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Abstract. The macrodispersion experiments (MADE) at the Columbus Air Force Base in Missis-
sippi were conducted in a highly heterogeneous aquifer that violates the basic assumptions of local
second-order theories. A governing equation that describes particles that undergo Lévy motion, rather
than Brownian motion, readily describes the highly skewed and heavy-tailed plume development at
the MADE site. The new governing equation is based on a fractional, rather than integer, order of
differentiation. This order (α), based on MADE plume measurements, is approximately 1.1. The
hydraulic conductivity (K) increments also follow a power law of orderα = 1.1. We conjecture
that the heavy-tailedK distribution gives rise to a heavy-tailed velocity field that directly implies the
fractional-order governing equation derived herein. Simple arguments lead to accurate estimates of
the velocity and dispersion constants based only on the aquifer hydraulic properties. This supports
the idea that the correct governing equation can be accurately determined before, or after, a contamin-
ation event. While the traditional ADE fails to model a conservative tracer in the MADE aquifer, the
fractional equation predicts tritium concentration profiles with remarkable accuracy over all spatial
and temporal scales.

Key words: fractional derivative, fractional Laplacian, anomalous dispersion, Lévy motion,α-stable,
heavy tails, Fokker–Planck equation, MADE site.

1. Introduction

The idea of a fractional derivative is nearly as old as the definition of an integer-
order derivative (see the history compiled by Oldham and Spanier, 1974). Frac-
tional derivatives effectively interpolate between successive integer-order deriv-
atives when applied to many kinds of functions. For example, theqth fractional
derivative with respect tox (as defined in Appendix A) ofeax is aqeax. Early
in this century, a direct link was made between some stochastic processes and
an integer-order differential equation. Einstein (1908) showed that a particle un-
dergoing random Gaussian displacements fulfills the second-order diffusion equa-
tion. Kolmogorov extended the link between the second-order diffusion equation
and generalized finite-variance processes (see Gnedenko and Kolmogorov, 1954;
Feller, 1971). This model is extremely robust, primarily because it is a restatement
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of the central limit theorem (CLT). As a result, many different processes behave, in
the long-term limit, in accordance with the classical diffusion equation. Einstein
formulated his famous treatise on Brownian motion and the diffusion equation
prior to Lévy’s (1937) discovery of the stable densities, which are a superset of
the Gaussian. Had Lévy’s discoveries come several decades sooner, Einstein might
have chosen a more general approach that would have led to a fractional diffusion
equation 90 years earlier. Instead, the definitive link between all Lévy motions and
a fractional differential equation has been developed only recently (Sheshadri and
West, 1982; Gorenflo and Mainardi, 1998; Meerschaertet al., 1999).

Lévy’s stable laws are important because they are the limit distributions of
sums of random variables. If a parcel of tracer is characterized as a particle that
undergoes independent displacements as it moves through heterogeneous material,
then the total displacement tends to converge to a stable variable. The motion is
called a Lévy motion; Brownian motion is a subset. A large number of particles,
i.e., the plume as a whole, fulfills a large portion of the probability distribution for a
single particle. Then the ensemble concentration replaces the probability distribu-
tion for a single particle. Benson (1998) showed that the second-order advection–
dispersion equation (ADE), even in a nonlinear form with the space-dependent
dispersion tensor, cannot generally predict the stable Lévy motions. This is due
to the Gaussian-density fundamental solution (Green function) of the ADE. An
infinitude of nonlinear superpositions of the Gaussian must still scale proportional
to the square root of time (cf., Crank, 1975). Further, combinations of the exponen-
tially decaying tail of the Gaussian cannot model the ‘heavy’ power-law tails that
characterize Lévy motion.

Recent work on random motions with power-law excursion probabilities
(Fogedby, 1994; Compte, 1996; Saichev and Zaslavsky, 1997; Benson, 1998;
Gorenflo and Mainardi, 1998; Meerschaertet al., 1999; Compte and Caceres, 1998;
Metzleret al., 1998, 1999; Rocco and West, 1999; Grigoliniet al., 1999) has shown
that the governing equations are generalizations, using fractional derivatives, of the
classical ADE. In this paper, we review the derivation of the governing equation
of stable Lévy motions in 1D. We then analyze data from the macrodispersion
experiment (MADE) site ina posteriorianda priori modes to see (1) whether a
fractional ADE is an appropriate model; and (2) to see whether the correct order
of the fractional ADE, and the values of parameters, can be discerned before any
contamination takes place.

We use the MADE site because it defies the traditional approaches used to
model contaminant transport based on the classical integer-order ADE. The degree
of K variability is very high (Rehfeldtet al., 1992), and the plumes of conservative
tracer are highly skewed. Moreover, the relative mass of tracer in the leading edge
is very high, or in the vernacular of this study, ‘heavy-tailed.’ The first model-
ing approach used small-perturbation methods to give the local dispersion tensor
within the classical ADE (Adams and Gelhar, 1992). Failure of this method led to
more complex approaches, such as finely discretized numerical implementations
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of the classical ADE (Zheng and Jiao, 1998). This method still does not adequately
reproduce the extreme tailing and skewness of the plume. Some have advocated a
model based on diffusion-limited transport at this (C. Zheng, pers. comm., 1998)
and other sites (Brusseau, 1992; Haggerty and Gorelick, 1995). The diffusion-
limited, or two-site model, is a bimodal method that assumes a certain portion of
the plume transfers in and out of a zero-velocity mode, and that Gaussian transport
still occurs in each mode. Each of these successive approaches requires an added
level of complexity, or required information, in the governing equation. The first
needs a different dispersion parameter for each scale. The second adds spatial vari-
ability. The third adds transfer coefficients. Berkowitz and Scher (1998) proposed
that the underlying transport process at the MADE site is not correctly modeled
by a Gaussian process. We agree, and derive a simple (and lowest information-
containing) equation that is based on the very large velocity contrasts experienced
by the plume.

2. Stable Laws and Motions

Before developing the fractional advection–dispersion equation, it is useful to first
investigate the generalized central limit theorem (GCLT) that leads to Lévy’s stable
laws. Complete discussions are given by Gnedenko and Kolmogorov (1954) and
Feller (1971). In short, ifX1, X2, ...,Xn are independent, identically distributed (iid)
random variables, then the sum of these converges in distribution to anα-stable
random variable (Y). The distribution ofY scales predictably with the number of
summands (n) according to

X1+ X2+ · · · +Xn − nµ
σn1/α

⇒ Y, (1)

whereσ is a positive real constant and⇒ denotes convergence in probability.
An example is the sum of finite-variance variables, which converge to (are in the
domain of attraction of) a Gaussian random variable. In this case, the scaling rule
dictates thatα = 2, σ is the standard deviation, and (1) is the traditional CLT. All
finite-variance random variables are in the Gaussian domain of attraction. Many
infinite variance random variables (e.g., Pareto, or power-law) are in the domain
of attraction of anα-stable random variable, for which the rate of scaling in (1)
follows 0 < α < 2. A special case of (1) arises when the summands (X) are
themselves stable random variables: the sum of any number of iid stable variables is
also a stable variable. The GCLT can also be generalized to vectors in any number
of dimensions (Meerschaert, 1986).

