki , and the scheme
(3.3) can be interpreted physically as follows. Let β = Ch−αΔt. When
i �= j, mass βbijhu

k
i moves from xi to xj between times tk and tk+1. When

xi and xj reside in the interior of [L,R], the coefficient bij = gαj−i+1e
−λh(j−i),

which is determined using (3.1) (after a change of index). When i = j and
xi again resides in the interior of the domain, the total mass leaving xi is
given by βbiihu

k
i , where bii = gα1 − eλh(1− e−λh)α = −α− eλh(1− e−λh)α.

In a mass-preserving scheme, the mass −βbiihu
k
i leaving xi must be equal

to the mass β
∑n

j=0,j �=i bijhu
k
i arriving at xi.

When either xi or xj are on the boundaries of the interval [L,R], bij is
determined by modifying the GL coefficients such that mass cannot leave
the domain. To do so, first consider the left boundary x0 = L. Since the
positive fractional derivative models mass that can take long jumps to the
right and only short (h-sized) movements to the left, the only way mass
can exit the boundary at the left endpoint is by moving from position x0
to x−1 = −h. To keep this mass in the interval, we require that mass
βgk0e

λhhuk0 remains at x0. Furthermore, the Grünwald approximation (3.2)
requires that mass β(eλh(1− e−λh)α − gα1 )hu

k
0 exits position x0 and jumps

elsewhere in the domain within a given time step. Therefore,

b00 = gα1 − eλh(1− e−λh)α + g0e
λh.

Next, consider the right boundary xn = R. Mass that would jump from
any position xi inside the domain to positions xn+1, xn+2, . . . , is reflected
to stay in the domain via an inelastic collision with the right boundary
xn = R. In our reflecting scheme, the mass moving from position xi for
i = 0, 1, . . . , n− 1 to xn is then

β

∞∑
�=n

gα�−i+1e
−λh(�−i)uki = β

∞∑
�=n−i+1

gα� e
−λh(�−1)uki . (3.4)

To compute the infinite sum in (3.4), the binomial theorem (x + y)r =∑∞
k=0

(r
k

)
xr−kyk with |x| > |y| is used. Then

∑∞
i=0 g

α
i e

−λh(i−1) = eλh(1 −
e−λh)α, yielding

β

∞∑
�=n−i+1

gα� e
−λh(�−1)uki = β

(
eλh(1− e−λh)α −

n−i∑
�=0

gα� e
−λh(�−1)uki

)
.

(3.5)

Therefore, for i = 0, 1, . . . , n− 1,

Auth
or'

s c
op

y



MASS-CONSERVING TEMPERED FRACTIONAL . . . 1569

bin = eλh(1− e−λh)α −
n−i∑
�=0

gα� e
−λh(�−1).

Finally, mass is only allowed to move out of position xn by jumping to
xn−1, so

bnn = −gα0 e
λh.

The resulting matrix B with coefficients bij is defined by

bij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

gαj−i+1e
−λh(j−i) 0 < i ≤ j + 1, i �= j, j + 1,

0 < j < n− 1,

gα1 − eλh(1− e−λh)α 0 < i = j < n,

gα1 − eλh(1− e−λh)α + gα0 e
λh i = j = 0,

eλh(1− e−λh)α −∑n−i
�=0 g

α
� e

−λh(�−1) 0 ≤ i ≤ n− 1, j = n,

−gα0 e
λh i = j = n,

0 i > j + 1.

(3.6)

The implicit Euler scheme is written as

uk+1
j − ukj
Δt

= Ch−α
j+1∑
i=0

biju
k+1
i , (3.7)

where the coefficients {bij} are defined as in (3.6).

Proposition 3.1. The diagonal entries of B in (3.6) are all negative,
and the off-diagonal entries are non-negative.

P r o o f. The diagonal entries bii where i �= 0 and i �= n are given by
bii = gα1 − eλh(1 − e−λh)α. The coefficient gα1 = −α < −1, which implies
bii < 0 because eλh(1 − e−λh)α > 0. When i = 0, b00 = −α − eλh(1 −
e−λh)α + gα0 e

λh. Note that gα0 = 1. Since
∞∑

i=0,i�=1

gαi e
−λh(i−1) = eλh(1− e−λh)α + α,

and all terms in the sum are positive, gα0 e
λh < eλh(1 − e−λh)α + α, which

implies b00 < 0. If i = n, bnn = −gα0 e
λh = −eλh < 0. Therefore, all

diagonal entries of B are negative.
Using the fact gαi > 0 for all i �= 1 and e−λhk > 0 for any integer

k, bij = gαj−i+1e
−λh(j−i) > 0 for all 0 < i ≤ j + 1, i �= j, j + 1, and

0 < j < n − 1. If 0 ≤ i ≤ n − 1 and j = n, then we have bij = eλh(1 −
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1570 A. Lischke, J.F. Kelly, M.M. Meerschaert

e−λh)α −∑n−i
�=0 g

α
� e

−λh(�−1). Since
∑∞

�=0 g
α
� e

−λh(�−1) = eλh(1 − e−λh)α, it
follows that

bij = eλh(1− e−λh)α −
n−i∑
�=0

gα� e
−λh(�−1) =

∞∑
�=0

gα� e
−λh(�−1) −

n−i∑
�=0

gα� e
−λh(�−1)

=

∞∑
�=n−i+1

gα� e
−λh(�−1).