Liu and Molz (1997a, b), Molzet al. (1997), and Painter (1996a, b, 1997)
analyze the underlying heavy-tailed distribution of hydraulic conductivity (K) at
several sites. In particular, Painter (1996b) shows clear evidence of theseα-stable
distributions in vertical borehole measurements ofK. The stable variables are not-
ably different from the normal or lognormal because the tails of the density func-
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tions decay according to a power-law. IfY is a stable variable, then for large
arguments

P [|Y | > y] ≈ Wy−α, (2)

whereP[·] denotes probability andW is a positive constant. This leads to an infinite
variance, since

∫
y2(y−α−1)dy diverges for allα < 2. The power-law (Pareto) tail

allows a higher probability of extreme values than a typical finite-variance distribu-
tion (even the lognormal) can predict. Any random variable that has a power-law
tail (only the tail is important, virtually any function for small arguments [y] is
permissible) belongs to the domain of attraction of anα-stable variable.

Densities ofα-stable variables are represented by their Fourier transforms
(Feller, 1971; Samorodnitsky and Taqqu, 1994). IfY is anα-stable random variable
with a probability density functionf (y), then the Fourier transform of the density
(denoted by the overhat and the change to the Fourier variablek) has the form

f̂ (k)=
∫ ∞
−∞

e−ikyf (y)dy= exp[−|k|ασ α
(
1+iβsign(k) tan

(πα
2

))
−µik], (3)

where the parameters 0< α 6 2, σ > 0,−1 6 β 6 1, andµ describe the index of
stability, the spread, the skewness, and the location of the density, respectively. The
sign (k) function is−1 for k < 0 and 1 otherwise. The characteristic function for
α = 1 (the Cauchy density) is slightly different from (3) and will not be discussed
here for the sake of brevity. An important feature of these densities is that they
are invariant after shifting byµ and dividing byσ . All versions of the density are
scaled and shifted versions of thestandarddensity withσ = 1, µ = 0. We also
use an equivalent form

f̂ (k) = exp[qC(−ik)α + pC(ik)α − µik], α 6= 1, (4)

wherep andq range between 0 and 1 withp+ q = 1, andC is a positive constant.
The two forms (3) and (4) are related byσα = C| cos(πα/2)| andβ = p−q. When
the density issymmetric, the skewness parameterβ is zero (sop = q = 1/2), and
the symmetric characteristic function is

f̂ (k) = exp(−σα|k|α − µik) . (5)

In this form, it is easy to see that the Gaussian (normal) density isα-stable with
α = 2. It is a simple matter to show that forα > 1, the expectationE(Y ) = µ.
The mean is undefined forα 6 1. A standard, symmetric,α-stable distribution is
characterized by the compact formulâf (k) = exp(−|k|α).

The most important feature of theα-stable distributions is the characteristic
exponent (also called the index of stability)α. The value ofα determines how ‘non-
Gaussian’ a particular density becomes (Figure 1). As the value ofα decreases
from a maximum of 2, more of the probability density shifts toward the tails. The
densities appear near-Gaussian in untransformed coordinates; the difference lies in
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Figure 1. Plots of the positive density functions of several standard symmetricα-stable dis-
tributions using (a) linear axes, (b) semilog axes, and (c) log–log axes. For large arguments,
the stable densities plot as straight lines with slope−1 − α on log–log axes. For contam-
inant plumes,µ = vt is the mean travel distance, andf (y) is the relative concentration
(see Section 3).
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the relative weight present in the tails. This difference becomes apparent using log
axes (Figures 1b and 1c), which show the power-law character of the tails.

3. Governing Equation

Recently, the ADE was generalized to describe all Lévy motion in 3D after a
general definition of multidimensional fractional differentiation (Meerschaertet
al., 1999):

∂C

∂t
= −v ∂C

∂x
+D∇αMC , (6)

wherev is the drift velocity,D describes the spread of the process, and the frac-
tional Laplacian operator∇αM specifies the weight of the tails in a moving plume
(via α), as well as the propensity for skewed movements in 3D (via the random
measureM on the unit sphere). Within this definition,v andD are constants. The
mean advective velocity, or drift of the process, is given byv. If the variance of the
particle transition probability is infinite (e.g., power-law tails), then the nonlinear
growth of the plume is incorporated within the fractional derivative, not within
the leading parameterD . The derivative is defined so that it correctly captures the
nonlinear scaling of the particle transition density. To accurately model particle
transport, one need only estimate the order of the fractional derivatives and the
constantD . This equation describes all Lévy motions including the subset of
Brownian motion whenα = 2. In 1D, the random measureM reduces top+q = 1,
where the relative weight ofp andq describes skewness (Appendix A):

∂C

∂t
= −v ∂C

∂x
+ pD

∂αC

∂xα
+ qD ∂αC

∂(−x)α . (7)

Solutions to common solute transport boundary value problems (BVPs) are
gained through Laplace or Fourier transforms. The 1D fractional-in-space Equation
(7) is solved via Fourier transform (Appendix A) to give the fundamental (Green’s
function) solution:

Ĉ(k, t) = exp[qD t (−ik)α + pD t (ik)α − ikvt] (8)

which is anα-stable density with an equivalent representation:

Ĉ(k, t) = exp[−D t|k|α| cos(πα/2)|(1+ iβsign(k) tan(πα/2))−ikvt] . (9)

This is the general form of a 1D Lévy motion (Samorodnitsky and Taqqu, 1994).
The positive constantσ = (| cos(πα/2)|D t)1/α indicates that the stable density
is invariant upon shifting by the mean(vt) and scaling byt1/α (Figure 2). The
nonlinear scaling (growth rate) results from the ability to replace the variablek with
t1/αk in (9). The distance between two points with constant relative concentration
in a plume will grow proportional tot1/α, leading to a measured plume variance
that is proportional tot2/α. Only if α = 2 does this reduce to a Gaussian density
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Figure 2. Comparison of the development of spatially symmetric (dashed lines) and positively
skewed (β = 1, solid lines) plumes from a pulse source. Three dimensionless elapsed times
(0.5, 1.0, and 5) are shown. All curves useα = 1.3 andD = 1. The pointx − vt = 0 is the
plume center of mass for all curves shown. Solutions were gained by numerical integration of
(A.15).

with the characteristic Boltzmann scaling (growth) of the plume proportional to
√
t

and a measured variance growing linearly with time.
In addition to growing faster than the Boltzmann scaling predicts, the stable

plumes have two significant characteristics. First, the skewness can be positive or
negative, depending on whether the bulk of the contaminant is initially placed in
lower- or higher-than-average velocity material. This leads to preferential sampling
of portions of the velocity distribution. Second, one or both of the tails are ‘heavier’
than the second-order equation predicts. One or both of the tails asymptotically
follow a power law (Figure 1) and can result merely from a heavy-tailed velocity
distribution. The peak concentration may also be separated from the mean travel
distance(vt) by large distances (Figure 2). The skewness and tailing can arise
from the hydraulic characteristics of the aquifer, even in the absence of nonlinear
sorption or completely stagnant, diffusion-limited zones.

4. Evidence for Fractional Dispersion in the MADE Tracer Tests

The MADE site is located on the Columbus Air Force Base in northeastern Missis-
sippi. The two large-scale, natural-gradient tracer tests performed there differ from
other large-scale tracer experiments such as the Borden site in Ontario, Canada
(e.g., Sudicky, 1986) or the Cape Cod site in Massachusetts (e.g., LeBlancet al.,
1991) because of the strong heterogeneity of the aquifer (Rehfeldtet al., 1992;
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Boggset al., 1993). The unconfined, alluvial aquifer consists of generally uncon-
solidated sands and gravels with smaller clay and silt components. Irregular lenses
and horizontal layers were observed in an aquifer exposure near the site (Rehfeldt
et al., 1992). Detailed studies characterizing the spatial variability of the aquifer
and the spreading of the conservative tracer plume for the experiment conducted
between October 1986 and June 1988 (MADE-1) are summarized by Boggs and
Adams (1992), Adams and Gelhar (1992), and Rehfeldtet al. (1992). A synopsis of
the second experiment (MADE-2), conducted between June 1990 and September
1991, is given by Boggset al. (1993).