Since i ≤ n− 1, we have n− i+ 1 ≥ 2, so all terms of the final sum above
are positive, and bij > 0. Recalling that bij = 0 for all i > j + 1, it follows
that all off-diagonal entries of B are non-negative. �

Remark 3.1. To implement absorbing boundary conditions applied
to Equation (2.7), the modified coefficient matrix is given by (3.6) with all
entries in rows i = 0 and i = n set to zero. To implement an absorbing con-
dition at the left boundary and a reflecting condition at the right boundary,
the coefficient matrix is given by (3.6) with all entries in row i = 0 set to
zero. Similarly, for an absorbing boundary condition on the right and a
reflecting condition on the left, the coefficient matrix (3.6) should have all
entries in row i = n set to zero.

Proposition 3.2. The explicit Euler scheme (3.3) and implicit Euler
scheme (3.7) with B defined in (3.6) is mass-preserving, as for any fixed
i = 0, 1, . . . , n, we have

∑n
j=0 bij = 0.

P r o o f. It is straightforward to verify that
∑n

j=0 bij = 0 for any i by

writing out the sum for each i using the entries bij defined in (3.6). Hence
the scheme redistributes the mass at each state xi at each time step without
changing the total mass. �

Remark 3.2. Although we focus on the case 1 < α ≤ 2 in this work,
one can also consider the equation

∂tu(x, t) = −C(Dα,λ
+ u(x, t)− λαu(x, t))

with 0 < α < 1. In this case, the shift in the Grünwald formula (3.1)
becomes unnecessary for stability. This model also conserves mass, and
mass-preserving boundaries may also be enforced using a similar approach
to the one described above.

3.3. Centered normalized tempered fractional diffusion equation.
We also develop Euler schemes for the centered normalized TFD equation
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MASS-CONSERVING TEMPERED FRACTIONAL . . . 1571

(2.11) on the domain (x, t) ∈ [L,R]× [0, T ] with combinations of reflecting
and absorbing boundary conditions, as in Section 3.2. The stability results
for these methods are proved in Section 4.1, and numerical examples are
included in Section 6.

We determine the coefficients b0ij using the same logic as above, where

we ∂xu(xj , tk) is approximated via a backward difference. Letting Sk =∑k
�=0 g

α
� e

−λh(�−1) yields

b0ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

gαj−i+1e
−λh(j−i) 0 < j < n, 0 ≤ i ≤ j + 1,

i �= j − 1, j,

gα1 − eλh(1− e−λh)α − α(λh)α−1 0 < i = j < n,

gα2 e
−λh + α(λh)α−1 0 ≤ i = j − 1 ≤ n− 2,

gα1 − eλh
(
(1− e−λh)α − gα0

)− α(λh)α−1 i = j = 0,

eλh(1− e−λh)α − Sn−i 0 ≤ i < n− 1, j = n,

eλh(1− e−λh)α − S1 + α(λh)α−1 i = n− 1, j = n,

−gα0 e
λh i = j = n,

0 i > j + 1.

(3.8)

The resulting scheme is mass-preserving, which can be shown in the same
way as in Proposition 3.2, since

∑n
j=0 b

0
ij = 0 for any fixed i = 0, 1, . . . , n.

Incorporating absorbing boundary conditions for (2.11) can be achieved by
modifying B0 defined in (3.8) as described in Remark 3.1.

The explicit and implicit Euler schemes for both the normalized and
centered models may be written compactly by defining a row vector with
entries representing the solution at time tk by uk = [u(xi, tk)], so that
uk+1 = uk + βukB. Then the explicit Euler scheme may be written

uk+1 = ukA, (3.9)

where A = I + βB. The implicit Euler scheme can be written as

uk+1M = uk, (3.10)

where M = I − βB. The explicit and implicit schemes for the centered
normalized model replaces B with B0.

3.4. Reflecting boundary conditions and flux functions. In the case
where λ = 0, reflecting boundary conditions for the fractional diffusion
equation ∂tu(x, t) = D

α
L+u(x, t) were derived by Baeumer et al. [1]. Defin-

ing the flux function F (x, t) = D
α−1
L+ u(x, t), the non-tempered fractional

diffusion equation may be written in conservation form as

∂tu(x, t) = −∂xF (x, t), (x, t) ∈ [L,R]× [0,∞), (3.11)
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with the reflecting boundary conditions F (L, t) = F (R, t) = 0 written
explicitly as

D
α−1
L+ u(x, t)

∣∣∣∣
x=L

= D
α−1
L+ u(x, t)

∣∣∣∣
x=R

= 0.

In the tempered case, it is difficult to write the flux analytically, since
the α-tempered fractional derivative is not the first derivative of the (α−1)-
tempered fractional derivative. Hence, in the tempered case, it is not
straightforward to write the reflecting boundary conditions in a simple an-
alytical form.

4. Stability analysis

4.1. Explicit Euler schemes. In this section, we prove stability of the
explicit Euler scheme for the normalized TFD equation with different com-
binations of absorbing and reflecting boundary conditions.

Theorem 4.1. Given the matrix B defined in (3.6) representing
the discretized form of the normalized TFD equation (2.7) with reflecting
boundary conditions, let A represent the iteration matrix of the explicit
Euler scheme, i.e., A = I + βB and β = ΔtCh−α. If β ≤ 1/α, then the
explicit Euler method (3.3) is stable.

Furthermore, if the matrix B is modified according to Remark 3.1 to
incorporate absorbing boundary conditions at either the left, right, or both
endpoints, and β ≤ 1/α, the resulting explicit Euler scheme is also stable.