4.1. PREVIOUS STUDIES

One purpose of the MADE tracer tests was to create a database for validating
groundwater flow and solute transport models. The most commonly applied
stochastic theories, based on dispersive mixing in heterogeneous aquifers (e.g.,
Gelhar and Axness, 1983; Dagan, 1984), were tested by Adams and Gelhar (1992).
They found that classical Gaussian models were not able to reproduce the highly
skewed plume evolution found at the MADE site. They presented no data concer-
ning the heavy plume tails.

Berkowitz and Scher (1998) show how a very general, non-Gaussian, model
of particle transport can be applied to fracture networks. Their work is based
on particle transitions described by a joint space-time distribution. If one is able
to identify this distribution, then a plume can be generated. Based on numerical
generation of fracture networks and an analogy to the preferential flowpaths in the
highly heterogeneous MADE site, the authors present several figures that show an
improved fit over those presented by Adams and Gelhar. It is not clear whether
the density of Berkowitz and Scher (1998) reproduces the extremely heavy tails of
the plume or scales at the correct rate, since the authors predict that the ratio of the
sample mean and standard deviation is a constant. These quantities measured in the
MADE tests do not have the same slope on a log–log plot. Their methodology also
depends on measuring an empirical joint space-time particle transition density.

Zheng and Jiao (1998) produced 3D numerical simulations for the MADE-2
experiment usingK distributions derived from borehole flowmeter data and various
geostatistical methods. They found that the simulated plume was highly sensitive to
the distribution of theK field. Additionally, they were not able to concurrently re-
produce the movement of the plume’s center of mass and the significant spreading
of the tracer at the plume’s leading edge. Finally, they suggest that inconsistencies
in modeling may be due to temporal flow field variations and preferential flowpaths
not consistent with the assumption of a Gaussian or finite-variance pore velocity
distribution. The large-scale preferential flowpaths lead to a higher probability of
sustained high velocity events that the normal or lognormal cannot predict. Fur-
ther, theK increments (Appendix B) measured at the smallest scale (a vertical
lag of 15 cm) suggest that heavy-tailed velocity distribution precludes the use of
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the traditional ADE even at the smallest scale within finely discretized numerical
models.

The fractional ADE can describe both the heavy-tailed transport and the skewed
transitions. We develop a relationship between aquifer properties and the paramet-
ers within the fractional ADE, and compare the estimates to those gained from
sampling a contaminant plume at early time. The former leads to estimation of
parametersa priori a contamination event, while the latter leads toa posteriori
parameter estimation.

4.2. A PRIORIESTIMATION OF PARAM ETERS

Recent studies show that permeability variations can be described with stable or
other heavy-tailed distributions (e.g., Painter, 1996b). Liu and Molz (1997b) have
suggested that the ln(K) distribution at the MADE site is heavy-tailed with a power-
law index that is a function of sample separation. We re-examine the statistical
distribution of theK field at the MADE site, since the ability to estimate the order
of the fractional dispersion terma priori depends on the ability to accurately es-
timate the Lévy index (α) of aquiferK data. The values ofα andD would follow
immediately from a direct measurement of the natural velocity profiles; however,
this is a difficult task. The basis of the following estimates is the assumption (as yet
unverified) that the head gradient fluctuations within the soil are negligible com-
pared to the magnitude of theK fluctuations. In this case, the small-scale velocity
field is dominated by the many order-of-magnitude differences inK, rather than
the smaller differences in head gradient. Therefore, if theK distribution is found
to have a power-law tail with exponentα, we assume that the velocity distribu-
tion would have a similar exponent. Only the scale factor of the distribution (and
possibly the low-velocity shape of the distribution) would change according to the
mean gradient. An outline of the theory and application of four popular estimators
is contained in Appendix B. One method for determining the Lévy index from a
sampleK or 1K distribution appears to be most robust and stable; we present it
here.

The Pareto is the most simple of the heavy-tailed distribution functions for a
random variableX in anα-stable domain of attraction. The distribution function is
defined byP [X < x] = 1−Wx−α , whereα > 0, W > 0, andx > W 1/α. Since
one or both of the tails of a non-Gaussian stable distribution are asymptotically
Pareto, it is also possible to model a stable distribution by evaluating its tails with
a shifted Pareto distribution (Anderson and Meerschaert, 1998). Meerschaert and
Scheffler (1998) develop a simple method for estimating the thickness of heavy
tails for Pareto-like data withW = 1. When 0< α < 2, 1/α can be approximated
by

1

α
≈ γ + ln

∑n
i=1(Xi − X)2

2(γ + ln n)
, (10)



220 DAVID A. BENSON ET AL.

whereγ ≈ 0.5572 is Euler’s constant,X1, . . . , Xn are the sample data, andX is
the sample mean.

Details of borehole flowmeter logging, slug tests, and laboratory permeameter
methods for measuringK at the MADE site are described by Rehfeldtet al. (1992).
Application of Equation (10) to all normalized (each data point divided by the
sample median) verticalK increment data yields an estimate ofα = 1.1. Another
popular estimator is given by Hill (1975). Hill’s estimator is similar to Meerschaert
and Scheffler’s except that does not allow the shift of the Pareto. However, Hill’s
estimator is able to provide the scale (width) parameterW, which is similar to
the standard deviation of a Gaussian. It is this scale of the1K distribution that
ultimately determines the magnitude of the dispersion coefficient.

The Hill’s estimator fits the equationP [1K > x] = Wx−α . Sums of Pareto
data converge to anα-stable with an equality of the scale parameters ofσα =
W0(1− α) cos(πα/2) (e.g., Feller, 1971; Janicki and Weron, 1994), where0(·)
is the gamma function. From (9) we haveσα = D t| cos(πα/2)|, which has units
Lα. The Pareto scale factorW from the1K data has units (cm/s)α . Therefore, the
1K increments must be translated to relative particle separation size over a short
period of time. These separation distances are the heavy-tailed random variables in
(1) that converge to anα-stable variable governed by (7). The gradient divided by
the porosity (J/η) is assumed to be relatively uniform giving the velocity increments
1v = (J/η)1K. The difference in the solute particle travel distances (1d) is this
random variable multiplied by some time intervalτ , which integrates the temporal
correlation, givingP [1d > (Jτ/η)x] = Wx−α . With the change of variabley =
(J τ/η)x, the distribution becomesP [1d > y] = W(Jτ/η)αy−α. Now equating
the dimensionally correct scale factors of theα-stable solution and this Pareto1d
distribution, Dτ = W(Jτ/η)α |0(1 − α)|. Therefore, the dispersion coefficient
is given by theK statistics, the mean gradient and porosity, and a characteristic
transition time by the relationship

D = W(J/η)ατα−1|0(1− α)|. (11)

Note that asα approaches unity, the estimate becomes very insensitive to the choice
of transition time (τ ). For example, whenα = 1.1, a ten-fold decrease inτ only
changes the estimate ofD by 20%. For any value ofα > 0.5, the estimate ofD
is most strongly sensitive to the value ofJ/η. The assumed gradient also directly
changes the mean velocity, so the estimated values ofv andD must be tracked
simultaneously.