P r o o f. In order to show stability, we use the Gerschgorin circle the-
orem [18, pp. 135–136], so that the eigenvalues {σA

i } of A satisfy aii− ri ≤
σA
i ≤ aii + ri, where

ri =

n∑
j=0,j �=i

|aij |.

The explicit Euler scheme is stable if

−1 ≤ aii − ri ≤ σA
i ≤ aii + ri ≤ 1. (4.1)

Since the off-diagonal terms of B are non-negative, and
∑n

j=0 bij = 0,

ri =
n∑

j=0,j �=i

|aij | =
n∑

j=0,j �=i

βbij =
n∑

j=0

βbij − βbii = −βbii.

Therefore, σA
i ≤ aii − βbii = 1 + βbii − βbii = 1. Next, consider the lower

bound: σA
i ≥ aii+βbii = 1+2βbii. In order for σi ≥ −1, we will show that

1 + 2βbii ≥ −1, which holds when β ≤ −1/bii. We check the three cases:
(i) i = 0, (ii) 0 < i < n, and (iii) i = n.
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Case 1. First, for i = 0, b00 = gα1 − eλh(1 − e−λh)α + gα0 e
λh = −α −

eλh(1− e−λh)α + eλh, which requires

β ≤ 1

α+ eλh(1− e−λh)α − eλh
. (4.2)

Case 2. Next, for 0 < i < n, bii = gα1 − eλh(1− e−λh)α = −α− eλh(1−
e−λh)α, thus we require

β ≤ 1

α+ eλh(1− e−λh)α
. (4.3)

Case 3. Finally, for i = n, bnn = −eλh, which means we must have

β ≤ e−λh. (4.4)

By inspection, the minimum of the right hand sides of (4.2), (4.3), and
(4.4) is (4.3), where

β ≤ 1

α+ eλh(1− e−λh)α
≤ 1

α
,

so that the stability condition is

Δt ≤ hα

αC
. (4.5)

This condition is the same as the stability condition for the scheme pre-
sented in [1]. So if (4.5) is satisfied, we have that aii− ri = 1+2βbii ≥ −1.
Therefore, (4.1) is satisfied, and the reflecting explicit Euler scheme is stable
according to the Gerschgorin circle theorem.

Suppose that B is modified to incorporate an absorbing boundary con-
dition at the left endpoint according to Remark 3.1, so that b0j = 0 for all j.
Then r0 =

∑n
j=1 |a0j | = 0 and a00 = 1, which yields a00−r0 = a00+r0 = 1.

Then the Gerschgorin circle theorem implies that σA
0 = 1, with all the other

eigenvalues also satisfying condition (4.1) as before, so the explicit Euler
scheme is stable. This argument follows in the same way when an absorbing
boundary condition is imposed on the right endpoint, so that bnj = 0 for all
j. Therefore, the explicit Euler schemes implementing any combination of
absorbing and reflecting boundary conditions are all conditionally stable.

�

Remark 4.1. Stability of the explicit Euler scheme for centered nor-
malized TFD equation for β ≤ 1/α follows in exactly the same manner,
except that the stability condition includes a contribution from the first
derivative term, i.e.,

β ≤ 1

α+ eλh(1− e−λh)α + α(λh)α−1
.
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This expression is bounded above by 1/α, yielding the stability condition
(4.5).

4.2. Stability of implicit Euler schemes.

Theorem 4.2. Given the matrix B representing the discretized form
of the normalized tempered diffusion operator with reflecting boundary con-
ditions, let M represent the iteration matrix of the implicit Euler scheme,
i.e., M = I − βB. The eigenvalues {σM} of the matrix M satisfy σM ≥ 1;
hence, the implicit Euler method (3.10) is unconditionally stable.

Furthermore, if the implicit Euler scheme is modified to incorporate ab-
sorbing boundary conditions at the left, right, or both endpoints by setting
the appropriate rows of the matrix B to zero as described in Remark 3.1,
the resulting scheme is again unconditionally stable.

P r o o f. Recall that the Gerschgorin circle theorem implies that, for
each i, the eigenvalues σM

i of the matrix M satisfy σM
i ≥ mii − ri, where

ri =
n∑

j=0,j �=i

|mij | =
n∑

j=0,j �=i

| − βbij | = −βbii. (4.6)

Then we have σM
i ≥ mii − ri = 1− βbii + βbii = 1. Therefore, the implicit

Euler scheme with reflecting-reflecting boundary conditions is uncondition-
ally stable.

Suppose that, instead of a reflecting condition, an absorbing condition
at the left boundary is enforced by setting b0j = 0 for all j. Then r0 =∑n

j=1 b0j = 0, so σM
0 ≥ m00 − r0 = 1 − βb00 = 1. For this case, all other

eigenvalues satisfy the property σM
i ≥ 1 as above, so the implicit Euler

scheme is unconditionally stable. This argument follows in the same way
when the right boundary condition is absorbing, so that bnj = 0 for all j,

and σM
n ≥ mnn − rn = 1− βbnn = 1. Therefore, the implicit Euler scheme

with any combination of reflecting and absorbing boundary conditions is
unconditionally stable. �

Remark 4.2. Since the matrix B0 of (3.8) shares the properties of B
that imply (4.6) in the proof of Theorem 4.2, the same argument results in
the unconditional stability of the implicit Euler schemes for the centered
normalized TFD equation.