Once again assuming that the gradient is relatively constant throughout the soil,
Darcy’s Law givesv = K(J/η). The arithmetic meanK value from the flowmeter
and core tests is 24 m/d, which compares favorably to a pumping test that indicated
a horizontalK of 17 m/d (Boggs and Adams, 1992). Hill’s estimator for theK
increments (Appendix B) givesα = 1.1 andW = 0.0028 (cm/s)1.1. Usingτ = 1
day in (11) givesD ≈ 50 m1.1/d(J/η)1.1. Table I summarizes the coefficientsv
andD for a range of values(J/η). The gradient experienced by most of the plume
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Table I. Relationship of the constantsv and D to the
assumed gradient for a range of values reasonable to the
MADE site

J/η v (m/d) D (m1.1/d)

0.005 0.12 0.14

0.010 0.24 0.32

0.015 0.36 0.50

(after a distance from the release point of approximately 10 m) is typically lower
than 0.003 (Boggs and Adams, 1992), so we estimate a value of approximately
0.005 forJ/η. The validity of this entire procedure can only be addressed through
a detailed examination of the relationship between head gradient and the heavy-
tailedK distribution, as well as the decay of particle time correlation on the order
of 1 day.

4.3. A POSTERIORIESTIMATION OF PARAM ETERS

Two a posteriori methods for estimating the Lévy index are presented using in-
formation from the MADE database to validate the a priori estimate ofα = 1.1.
These methods require far less data collection than extensiveK measurements and
are more practical methods for real plumes. We use the analyses of the MADE-I
test presented by Adams and Gelhar (1992).

Approximately 104 L of water containing 2,500 mg/l of bromide were injected
into the MADE aquifer for the first test. Over the next 20 months, seven sampling
events using an extensive array of multi-level samplers (MLS) were performed.
Using the spatial moments of plume growth for the MADE-1 experiment, Adams
and Gelhar (1992) compare a normalized distribution of mass with a Gaussian
distribution with similar 0th, 1st, and 2nd longitudinal moments. They noted that
the longitudinal variance of the plume grew at an accelerated rate. A plot of the
apparent plume variance along the travel direction on log–log axes confirms that
plume growth is indeed nonlinear (Figure 3a). Because the density of anα-stable
plume is scale invariant witht1/α, the variance of the discretely-sampled plume
should grow proportionally witht2/α (Benson, 1998). Thus, the slope of the graph
(Figure 3a) provides a second estimate of the Lévy index(α = 1.2), that agrees
reasonably closely with thea priori estimate. The plume does not appear to fol-
low the early- (slope=2) or late- (slope= 1) time behavior predicted by local
stochastic theories (e.g., Gelhar and Axness, 1983). Though the data show some
scatter due to the difficulties of measurement, there is no systematic deviation from
the general trend ofα = 1.2 (Figure 3a).

A simpler method for obtaining parameters for the fractional ADE arises from
the fact that the plume is a 3D density that grows at a rate of(D t)1/α (Meerschaert
et al., 1999). The peak concentration should thus follow:
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Figure 3. Estimation of Ĺevy index (α) from plume data: (a) calculated plume variance
(Adams and Gelhar, 1992) along the mean direction of travel for the MADE-1 experiment
and (b) maximum bromide concentration measured during each snapshot. Circles represent
unfiltered data, squares and diamonds are spatially filtered (averaged, see Adams and Gelhar,
1992).

C(t) = C0

(D t)1/α
. (12)

The slope of a log–log plot of the peak concentration versus time should be(−1/α).
Adams and Gelhar (1992) list the maximum bromide concentrations before and



FRACTIONAL DISPERSION, ĹEVY MOTION, MADE TRACER TESTS 223

after spatial averaging (filtering). The unfiltered data indicate thatα = 0.95, while
both sets of filtered data conform to a line withα = 1.1 (Figure 3b).

The a posterioriestimates of the order of the fractional ADE (α) show some
variability, from 0.95 to 1.2. It is not known which are the best estimates. The
unfiltered (raw data) peak concentrations should have the highest degree of variab-
ility. The variance estimations suffer bias, especially at late time, from truncation
of distant, low concentrations by the fixed wellfield and finite detection limits.
The method based on maximum spatially-averaged concentrations is probably the
most useful, since this represents the simplest form of data collection in real-
world applications: monitoring wells are typically screened across large vertical
distances, providing data similar to Adams and Gelhar’s (1992) filtered data. Only
the maximum concentration from a vertically averaged (filtered) wellfield at any
time is identified and used as the peak concentration. Numerical integration is not
needed, and the value ofα should be apparent after the first few measurements.
This method gives a value equal to the a priori estimate ofα = 1.1. Solutions
(e.g., Figure 1) suggest that the recognition of stable transport is more important
in predicting concentrations in the leading edge than exact determination ofα. A
sensitivity analysis is needed to assess the importance of accurate estimation ofα

andD .

4.4. ANALYTIC SOLUTIONS

We use the parameters estimated from the aquiferK statistics (supported by Adams
and Gelhar’s analysis of the MADE-1 bromide plume) to predict the MADE-2
tritium plume. We have only recently received the MADE-1 bromide data and have
not yet re-analyzed that test. During the MADE-2 experiment, 9.7 m3 of tritiated
water and four organic compounds were injected into the shallow alluvial aquifer
at the test site. Over the next 15 months, five snapshots of the tracer concentration
distributions were collected. Several sets of analytic solutions have been generated
using the aquifer parameters estimated in previous sections (see Appendix B for
a discussion). We compare the solutions of the traditional ADE (α = 2) and the
fractional ADE (α = 1.1):

∂C

∂t
+ v ∂C

∂x
−D

∂2C

∂x2
= C0x0δ(t, x), (13)

∂C

∂t
+ v ∂C

∂x
−D

∂1.1C

∂x1.1
= C0x0δ(t, x), (14)

whereC0x0δ(t, x) is the initial solute concentration (C0) spread over some injec-
tion distancex0, which is mathematically concentrated into a Dirac delta function
‘spike’. A value of 55,610 picoCuries (pCi) per cm3 × 400 cm (the approximate
length of the injection area)= 2.78× 107 pCi/cm2 was used in all solutions for
the MADE-2 tritium plume. The values ofv andD in the fractional ADE (14)
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Figure 4. Linear plots of the MADE-2 normalized longitudinal tritium mass distribution at
four intervals. Analytic solutions of the ADE and the fractional ADE were gained by numerical
integration of (A.15).

are constants for all times of interest (0.12 m/d and 0.14 m1.1/d, respectively).
Similar to Adams and Gelhar (1992), we used ‘best fit’ values ofv andD in the
traditional ADE (13) for each time period by calculating the mean and variance of
the measured plume.

Figure 4 shows the longitudinal distribution of total mass for MADE-2 snap-
shots 1–4. The data points represent the maximum concentration measured in ver-
tical slices perpendicular to the direction of plume travel. These maxima were then
integrated versus travel distance to get the 1D ‘mass recovery’. Theα-stable solu-
tions (14) are superimposed on the normalized mass distributions. Also shown,
in the manner of Adams and Gelhar (1992), is a Gaussian distribution with first
and second moments equal to those of the normalized sample data. Note that this
1D analysis assumes that the mass lost to transverse dispersion is relatively small.
The maximum concentrations were then normalized by the total mass recovered
during each snapshot so that each plot has the same 1D mass. We use this method
for ease of comparison with the data presented for the MADE-1 test (Adams and
Gelhar, 1992). Since the concentration maxima along the plume core represent
conditional densities of the entire 3D plume, their evolution will be similar to
marginal (integrated) densities (Benson, 1998).
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The initial 1D mass was calculated using a constant value of porosity of 0.35
(Boggset al.,1993). The normalizations represent mass recovery of 145%, 82%,
62%, and 37% for snapshots 1–4, respectively. Mass recovery in excess of 100%
in early sampling rounds, followed by decreases in mass recovery to levels below
50% were also observed during the MADE-1 test (Adams and Gelhar, 1992) and
the Borden tracer experiment (Freyberg, 1986; Rajaram and Gelhar, 1991). Adams
and Gelhar (1992) discuss potential sources for these phenomena. In particular,
they show that significant amounts of bromide mass passed beyond the MADE-1
sampling array later in the test. They also show that sampling bias toward higher
local K material can seriously underestimate late-time mass. The heavy leading
edges predicted by (14) suggest that some of the tritium may be downgradient
of the sampling array. No snapshot was bounded in the downstream direction by
nondetectable levels of tritium. We have not estimated this mass loss. Radioactive
decay of tritium accounts for only about 5% of the lost mass after 328 days. Data
for snapshot 5 are not presented because only a small portion of the plume was
sampled.