Remark 4.3. One could devise a Crank-Nicolson scheme with differ-
ent combinations of reflecting and absorbing boundary conditions using a
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similar approach to the one proposed in Section 3, and the resulting coeffi-
cient matrix would share the property of B (or B0) that the row sums are
less than or equal to zero, with non-negative off-diagonal entries and nega-
tive diagonal entries. Stability follows from the Gerschgorin circle theorem.
For absorbing-absorbing boundary conditions, this was done in [3].

5. Steady-state solutions

In this section, we first compute the kernel of the NTRL derivative
and then derive analytical steady-state solutions of the normalized TFD
equation (2.7) with reflecting boundary conditions. A similar approach is
applied to deriving the steady-state solution of the centered normalized
model.

If λ = 0, steady-state solutions for one-sided fractional diffusion equa-
tions with reflecting boundary conditions were derived in [1, 2]. In par-
ticular, Baeumer et al. [1] showed that the steady-state solution of the
one-sided fractional diffusion equation on [0, 1] with unit mass and reflect-
ing boundary conditions is (α−1)xα−2. Steady-state solutions for two-sided
fractional diffusion equations with different combinations of absorbing and
reflecting boundary conditions were derived in [21], while the regularity
of the two-sided steady-state solutions with absorbing-absorbing boundary
conditions was investigated in Ervin et al. [14]. It was shown in [1, 2, 21]
that the steady-state solutions of both one- and two-sided fractional diffu-
sion equations using the RL derivative are not constant unless α = 2, and
instead have singularities at one or both boundaries.

We identify all steady-state solutions u∞(x) (e.g., the null-space, or
kernel) of the one-sided normalized tempered fractional diffusion equation:

D
α,λ
0+ u∞(x)− λαu∞(x) = 0 (5.1)

on the interval [L,R] = [0, 1].

Remark 5.1. We may choose the interval [0, 1] without loss of gener-
ality, as a point x in [0, 1] may be mapped to a point y ∈ [L,R] using the
transformation y = x(R − L) + L. This change of variables may be used
to transform the results of this section so that they apply in any interval
[L,R].

Theorem 5.1. Equation (5.1) for 1 < α < 2 has steady-state solutions

u∞(x) = c0e
−λx(λx)α−1Eα,α((λx)

α)+c1e
−λx(λx)α−2Eα,α−1((λx)

α), (5.2)

where c0 and c1 are arbitrary real constants, and Eα,β(x) is the two-
parameter Mittag-Leffler function
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Eα,β(x) =

∞∑
k=0

xk

Γ(αk + β)
(5.3)

with α > 0 and β ∈ C [22, Equation (1.8.17)].

P r o o f. Using (2.3) and multiplying each side of (5.1) by eλx and
defining w(x) = eλxu∞(x), (5.1) may be written as

D
α
0+w(x) − λαw(x) = 0. (5.4)

The kernel of the operator in Equation (5.4) is the two-dimensional space
of functions of the form [22, Equation (4.2.44)]

w0(x) = (λx)α−1Eα,α((λx)
α),

w1(x) = (λx)α−2Eα,α−1((λx)
α),

so that w(x) = c0w0(x) + c1w1(x). The result (5.2) then follows using the
definition of w(x). �

Proposition 5.1. The functions u0(x) = e−xxα−1Eα,α(x
α) and

u1(x) = e−xxα−2Eα,α−1(x
α) behave asymptotically as ui(x) ∼ 1/α as

x → ∞ for i = 0, 1.

P r o o f. The asympototic behavior of Eα,β(x) as x → ∞ for 1 < α < 2
is given by [22, Equation (1.8.27)]:

Eα,β(x) ∼ 1

α
x(1−β)/α exp

(
x1/α

)
.

Hence

ui(x) =e−xxβEα,β+1(x
α) ∼ e−xx

β

α
(xα)(1−(β+1))/α exp

(
xα/α

)
∼ 1

α
for i = 0 or 1. �

Proposition 5.2. For any x > 0,

u1(x)− u0(x) = e−xxα−2Eα,α−1(x
α)− e−xxα−1Eα,α(x

α) > 0.

P r o o f. The two-parameter Mittag-Leffler function (5.3) satisfies [22,
Equation (1.9.6)](

d

dx

)m [
xβ−1Eα,β(x

α)
]
= xβ−m−1Eα,β−m(xα), (5.5)

for m ∈ N, α, β ∈ C, and Re(α) > 0. Setting m = 1 and β = α yields
d
dx

[
xα−1Eα,α(x

α)
]
= xα−2Eα,α−1(x

α). By the product rule,
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d

dx

[
e−xxα−1Eα,α(x

α)
]
= −e−xxα−1Eα,α(x

α) + e−xxα−2Eα,α−1(x
α)

= u1(x)− u0(x).

It suffices to prove that the function e−xxα−1Eα,α(x
α) is increasing. Choose

x0, x1 > 0 such that x0 < x1. Then

e−x1xα−1
1 Eα,α(x

α
1 )− e−x0xα−1

0 Eα,α(x
α
0 )

> e−x1
(
xα−1
1 Eα,α(x

α
1 )− xα−1

0 Eα,α(x
α
0 )
)

= e−x1

∞∑
k=0

xα−1
1 xαk1 − xα−1

0 xαk0
Γ(αk + α)

> 0,

since xαk+α−1 is increasing for x > 0 and Γ(αk + α) > 0 for any α ∈ (1, 2)
and any k ≥ 0. Therefore, e−xxα−1Eα,α(x

α) is increasing for x > 0. �

Corollary 5.1. The steady-state solution of (5.1) that satisfies re-
flecting BCs with unit mass is

u∞(x) =
e−λx

K

[
(λx)α−2Eα,α−1((λx)