Both the fractional ADE and Gaussian models reproduce the movement of the
center of mass in the early time snapshots. In addition, the fractional ADE is able
to capture the separation of the positions of the plume mean and the mode, or
peak, concentration. The two late-time snapshots clearly show that the fractional
ADE is a better model than a local (Gaussian) ADE in predicting the movement
of the tritium plume. The fractional ADE was developed with heavy (power-law)
tails in mind, so we also plot the data using logarithmic axes for the tritium mass
(Figure 5). Here the predictive accuracy of the fractional ADE is dramatically
evident, as is the inadequacy of thin-tailed second-order theories at later times. The
traditional ADE, even using a best-fit value ofD , underpredicts concentrations
throughout most of the downstream portion of the plume by many orders of mag-
nitude. Using the ADE in a predictive mode with smaller values ofD from classical
stochastic theories would result in even worse estimates. Adams and Gelhar (1992)
and Rehfeldtet al. (1992) discuss the fact that classical stochastic theory predicts a
dispersion coefficient from 4 to 50 times smaller than the measured plume moments
suggest. However, the traditional ADE seems to work very well for the earliest time
period. The unsampled portion of the plume beyond 30 m might have measurable
concentrations of tritium that would extend the tail of the real plume somewhat.
It is also possible that the initial plume placement was far from the high velocity
areas, and that some time was needed before the GCLT (1) was reasonably valid.

Since the fractional ADE predicts a leading edge of the plume that is a power
function of distance, the decline in normalized mass (concentration) should appear
linear on a log–log plot (Figure 1c). This is shown in the last three snapshots
(for brevity we show the last two in Figure 6), supporting the notion that Lévy
motion is a good model of transport at this site. We mention that unnormalized
data concentrations would plot slightly lower (one to two diameters of the circles)
on these plots.
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Figure 5. Semi-log plots of the MADE-2 tritium plume. Analytic solutions of the ADE and
the fractional ADE were gained by numerical integration of (A.15).

Figure 6. Log–log plots of the MADE-2 tritium plume. Analytic solutions of the ADE and
the fractional ADE were gained by numerical integration of (A.15).

4.5. BEHAVIOR OF PLUME PEAK VERSUS MEAN

The rate at which any two portions of a density separate is well known. A density
f (x) of a scaled random variable grows bya−1f (x/a) = f (x). The
fractional ADE density is invariant according toσ−1f (x/σ ) = f (x), whereσ =
(| cos(πα/2)|D t)1/α. This includes the ADE as well. The distance between
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the peak and the shiftvt (the mean forα > 1) at any time grows likeA(cos(πα/2)
D t)1/α, whereA is some constant that depends on the skewness and orderα. If the
skewness is zero, so isA. For a positively skewed plume, the peak lies behind the
mean, soA is negative, since the distance is always smaller thanvt . The distance
travelled by the peak(xp) is merelyxp = vt + A(cos(πα/2)D t)1/α. The velocity
of the peak is the time derivative:

vp = v + A
α
(D cos(πα/2))1/αt1/α−1. (15)

Combining constants intoB = Aα−1(D cos(πα/2))1/α givesvp = v + Bt1/α−1.
For 1 < α < 2, the velocity of the peak (or any concentration percentile) ap-
proaches the mean velocity, as observed by Taylor (1953). Forα very near unity,
the velocity approaches the constantv ± B for any part of the plume, which is
required for piston (wave equation) flow. Forα < 1, the apparent velocities of all
parts of the plume are equal for vanishingly small time and diverge at later time (as
does the theoretical plume centroid).

We are not aware of a handy expression for the mode location of anα-stable;
however, one can generate a standard density (Appendix A) and get an accurate
estimate for the value ofA. Numerical estimators and plots of the mode location
are also given by Fofack and Nolan (1998) and Nolan (1998). A maximally skewed
density forα = 1.1 hasA ≈ −6 (Nolan, 1998). The distance between the peak
and the measured mean is very sensitive nearα = 1. For example,α = 1.14 has
A ≈ −4.5. Therefore, inaccurate estimation of the parametersv, D andα could
lead to a prediction that the plume peak is moving upstream. A corollary is that
such an infeasible scenario would narrow the possible range of values of one of the
parameters, given good estimates of the other two.

At the MADE site, the separation of the peak and mean positions is evident for
later snapshots (Figure 7). For this plot we adjusted the values ofv = 0.12 m/d
andD = 0.14 m1.1/d predicted from theK distribution andJ/η to better match the
observed mean and peak locations. Oura posterioriestimates ofv = 0.11 m/d and
D = 0.12 m1.1/d based on this plot (Figure 7) are still very close to the initial es-
timates that were based only on the hydraulic properties of the aquifer. A thorough
‘fitting’ of D would still depend on ana posterioribest-fit value ofα. The early
time location of the peak concentration is inflated by the large (several meters in the
x-direction) size of the initial tritium pulse. Also, the downstream edge of the plume
was not adequately sampled during snapshot 5 at 440 days, so the mean was not
calculated. The procedure of calculating peak location is complicated for values of
α < 1, since one must also estimate the plume’s measured mean, which depends
heavily on truncation from a finite sampling array. We have not performed this
detailed sensitivity analysis. For illustrative purposes, we plot the behavior of the
peak forα = 0.95 using a best fit valueA(D cos(πα/2))1/α ≈ 0.016 (Figure 7).
A value ofα = 0.95 also explains the separation of the peak and measured plume
mean. This would imply that the distance between readily identifiable portions of
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Figure 7. Locations of the center of mass and peak concentration for the positively skewed
MADE site tritium plume (symbols) and theoretical estimates for two values ofα (0.95 and
1.1). Forα = 1.1, the plotted mean velocity isv = 0.11 m/d andD = 0.12 m1.1/d. Measured
center of plume mass calculated by interpolation of 1D values plotted in Figures 4–6.

the plume (i.e., the peak and the measured mean) is diverging with increasing time.
The confidence in the slope of the peak location is not high, so we do not consider
this a diagnostic tool for estimation ofα.

5. Discussion

Skewed and/or heavy-tailed plumes do not necessarily imply a heavy-tailed velo-
city distribution. Non-stationary velocity fields that arise from variable recharge
or boundary conditions such as aquifer thinning can preferentially stretch certain
portions of a plume. We have not analyzed the aquifer boundary conditions in
detail. Nor have we investigated the applicability of more capable solutions than a
local ADE affords. In particular, can the following methods be implemented and
produce accurate predictions of the plume? (1) high-variance decomposition meth-
ods (Serrano, 1995); (2) nonlocal, second-order equations (e.g., Denget al., 1993);
(3) multi-rate mobile/immobile models (e.g., Haggerty and Gorelick, 1995); or (4)
numerical implementations using the most recent non-Gaussian characterizations
of theK field (Liu and Molz, 1997a,b).

At the MADE site, the very high degree ofK heterogeneity seems to support an
assumption of a power-law density and a simple analytic model. The assumption
of negligible J/η fluctuations should be most valid when the variability ofK is
greatest. Therefore, the accuracy of the fractional ADE without any knowledge
of plume history should be greatest at highly heterogeneous sites. We make these
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assertions without proof that a power-lawK distribution gives rise to power-law
velocity field with the same exponent. The skewness of the MADE plume may have
arisen due to its initial conditions. Since the plume was placed in low-permeability
material, the propensity for faster transitions is much higher for quite some time.
Had the slug been placed in a high permeability channel, the opposite might be
expected, although recent work by Schumeret al. (1999) indicates that naturalα-
stable plumes should be maximally skewed(β = ±1) based on theK distribution
alone.

The parametersα andD come from a 2-parameterK distribution function, the
assumption of a characteristic transition time (τ ), and(J/η). The parameterD in a
second-order equation comes from the variance of ln(K), the functional form of the
autocorrelation (either a characteristic length or a simple function of separation),
(J/η), and the local transverse dispersion coefficient. To model a skewed plume
with any order equation, one or more additional parameters are needed: (β) for
the fractional ADE and a mass transfer rate coefficient and some apportionment
of the porosity for mobile/immobile formulations (Haggerty and Gorelick, 1995).
Thus, the fractional equation (7) requires the same amount of information or less to
produce qualitatively similar predictions as local second-order formulations. The
distinguishing characteristic of the fractional solution is the prediction of at least
one power-law tail in time and/or space (Benson, 1998).

Tests at mildly heterogeneous sites (Cape Cod) and even within a highly ho-
mogeneous sandbox show some of the hallmarks ofα-stable plume development
(Benson, 1998; Bensonet al., 1999b). This is not totally surprising, since ran-
dom walks by conservative solutes without power-law temporal correlation should
converge to someα-stable distribution, based on the GCLT (1). A Gaussian stable
plume is a subset of these. The power-lawK distribution must have an upper cutoff,
hence a finite variance. Since theK distribution reports average velocity in finite
volumes, one must assume that actual particle velocity is truncated by a much
higher and unknowable upper bound. Mantegna and Stanley (1995) show that trun-
catedα-stable motions stay similarlyα-stable for very long times before quickly
changing to a Gaussian, particularly whenα is much lower than two. Painter
(1997) observes this point and gives evidence that a plume might have to travel
huge distances before integrating enough of these cutoff transitions. These studies
lend support for a fractional ADE formulation for many conservative plumes. The
fractional approach has also been shown to work well in unsaturated porous media
(Pachepsky, 1998; Pachepskyet al., 1999), where self-generating channels foster
similar long-range particle velocity dependence.

6. Conclusions

In some approaches to modeling field-scale transport, such as small perturbation of
a stochastic second-order ADE, the dispersive growth process is still fundamentally
Gaussian; super-diffusive behavior is forced by scale-dependent macrodispersion
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parameters. If the actual growth process is stable but non-Gaussian, then such
methods cannot accurately simulate dispersive growth at any scale. This is because
the Gaussian fundamental solution cannot reproduce the heavy tails or scale cor-
rectly with time. The non-Fickian behavior of the fractional ADE is obtained by
matching the order of differentiation of the dispersive derivative to the exponent
of the growth process. The fundamental solution to the fractional ADE produces
non-Gaussian, heavy-tailed densities (plumes) that simultaneously predict super-
Fickian transport and the heavy breakthrough curve tails that are ubiquitously
found at field sites and often attributed to channeling, dead-end pores, nonlinear
adsorption, and/or zero permeability zones.

There are no restrictions on the fractional-order theory in terms of the vari-
ance of log(K) – it is based on an infinite variance velocity model. The theory
is relatively simple to apply: the parameters are constants that can be estimated
from early-time plume data or the underlyingK data. In contrast, the early plume
behavior gives no indication of the late-time macrodispersivity used in a second-
order equation. At the MADE site, the fractional ADE gave better predictions with
a very low information requirements: a simple equation reproduces very complex
behavior.

Using theK data as a surrogate for velocity, the fractional equation parameters
were accurately estimated at the MADE site. Our analysis of theK increments at
the MADE site using robust tail estimators indicates a power-law of orderα = 1.1.
The power-law tail velocity field imparts instantaneous solute displacements that
are power-law tailed as well. These displacements converge to anα-stable plume
that is modeled by a fractional dispersion term. This is reflected in the measure-
ments of the MADE-2 tritium plume. Finally, the plume is positively and max-
imally skewed, which is simply handled by fractional derivatives and theα-stable
fundamental solutions.
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Appendix A. Derivation of the 1D Fractional ADE

Derivation of a Fokker–Planck equation (FPE) starts with a simple mathemat-
ical statement of how a random measure changes state from one moment to the
next, after some event has occurred. In this case, we are interested in the prob-
ability that a particle has moved from locationx1 to x3 in the time t1 to t3, or
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p(x3 − x1, t3 − t1). This probability is referred to as the transition density, which
is conditional on the initial position (x1) and the time interval. The particle must
move through an intermediate locationx2, so this probability can be found by
summing over all possible intermediate pointsx2. The probability of making both
transitions (x1 to x2 to x3) is the product of the single-transition probabilities, giving
the Chapman–Kolmogorov equation (Sheshadri and West, 1982; Zaslavsky, 1994):

p(x3− x1, t3− t1) =
∫
p(x3− x2, t3− t2)p(x2− x1, t2 − t1)dx2. (A.1)

The particle’s initial condition of being at positionx1 = 0 at timet1 = 0 is
placed into the density to give the probability of a particle’s position at any time
after moving for time (t):

p(x − x0, t) =
∫
p(x − x2, t − t2)p(x2− x0, t2)dx2. (A.2)

Note that, in general, the wandering particle is described by a joint space and
time density (e.g., Shlesingeret al., 1982; Klafteret al., 1987; Berkowitz and
Scher, 1995, 1998) that may be impossible to measure in a field situation. One
can simplify by using the conditional space density for a specific time interval
(Sheshadri and West, 1982; Zaslavsky, 1994; Benson, 1998; Meerschaertet al.,
1999) if one assumes that spatial dependence is much heavier-tailed than temporal
correlation. This leads to the Markov assumption that the movement of a particle
(a possibly very distant movement) is independent of past movements. We choose
an equation that tracks the location of a particle at regular intervals of1t, so the
transition densityp(x−x2|1t) is now specific to (conditioned on) regular intervals,
since taking the limit as1t goes to zero leads to a differential equation, while the
former, in general, does not (Benson, 1998). The ‘propagator’, or Green function,
is the density describing the position of a particle at any time (t) having started
from x0 = 0 and is given the shorter notationp(x − x0|t − t0) = P(x, t). This
leads to the density of the particle position based on the present position and the
transition density:

P(x, t +1t) =
∫
p(x − ζ |1t)P (ζ, t) dζ. (A.3)

Naturally, this is a convolution, since the density of a sum of two random vari-
ables (i.e., the distance traveled by a random walker from time zero tot and then
again from timet to t + 1t) is the convolution of the densities of the summands
(e.g., Ross, 1988). A requirement on the relative size of the total time (t) versus
the transition time(1t) is sometimes needed. For any general transition density,
1t must be much smaller than the total time, and1t is called amixing time. This
argument is required so that an appropriate limit theorem such as the GCLT (1)
can be invoked as a good approximation of the integration of a large number of
transitions into a limit distribution. If the transitions are iidstablevariables, then no
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restrictions are placed on the transition time and the convolution is always satisfied.
For example, iid Gaussian transitions result immediately in a Gaussian propagator.