α)− (λx)α−1Eα,α((λx)
α)
]

(5.6)

with normalization constant

K = e−λλα−2Eα,α(λ
α). (5.7)

P r o o f. Observe that u∞(x) = c0u0 (λx) + c1u1 (λx) for any λ > 0.
Also, note that u1(x) > u0(x) for all x > 0 according to Proposition 5.2.
By Proposition 5.1, the only linear combination of u0(x) and u1(x) that
is both non-negative for all x > 0 and that approaches zero as x → ∞ is
(1/K)(u1(x) − u0(x)) for some constant K > 0. Hence, the only choice of
c0 and c1 that ensures u∞(x) in (5.2) is non-negative on [0, 1] for any choice
of λ is c1 = −c0 = (1/K) > 0, where K is chosen to be (5.7) to ensure unit
mass:

K =

∫ 1

0
e−λy

(
(λy)α−2Eα,α−1(λy)− (λy)α−1Eα,α(λy)

)
dy

=

∫ 1

0

1

λ

d

dy

[
e−λy(λy)α−1Eα,α((λy)

α)
]
dy

= e−λλα−2Eα,α(λ
α),

where (5.5) is used in the second line. �

Remark 5.2. Recall that the centered model (2.11) is derived from
the normalized model by computing the mean of the normalized model
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solution via the Fourier transform. Restricting to the bounded domain
yields a different mean depending on the size of the interval. We analytically
derive the mean μ of the steady-state solution in the interval [0, 1] using
the explicit form of u∞(x) in Equation (5.6):

μ =

∫ 1

0
xu∞(x) dx

=

∫ 1

0

xe−λx

K

[
(λx)α−2Eα,α−1((λx)

α)− (λx)α−1Eα,α((λx)
α)
]
dx

=

∞∑
j=0

λαj

Eα,α(λα)
[(αj + α− 1)E1,αj+α+1(λ)− λ(αj + α)E1,αj+α+2(λ)] ,

(5.8)

where we used the identity [17, Equation (4.4.6)]∫ 1

0
xγe−λx dx = e−λΓ(γ + 1)E1,γ+2(λ).

Proposition 5.3. As λ → 0, the steady-state solution (5.6) converges
pointwise to the untempered steady-state solution u∞(x) → (α − 1)xα−2

for all x > 0.

P r o o f. Taking the limit of u∞(x) as λ → 0 yields

lim
λ→0

u∞(x) = lim
λ→0

e−λx(λx)α−2Eα,α−1((λx)
α)− e−λx(λx)α−1Eα,α((λx)

α)

e−λλα−2Eα,α(λα)

= lim
λ→0

e−λx+λxα−2Eα,α−1((λx)
α)− e−λx+λλxα−1Eα,α((λx)

α)

Eα,α(λα)

=
xα−2Eα,α−1(0) − 0

Eα,α(0)
= xα−2 Γ(α)

Γ(α− 1)
= (α− 1)xα−2,

where Eα,β(0) = 1/Γ(β) is used in the fourth line. �

Remark 5.3. The steady-state solution of the centered normalized
model (2.11) satisfies

D
α,λ
0+

u∞(x)− λαu∞(x)− αλα−1∂xu∞(x) = 0, (5.9)

for 0 ≤ x ≤ 1. Defining the function w(x) = eλxu∞(x) yields

D
α
0+w(x)− λα(1− α)w(x) − αλα−1∂xw(x) = 0. (5.10)

The solutions of (5.10) are reported in Kilbas et al. [22, Corollary 5.3] as
an infinite series of Wright functions 1Ψ1(x) [22, Equation (1.11.14)].

Auth
or'

s c
op

y



MASS-CONSERVING TEMPERED FRACTIONAL . . . 1579

6. Numerical examples

Figure 1 compares numerical solutions of the one-sided tempered frac-
tional diffusion equation with reflecting boundary conditions using order
α = 1.3 in panel 1(a) and order α = 1.8 in panel 1(b) using a tempering
parameter of λ = 1 with the analytical steady-state solution (5.6). The
initial condition u(x, 0) = u0(x) is a tent function with unit mass

u0(x) =

⎧⎪⎨
⎪⎩
25x− 7.5 0.3 < x < 0.5,

−25x+ 17.5 0.5 < x < 0.7,

0 otherwise.

(6.1)

A total of 401 grid-points were used with the implicit Euler scheme using
a time-step of Δt = 0.01, while the steady-state solution (5.6) was evalu-
ated using freely available codes for the Mittag-Leffler function [31]. The
numerical solution at time t = 1 and the steady-state solution (5.6) agree
well, indicating that the long-time numerical solutions are consistent with
the analytical steady-state solution.

Remark 6.1. Like the one-sided fractional steady-state solution, (5.2)
is singular at x = 0 and smooth at x = 1. The tempered fractional de-
rivative, like the Riemann-Liouville fractional derivative, has a leftward
advection component that causes the plume’s center of mass to advect to-
wards the left boundary. To see why the leftward component dominates
the long jumps to the right, consider the values of the coefficients in the
Grünwald-Letnikov discretization where α = 1.5. Given a point xj in the
domain, recall that each gαi determines the amount of mass moving from xj
to xj−i+1 (if i �= 1). As n → ∞,