By taking infinitesimal values of1t in (A.3), we will know the change in
P(x, t) over a very short time period, leading to a differential equation. One should
expect that a particle that travels along fractal paths and/or requires power-law
times to complete individual trajectories (e.g., Compte, 1996) will have different
limiting behavior than a typical Gaussian process. For example, Hugheset al.
(1981) show that fractal motions on a lattice have a heavy-tailed transition density.
The integer time derivative ofP(x, t) is represented:

∂P (x, t)

∂t
= lim

1t→0

1

1t

(∫
p(x − ζ |1t)dζ − P(x, t)

)
. (A.4)

The convolution is simplified by taking Fourier transforms:

d

dt
P̂ (k, t) = lim

1t→0

P̂ (k, t)

1t
(p̂(k|1t)− 1), (A.5)

where p̂(k|1t) is the Fourier transform of the instantaneous particle transition
density. Merely identifying a functional form for the instantaneous transition dens-
ity and placing it in this equation gives an expression for the probability density
of the particle at any place and time. Included in this functional form is the rela-
tionship of the density to time. A linear relationship is typically assumed, implying
that a particle will travel twice as far in twice the time. Other relationships require
a more complicated treatment with respect to time (e.g., fractional time derivatives,
see Zaslavsky, 1994; Saichev and Zaslavsky, 1997; Benson, 1998). For nonreactive
tracers, we shall assume this linear scaling. To illustrate, select a finite-variance
transition density based on the cumulant expansion:

p̂(k|1t) = 1+ A1(ik)+ 1
2A2(ik)

2+ An(ik)n + · · · (A.6)

whereA1 = −v1t + o(1t), A2 = σ 21t + o(1t), andAn = o(1t) for n > 2.
The termso(1t) contain all trailing terms with powers of1t greater than unity.
The termσ 2 must have units of L2/T so that the standard deviation of the jump
size is L2. This requirement provides the linear link between the travel variance (of
a particle or plume) and time. These coefficients define the requirements for the
transition density that generates the classical ADE – it must have a finite-variance
and higher-order moments that essentially disappear as1t becomes very small.
The third moment describes skewness, so highly skewed transitions (finite-variance
or not) may not be well modeled by the ADE until time becomes very large and
the transition time1t become proportionally small. Placing (A.6) into (A.5) and
taking the limit, we have

d

dt
P̂ (k, t) = −v(ik)P̂ (k, t)+ (ik)2σ

2

2
P̂ (k, t) (A.7)
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which is easily inverted using the property of Fourier transformsF −1[(ik)nĝ(k)] =
dn/dxng(x):

∂

∂t
P (x, t) = −v ∂

∂x
P (x, t) + σ

2

2

∂2

∂x2
P(x, t) (A.8)

One can develop a parallel theory for the heavy-tailed (infinite variance) case, just
as a GCLT (1) arose from the classic CLT. The Fourier transform of the Lévy
density can be written:

f̂ (k) = exp[qC(−ik)α + pC(ik)α − µik], α 6= 1 (A.9)

where the relative weight of coefficientsp + q = 1 describes the skewness, and
C is the scale (the spread similar to the variance in the Gaussian). The transition
density scales linearly with the transition interval1t for 1t → 0. This stable
transition density has the Fourier transform:

p̂(k|1t) = exp[qD1t(−ik)α + pD1t(ik)α − v1t(ik)], α 6= 1 (A.10)

with an expansion of̂p(k|1t) = 1− v1t(ik) + qD1t(−ik)α + pD1t(ik)α +
o(1t). This units ofD are LαT−1. This density has an infinite variance forα < 2.
Placing the expansion into (A.5) and taking the limit:

d

dt
P̂ (k, t) = P̂ (k, t)[−v(ik)+ qD(−ik)α + pD(ik)α]. (A.11)

One can easily solve this eigenvalue ODE and find that it is the equation of a
1D Lévy motion (see Samorodnitsky and Taqqu, 1994). But this equation admits
a remarkable form, based on the Fourier transform of a fractional derivative. The
fractional derivative can be defined (Samkoet al., 1993; Debnath, 1995; Benson
et al., 1999a) by extending the well-known action of Fourier transform on integer
derivativesF −1[(ik)nf̂ (k)] = (dn/dxn)f (x) to rational order:F −1[(ik)αf̂ (k)] =
(dα/dxα)f (x). In the forward sense,

F

[
dα

dxα
f (x)

]
= (ik)αf̂ (k).

If the derivative is taken with respect to−x, we substitute−k for k:

F

[
dαf (x)

d(−x)α f (x)
]
= (−ik)αf̂ (k).

By inverse transform (Samkoet al., 1993; Bensonet al., 1999a), one finds that the
fractional derivative has the 1D representation (note the change of sign inside the
integral):

dqf (x)

d(±x)q =
(±1)n

0(n− q)
dn

dxn

∫ ∞
0
ξn−q−1f (x ∓ ξ)dξ. (A.12)
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The real-space inverse transform for the propagator (A.11) is now

∂

∂t
P (x, t) = −v ∂

∂x
P (x, t) + pD

∂α

∂xα
P (x, t) +

+ qD ∂α

∂(−x)α P (x, t), (A.13)

or equivalently (Benson, 1998):

∂P

∂t
= −v ∂P

∂x
+ (1+ β)D

2

∂αP

∂xα
+ (1− β)D

2

∂αP

∂(−x)α , (A.14)

where the dimensions ofD (the dispersion coefficient) areLαT −1. This is valid
for light- or heavy-tailed particle excursions in 1D. We have introduced the de-
scription ‘fractional ADE’ with the understanding that only the dispersion term is
correctly described by a fractional derivative. For a large number of independent
solute ‘particles’, the probability propagator is replaced by ensemble concentration
C(x, t) (cf., Fürth, 1956; Bhattacharya and Gupta, 1990), and the general govern-
ing equation for the expected concentration solute movement (the 1D fractional
ADE) simplifies to (7). For Gaussian or other light-tailed random motions,α = 2
and the classical ADE is recovered.

A number of methods can be used to generate theα-stable density solutions (9).
Denote the densityfαβσδ(x) whereα is the index of stability,β is the skewness,
σ = [| cos(πα/2)|D t]1/α is the scale, andδ = vt is the shift. A standard density
hasσ = 1 andδ = 0. A general density is related to the standard byfαβσδ(x) =
σ−1fαβ10((x − δ)/σ ). Givenv andD , one can specify anyx and t, and find the
standard density for the argument(x − vt)/[| cos(πα/2)|D t]1/α. The canonical
forms of the density assume many different definitions of a skewness parameter.
Our choice ofp is related to Samorodnitsky and Taqqu’s (1994) common skewness
parameter (β) by β = 2p − 1. A standard density can be found by integrating the
expression (Benson, 1998):

fαβ10(x)=|cx|
1/(α−1)αc

2|1−α|
∫ 1

−θ
Uα(φ, θ)exp(−|cx|α/(α−1)U(φ, θ))dφ, (A.15)

where

c = [1+ (β tan(πα/2))2]−1/2α, θ = 2

πα
tan−1(β tan(πα/2)),

Uα(φ, θ) =
(

sin 1
2πα(φ + θ)
cos1

2πφ

)α/(1−α)
,

or by Feller’s (1971) series for 1< α 6 2:

fαγ10(x) = 1

πx

∞∑
k=0

0(kα−1+ 1)

k! (−x)k sin
πk

2α
(γ − α), (A.16)
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where Feller’s skewness parameterγ is obtained fromβ by Samorodnitsky and
Taqqu (1994):

γ = 2

π
arctan[β tan(π(α − 2)/2)]. (A.17)

For symmetric densities, settingβ = γ = 0 in (A.16) yields a formula that
converges rapidly even for large arguments. The symmetric standard density for
1< α 6 2 is given by the series:

fα010(x) = 1

π

∞∑
k=0

(−1)k

(2k + 1)!0
(

2k + 1

α
+ 1

)
x2k. (A.18)

Appendix B. Estimation of Power-Law Content

Several numerical and graphical routines are typically used to estimate the ‘power-
law’ content, if any, in data sets. Here we discuss the basis for each estimator and
the pitfalls encountered when using each on different types of data. Each estimator
is applied to the MADEK data in raw and incremental form, which has serious
effect on the stability of some estimators.