∑n
i=2 g

α
i converges to α− 1, which is less

than gα0 = 1. As gα0 determines the proportion of mass advecting to the left
of xj, and {gαi }i≥2 determines the proportion of mass jumping to the right
of xj , the leftward movement of mass dominates the overall evolution of
the solution. Hence, over time, the mass accumulates at the left boundary
and forms a singularity. Compared with the Riemann-Liouville derivative,
tempering the operator does not increase the regularity of the steady-state
solution. Since this singular behavior is not observed either experimentally
or in the field, alternative definitions of the tempered fractional deriva-
tive should be analyzed with discrete reflecting boundary conditions. In
the non-tempered case, diffusion equations based on the mixed-Caputo,
also known as Patie-Simon, derivative have constant steady-state solutions
[2, 21]. The tempered model discussed in [42], which was analyzed using
a Lagrangian solver, may be written in a mixed-Caputo form and may be
discretized using the numerical methods presented in Section 3.
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(a) α = 1.3 (b) α = 1.8

Figure 1. Comparison of numerical solutions (lines) and
steady-state solution given by (5.6) (circles) for (a) α = 1.3
and (b) α = 1.8 using a tempering parameter of λ = 1 and
times t = 0 (solid tent function), 0.05 (dotted), 0.1 (dash-
dotted), 0.2 (dashed), and 1 (solid green). The steady-state
solution is plotted using circles.

Remark 6.2. Spectral methods are able to accurately capture the
singular derivatives of solutions for fractional diffusion models with Dirich-
let boundary conditions [40, 38, 8]. Most spectral methods for fractional
diffusion models are formulated by choosing a set of spatial basis functions
{φm(x)}Mm=1 that satisfy the prescribed boundary conditions and approx-

imating of the solution u(x, t) ≈ ∑M
m=1 am(t)φm(x), where {am(t)} are

time-dependent coefficients determined by the numerical method. Deriv-
ing appropriate basis functions {φm(x)} for tempered diffusion that are
consistent with the reflecting boundary condition is challenging, requiring
analysis of the boundary operator, and remains an open problem.

Figure (2) displays the implicit Euler solutions of Equation (2.7) in plots
(a)–(c) and Equation (2.11) in plots (d)–(f) with α = 1.5 using the initial
condition (6.1) and reflecting conditions at each boundary. The domain is
discretized by 401 grid points and Δt = 0.01 with λ = 0.1, 1, and 10 at
times t = 0, 0.05, 0.1, 0.2, 0.5, and 1. The solutions at t = 1 agree well with
the analytical steady-state solution given by (5.2). As λ increases, mass is
more concentrated near the left boundary, which means that increasing the
tempering parameter increases the strength of the singularity at the left
boundary. This behavior is caused by the increase in leftward diffusion as
λ increases.
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(a) λ = 0.1 (b) λ = 0.1

(c) λ = 1 (d) λ = 1

(e) λ = 10 (f) λ = 10

Figure 2. Implicit Euler solutions of the normalized TFD
equation (2.7) (plots (a), (c), and (e)) and the centered nor-
malized TFD equation (2.11) (plots (b), (d), and (f)) with
reflecting-reflecting boundary conditions for different values
of λ with α = 1.5, 401 grid points, and Δt = 0.01. The
initial condition is the tent function (6.1) represented as a
solid curve in both plots. The solutions are plotted at times
t = 0 (solid tent function), 0.05 (dotted), 0.1 (dash-dotted),
0.2 (dashed), and 1 (solid green). The steady-state solution
is plotted using circles.
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(a) λ = 0 (b) λ = 0

(c) λ = 0.1 (d) λ = 0.1

(e) λ = 1 (f) λ = 1

Figure 3. Implicit Euler solutions of the normalized TFD
equation (2.7) with reflecting-reflecting boundary conditions
for different values of λ with α = 1.5, 1001 grid points,
and Δt = 0.01. Plots (a), (c), and (e) have linear-linear
scale, and plots (b), (d), and (f) represent the same functions
in log-log scale. The initial condition is the delta function
represented as a solid curve. The solutions are plotted at
times t = 0 (solid), 1 (dotted), 3 (dash-dotted), 5 (dashed),
8 (solid green), and 1 (dotted blue).
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In Figure (3), the effect of the tempering parameter on solutions of the
normalized TFD equation can be observed. In the log-log plots of subfigures
(d) and (f), the effect of the tempering of the long jumps to the right is
visible, since the concentration of mass at the right boundary decreases
as λ increases. Furthermore, particularly in panel (e) with λ = 0.1, the
power law behavior in the solutions is clearly visible, with a transition to
exponential behavior near x = 1/λ.

Centered Normalized Model Means
Time t

λ 0 0.05 0.1 0.2 0.5 1 2
0.1 0.5 0.4745 0.4485 0.4175 0.3958 0.3905 0.3898
1.0 0.5 0.4926 0.4826 0.4676 0.4554 0.4527 0.4519
10.0 0.5 0.4987 0.4970 0.4930 0.4850 0.4799 0.4766

Normalized Model Means
Time t

λ 0 0.05 0.1 0.2 0.5 1 2
0.1 0.5 0.4516 0.4068 0.3562 0.3193 0.3114 0.3108
1.0 0.5 0.4191 0.3459 0.2600 0.1954 0.1847 0.1841
10.0 0.5 0.2633 0.0926 0.0268 0.0246 0.0246 0.0246

Table 1. Means for the normalized and centered normal-
ized solutions with α = 1.5 and tempering parameters λ =
0.1, 1.0, and 10.0. Numerical solutions were computed us-
ing the implicit Euler schemes with Δt = 0.001 and n = 801
grid points on the interval [0, 1].