The family of stable distributions is parameterized by the tail thickness 0<α6
2, the skewness−16β61, the location−∞<µ<∞, and the scaleσ >0 (Equa-
tion (3)). There are several established methods for stable parameter estimation,
which can be used to fit a stable probability distribution to a data set. McCulloch
(1986) tabulates quantiles of a stable distribution as a function of the parameters,
and uses these tables to interpolate the best-fitting parameter values. These rough
estimates can also be used to initialize the optimization for maximum likelihood
estimation (MLE). Although the stable density cannot be written in closed form,
Nolan (1997) has developed fast numerical approximations that allow practical
computation of the stable MLE on a personal computer. A computer program to
compute both the McCulloch quantile estimators and the MLE, including dia-
gnostics to check for distributional fit, is available at http://www.cas.american.
edu/∼jpnolan/.

Anderson and Meerschaert (1998) review parameter estimation methods for
heavy tails and apply them to a river flow time series. For data sets that are known to
be stable, the MLE is the best parameter estimation method. Robust estimators are
more appropriate when the exact probability distribution of the data is unknown.
The most popular robust estimator was introduced by Hill (1975). Hill’s estimator
is the conditional MLE for a Pareto distributionP [X > x] = Wx−α based on the
largest order statistics. This model is appropriate because the upper tail of a stable
distribution is approximately Pareto with the same index (α) (e.g., Samorodnitsky
and Taqqu, 1994). A recent extension of Hill’s estimator by Aban and Meerschaert
(1999) fits a shifted ParetoP [X > x] = W(x−s)−α using the same method. Since
Hill’s original estimator is not shift-invariant, this new method is more reliable.
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Table II. Estimates ofK and1K tail parameterα using four estimators. Due to the ro-
bust methodology of the Meerschaert and Scheffler (M&S) method, a value ofα = 1.1
is thought to be reliable.

Estimator McCulloch Nolan Hill M&S

(type) (quantile stable) (MLE stable) (MLE Pareto) (asymptotics)

RawK 0.8 0.4 3.0 1.1

K increments 0.7 0.8 1.1 1.1

Figure 8. Mandelbrot plot of measuredK increments at 15 cm lag(|1K|) and shifted Pareto
P [|1K| > x] = 0.0028(x + 0.01)−1.1 (solid line). Numbers on plot indicate rank of the
datum.

Hosking and Wallis (1987) suggest using the MLE for the generalized Pareto dis-
tribution to fit hydrologic data. This two parameter model is equivalent to a Pareto
with a specific shift that makesX range over the positive reals. McCulloch (1997)
shows that Hill’s estimator can yield misleading results when applied to stable data.
Meerschaert and Scheffler (1998) suggest another robust estimator based on the
asymptotics of the sum. This estimator performs about as well as Hill’s estimator
in most practical situations, and it performs best in exactly those situations (stable
or nearly stable data with alpha near two) in which Hill’s estimator is most likely
to fail.

For the untransformed MADEK data the McCulloch quantile estimator gives
α = 0.8 andβ = 1 (totally skewed to the right). Nolan’s MLE givesα = 0.4
andβ = 1.0, indicating very heavy tails. A probability plot indicates significant
deviation from the best fitting stable model, indicating that the data are probably
not drawn from a stable distribution. This is a situation in which robust estimators
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are more appropriate. The generalized Pareto MLE yieldsα = 0.5 but once again
a probability plot indicates that there is not a good fit to this particular distribution.
Hill’s estimator uses the largestr observations out ofn = 2915 for this data set. The
resulting parameter estimates vary withr, for example we getα = 2.3 at r = 50
andα = 1.0 at r = 500, and in general,α steadily decreases withr, indicating a
possible distributional misspecification. For the Pareto modely = P [X > x] =
Wx−α leads to ln(y)= ln(W)−α ln(x). If we sort the dataX1 . . . Xn in descending
order to obtain the order statisticsX(1) > · · · > X(n), then we can estimate
y = i/n andx = X(i). A log–log plot of i/n versusX(i) should show a straight
line with slope−α for Pareto data. This method was pioneered by Mandelbrot
(1963) in his early work on heavy tails, and we will call this the Mandelbrot plot.
Simple linear regression can be used to estimate (α) from the Mandelbrot plot, but
this method typically performs poorly. More importantly, this graphical method can
be used to test for fit to a Pareto model. The choice ofr for Hill’s estimator, based
on the Pareto distribution, should be small enough that the Mandelbrot plot of the
r largest order statistics appears linear. Since Hill’s estimator is not shift-invariant,
it is also reasonable to shift the data until the plot appears linear. This amounts to
fitting a shifted Pareto. Visual inspection indicates that a shift ofs = −0.2 cm/s
(add 0.2 cm/s to eachK observation) gives a Mandelbrot plot that appears linear,
and Hill’s estimator for the largestr = 375 observations yieldsα = 3. The more
exact shifted Hill’s estimator (conditional MLE) yieldsα = 3.019 at the optimal
shift of s = −0.1998, so in this case, visual inspection is adequate. Overall, there
is a wide discrepancy inα estimates (Table II), due to mismatches of estimation
technique with the data distribution. Estimators like the MLE, which are tailored
to a specific distributional form, are not robust with respect to deviations from that
probability distribution. After rescaling the data (divide by the median), the robust
estimator of Meerschaert and Scheffler yieldsα = 1.1 and in this case we consider
this our best parameter estimate.

To test the fits to a specific distribution, we also analyzed the variations inK. It is
typical in econometrics to difference the data in this way (subtract one observation
from the next) to unmask the effects of heavy tails. Theoretically speaking, the
differences should exhibit the same tail thickness parameter (α) as the original
data set (e.g., Davis and Resnick, 1985). For our data set, the McCulloch quantile
method givesα = 0.7 andβ = 1 and Nolan’s MLE givesα = 0.8 andβ = 1 for
the differenced data, but once again, diagnostic plots indicate a significant deviation
from a stable distribution. Meerschaert and Scheffler’s robust estimator (again we
rescale by the median) yieldsα = 1.1, the same as for the raw data (Table I). Hill’s
estimator withr = 150 also givesα = 1.1 and the Mandelbrot plot indicates that
the fit to a shifted Pareto is good (Figure 8). In addition, Hill’s estimator gives a
scale coefficientW = 0.0028 (cm/s)1.1. Since the conditional MLE of Aban and
Meerschaert indicates that the optimal shift is near zero, the usual Hill’s estimator
should give good results. The generalized Pareto MLE is not reported here because
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we could not obtain convergence. Overall, it seems safe to say that theK data fit a
heavy-tail model withα = 1.1 indicating an infinite variance but a finite mean.
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