One benefit of the centered model used in [3] is that, on the real line,
the mean of pλ,0(x, t) is zero for all t ≥ 0. As the model has been restricted
to a bounded domain, the third (centering) term in the CNTRL (2.11) no
longer centers the mean to zero. However, while the centering term no
longer represents the exact mean of the plume on the bounded domain, one
can notice from Table 1 that the mean remains closer to the center than in
the normalized model (2.7), especially for large values of λ. Note that the
mean is different from the peak of the solution curves, which represents the
mode.

Given the solution of the centered normalized TFD equation u(x, t)
on the domain [0, 1], the solution means are numerically approximated for

different values of t as
∫ 1
0 xu(x, t) dx ≈ h

∑n
i=0 xiu(xi, t). Table 1 displays

the means at different times for α = 1.5 and tempering parameters λ =
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(a) Initial Condition. (b) t = 0.1, 0.4, 0.8.

(c) t = 5.5 and 7. (d) t = 8, 15 and steady-state.

Figure 4. We solve the normalized TFD equation (2.7)
using the implicit Euler method with α = 1.5, λ = 1, n =
801 grid points, and Δt = 0.01 on the domain [0, 25]. (a)
The impulsive initial condition; (b) the solid curves are the
numerical solutions at times t = 0.1, 0.4, 0.8, and the ‘x’
markers represent the tempered stable densities at the same
times; (c) the solid curves are the numerical solutions at
times t = 5.5, 7, and the ‘x’ markers represent the tempered
stable densities at the same times; (d) the solid curves are
the numerical solutions at times t = 8, 15, and the circle
markers represent the analytical steady-state solution.

0.1, 1.0, and 10.0. The normalized model means in Table 1 at time t =
2 were compared to the analytical mean μ given by (5.8), and the two
computations agreed up to three digits for each value of λ. We also include
the means of the normalized model given the same parameter values for
comparison. While the mean of the solution of the centered model is not
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exactly centered in the interval, it is much closer to the center relative to
the mean of the normalized model solutions.

On the real line, given any initial condition, the solution at any time
t is a spatial convolution of a fundamental solution (point-source solution)
with the initial condition. Note that the fundamental solutions on the real
line, pλ(x, t) given by (2.8) and pλ,0(x, t) given by (2.12), are products of
exponential functions and maximally skewed stable densities fα(x, t). Since
all stable densities are smooth [46], both pλ(x, t) and pλ,0(x, t) are smooth
for all t. By properties of convolutions, any solution on the real line for t > 0
will also be smooth given any initial condition. However, the introduction of
the reflecting boundary alters the regularity of the solution space. Figure 4
suggests that for any initial condition, the numerical solution is a singular
function for t > 0. Figure 4 shows the evolution of numerical solutions
of (2.7) from an impulse initial condition to the steady-state solution (at
time t = 15). The initial condition is discretized as u(x = 12.5) = 1/h,
which is consistent with u0(x) = δ(x− 12.5). The solution is computed on
the domain [0, 25] using the implicit Euler scheme with α = 1.5, λ = 1,
n = 801 grid points, and Δt = 0.01. For small times (t = 0.1, 0.4, and
0.8), the numerical solution is close to the smooth tempered stable density
pλ(x, t), as the boundary conditions have not yet affected the solution. The
relative L∞-norm error for times t = 0.1, 0.4, and 0.8 are 0.0430, 0.0124,
and 0.0074, respectively. Note, however, that the purpose of Figure 4 is
to qualitatively show how the solution transitions from a stable density
to the steady state, so approximating the solution with accuracy is not
critical here. The tempered α-stable density (2.8) was computed using a
freely available MATLAB code [37] for the evaluation of the stable densities
fα(x, t). For times t = 5.5 and 7, a singularity forms at the boundary, which
evolves into the singular steady-state solution in Figure 4(d).

When both boundary conditions are absorbing, both implicit and ex-
plicit schemes converge with rate O(h) if the solution is sufficiently smooth
[3, Proposition 3]. However, when the source function is zero, the solutions
of the normalized and centered models are weakly singular (i.e., the first
derivative is singular) at the left boundary, which leads to a degradation in
the rate of convergence, as the singularity is not faithfully captured with
a uniform grid. When the left boundary condition is reflecting, the solu-
tion itself is singular at x = 0. One approach to address the degradation
of the convergence rate is to use non-uniform grid spacing. Near x = 0,
additional refinement may capture the singular solution with greater fi-
delity. Preliminary work exists to discretize Caputo fractional derivatives
with non-uniform grids [15, 32, 33, 44] and Riemann-Liouville fractional
derivatives [25] using spectral finite elements on graded meshes.
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Since the explicit form of this boundary condition is quite difficult to
analyze, we provide numerical convergence studies, demonstrating that
the convergence rates using a reflecting boundary condition on one end-
point are the same as using absorbing boundary conditions at both end-
points. In Figure 5, convergence results for both absorbing-absorbing and
absorbing-reflecting boundary conditions applied to the normalized model
are compared. The error is computed in the relative L∞-norm using a ref-
erence solution uref , which is computed using the implicit Euler scheme
with Δt = 0.001 on a fine grid with n = 2401 points and initial condition
(6.1). The relative L∞-error is given by ‖uh − uref‖L∞/‖uref‖L∞ , where
the numerical solution uh is computed with the explicit or implicit Euler
method with grid spacing h = 1/200, 1/400, 1/800, and 1/1600. In each
case, the fractional order is α = 1.5 and the tempering parameter is λ = 1.
The implicit Euler solutions are computed using time step Δt = 0.001, and
the explicit Euler solutions are computed with time step Δt = 5× 10−6.

First, the relative L∞-error of the implicit and explicit Euler schemes
for the normalized model with absorbing-absorbing boundary conditions
is plotted in panels 5(c)-5(e) at times t = 0.2 and 1, with a dashed line
representing O(h) convergence rate for reference. The reference solution
uref is plotted in panel 5(a). One can observe that the convergence rate
is degraded slightly from O(h) due to the weak singularity at x = 0. The
solutions computed with n = 1601 grid points capture the singularity with
accuracy close to that of the reference solution, so the error decreases with
a higher rate between the smallest two values of h. A similar trend is appar-
ent in the error plots in panels 5(d)-5(f), where the boundary conditions are
absorbing-reflecting. In this case, the weak singularity at x = 0 is similar to
the absorbing-absorbing boundary conditions example, so the two conver-
gence studies are comparable. The reflecting boundary condition at x = 1
does not degrade the convergence rate from that of the absorbing-absorbing
boundary condition case.

Next, convergence results are compared for different values of α in the
normalized model. In Figures 6(a) and 6(b), numerical solutions for the
normalized model with α = 1.2 and α = 1.8, respectively, are plotted. For
the smaller value of α, the singular behavior of the derivative of u(x, t) at
the left boundary is more severe than in the cases with α = 1.5 or α = 1.8.
This behavior degrades the convergence rates, as can be seen in Figures
6(c) and 6(e). Furthermore, approximations of (2.7) with larger values
of α correspond with errors that converge like O(h). The centered model
solutions exhibit similar behavior near the left boundary for different values
of α.
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In Figure 7, convergence results for the centered model with both
absorbing-absorbing and absorbing-reflecting conditions are compared. In
this model, no weak singularity forms at the left boundary for the times
considered (see panels 7(a) and 7(b)), so one can observe that the relative
L∞-error converges with a rate approximately O(h). The reference solu-
tions are again computed on n = 2401 grid points, and all other parameters
are the same as in the convergence studies of Figure 5. Comparing the re-
sults for each set of boundary conditions demonstrates that the convergence
rate is not degraded by the reflecting boundary condition.

(a) Absorbing-absorbing BCs (b) Absorbing-reflecting BCs

(c) Implicit Euler error (d) Implicit Euler error
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(e) Explicit Euler error (f) Explicit Euler error

Figure 5. All plots above reference the normalized model
(2.7) and use parameters α = 1.5 and λ = 1. Errors are
computed at times t = 0.2 and 1 and are plotted in log-log
scale. Absorbing-absorbing BCs are used in the left col-
umn of plots and absorbing-reflecting BCs are used in the
right column. (a) Reference solutions computed using the
implicit Euler method with n = 2401, Δt = 0.001, and ini-
tial condition (6.1) plotted for times t = 0, 0.1, 0.2, 0.5, 0.8,
and 1. (b) Reference solutions computed using the implicit
Euler method with the same paramters. (c) Implicit Euler
error with Δt = 0.001. The error curves overlay each other.
(d) Implicit Euler error with Δt = 0.001. (e) Explicit Euler
error with Δt = 5 × 10−6. The error curves overlay each
other. (f) Explicit Euler error with Δt = 5× 10−6.

7. Summary

In this work, we have developed stable explicit and implicit Euler meth-
ods for tempered fractional diffusion models with discrete reflecting or ab-
sorbing boundary conditions. The analytical steady-state solution for the
tempered fractional diffusion equation was derived and compared to nu-
merical solutions, and the steady-state solution of a centered model was
discussed. We compared three different tempered fractional diffusion mod-
els and identified two models that conserve mass: the normalized tempered
model (2.7) and the center normalized tempered model (2.11). Conver-
gence of the reflecting Euler schemes was studied by comparing numerical
solutions.
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(a) Reference solution, α = 1.2 (b) Reference solution, α = 1.8

(c) Implicit Euler error, α = 1.2 (d) Implicit Euler error, α = 1.8

(e) Explicit Euler error, α = 1.2 (f) Explicit Euler error, α = 1.8

Figure 6. All plots above reference the normalized model
(2.7) with absorbing-reflecting boundary conditions, λ = 1,
and initial condition (6.1). Errors are computed at times
t = 0.2 and 1. The left column shows results for α = 1.2 and
the right column shows results for α = 1.8. (a - b) Reference
solutions computed with the implicit Euler method with n =
1201 grid points, Δt = 0.001 for times t = 0, 0.1, 0.2, 0.5, 0.8,
and 1 with α = 1.2 and α = 1.8, respectively. (c - d) Implicit
Euler error with Δt = 0.01 and Δt = 0.001, respectively. (e -
f) Explicit Euler error with Δt = 5×10−5 and Δt = 1×10−6,
respectively.
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(a) Absorbing-absorbing BCs (b) Absorbing-reflecting BCs

(c) Implicit Euler error (d) Implicit Euler error

(e) Explicit Euler error (f) Explicit Euler error

Figure 7. All plots above reference the centered model
(2.11) with α = 1.5, λ = 1, and initial condition (6.1). The
left column shows results for absorbing-absorbing BCs and
the right column show results for absorbing-reflecting BCs.
(a - b) Reference solutions computed with the implicit Euler
method with n = 2401 grid points, Δt = 0.001, and times
t = 0, 0.05, 0.1, 0.2, 0.5, and 1. (c - d) Implicit Euler error
with Δt = 0.001. (e - f) Explicit Euler error with Δt =
5× 10−6.
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