
Fractal Travel Time Estimates for Dispersive
Contaminants
by Danelle D. Clarke1, Mark M. Meerschaert2, and Stephen W. Wheatcraft3

Abstract
Alternative fractional models of contaminant transport lead to a new travel time formula for arbitrary concen-

tration levels. For an evolving contaminant plume in a highly heterogeneous aquifer, the new formula predicts
much earlier arrival at low concentrations. Travel times of contaminant fronts and plumes are often obtained from
Darcy’s law calculations using estimates of average pore velocities. These estimates only provide information
about the travel time of the average concentration (or peak, for contaminant pulses). Recently, it has been shown
that finding the travel times of arbitrary concentration levels is a straightforward process, and equations were
developed for other portions of the breakthrough curve for a nonreactive contaminant. In this paper, we generalize
those equations to include alternative fractional models of contaminant transport.

Introduction
Travel time estimates for contaminants are typically

found from Darcy’s law calculations using the average
velocity. Such estimates will represent the arrival time of
the average concentration for a contaminant front or the
peak arrival time for a well-defined pulse. In a recent
paper, Wheatcraft (2000) discussed this process and
pointed out the drawbacks. Since migrating contaminants
experience a variety of velocities due to dispersive pro-
cesses, smaller concentrations will arrive at a down-
gradient location significantly before the average. For
better estimates of travel times, Wheatcraft used the tradi-
tional advection-dispersion (ADE) model to develop
equations for travel times for arbitrary concentration
levels that only require two pieces of information: (1) the
dispersivity and (2) the average pore velocity. However,
there may be times when a fractional ADE model is more
appropriate. Here, we take the ideas from Wheatcraft

(2000) and extend them to include the fractional ADE
model.

The first part of this paper lays out a step-by-step
approach to estimate the travel times for a contaminant
front and for a pulse/plume. Equations, tables, graphs,
and examples are provided so that the reader can make
quick and easy estimates. Later in the paper, we discuss
the reasoning behind our methods and describe in detail
how we developed the travel time equations.

Classical ADE Model
We will first consider a contaminant front where dis-

persion is modeled by the standard ADE equation. The
breakthrough curve of a front expands as the contaminant
disperses, as shown in Figure 1. The relative concentra-
tion, C, is plotted against the distance traveled by the con-
taminant, x. In a front model, the contaminant will
eventually reach a constant maximum level, and the rela-
tive concentration refers to a percentage of the contami-
nant at its maximum level. We will start with the
traditional ADE for a contaminant front (Bear 1979)
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where C = normalized concentration, 0 � C � 1; a = dis-
persivity; and v = average velocity. At this time, it is help-
ful to introduce the following notation in this analysis. xC
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is the distance traveled by the point on the breakthrough
curve with concentration C. For example, x50 would rep-
resent the distance traveled by the 50% point on the
breakthrough curve. In the Appendix, we show that Equa-
tion 1 leads to the following travel time equation

xC ¼ vt þ b
ffiffiffiffiffiffiffiffiffi
2avt

p
ð2Þ

where b is the 1 2 C quantile of the standard normal dis-
tribution, defined by

12C ¼ PðZ � bÞ ð3Þ

and Z is a standard normal variable with mean = 0 and
standard deviation = 1. Table 1 provides typical values of
concentration and the corresponding quantiles for a stan-
dard normal.

To obtain the travel time t from Equation 2, input the
distance downstream xC, the advective velocity v, the dis-
persivity a, and the quantile b for the desired relative con-
centration level C from Table 1, then solve for t. As an
illustration, we will use a bromide tracer test conducted
by Garabedian et al. (1991) at Cape Code in 1985 to
1986. They estimated that v = 0.43 m/d for the average
velocity and a = 0.96 m for the dispersivity. Using these
estimates and C = 0.5, we substitute b = 0, found from
Table 1, into Equation 2 and solve for t, when xC =
100 m. Solving this equation, we find that t = 232.558 d.
This means that the average concentration traveled 100 m
from the injection point in ~233 d. In comparison, we
also calculated the travel time for the 10% concentration
(C = 0.10, so that b = 1.282) and arrived at a travel time
of 194.95 d. This is ~38 d earlier than the time that would

have been predicted using the average concentration. The
travel time for the 1% concentration (C = 0.01, so that
b = 2.326) was 168.7 d.

If we were to solve Equation 2 for t, we would arrive
at the same result of Wheatcraft (2000)

t ¼ xC þ ab22
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2b 4 þ 2axCb

2
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However, for reasons that will become clear in the next
section, we choose not to solve for t in this presentation.
Notice that the distance traveled by the contaminant is
related to the square root of time. We plotted Equation 2
in Figure 2, and the graph shows the distance traveled xC
vs. travel time t, with varying concentration levels. One
can see evidence that concentration spreads like the
square root of time, especially when the concentration is
small. Another interesting observation is that the lower
levels of concentration travel much faster than the aver-
age concentration, C = 0.5 on the graph. Therefore, using
Darcy’s law calculations and the average pore velocity for
all concentration levels can result in longer and inaccurate
travel times.

Next, we consider relative concentration using the
ADE solution for a contaminant pulse/plume (Bear 1972)

Cðx; tÞ ¼ 1
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With a slightly different interpretation than the front
model, we get the same equation for the travel time.
Recall, in the front model the relative concentration is the
percentage of what the maximum level of contaminant
will be. With a pulse/plume contaminant, the relative
concentration refers to the percentage of the total contam-
inant mass that has passed point xC.

Looking at the curve of the ADE for a contaminant
pulse/plume in Figure 3, it is easy to see that the relative
concentration C is the area under the curve past xC, for
the total area under the curve would have to equal 1
(100% of the contaminant). In order to find the travel
time, we should evaluate the following equation for xC

C ¼
Z N
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In the Appendix, we show that derivation of this
equation results in the same travel time equation as Equa-
tion 2. The equation can be used in the same manner as
before, except that now t represents the time until a frac-
tion C of the total mass passes point xC.

Figure 1. ADE solution for a contaminant front.

Table 1
Quantiles, b, for a Standard Normal Distribution

C = 0.99 0.95 0.90 0.75 0.50 0.25 0.10 0.05 0.01

b 22.326 21.645 21.282 20.674 0.000 0.674 1.282 1.645 2.326
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Fractal ADE Model
Wheatcraft (2000) considered two cases: plume

growth by traditional dispersion (his Case 1) and plume
growth by Mercado-type macrodispersion, where hydrau-
lic conductivity in a perfectly stratified aquifer varies by
layer according to a specific probability distribution (his
Case 2). For Case 1, plume growth is proportional to the
square root of time, whereas in Case 2, plume growth is
proportional to time. The two cases cannot be directly
compared because their parameters are not the same (dis-
persivity for Case 1; mean and variance of the hydraulic
conductivity distribution for Case 2), but travel times for
Case 2 would generally be faster than for Case 1 because
the aquifer is considered to be perfectly layered, and
therefore the horizontal autocorrelation of hydraulic con-
ductivity is effectively infinite. The Mercado model is
a very simple way of accounting for macrodispersive ef-
fects, but recent work has led to a completely new way of
accounting for macrodispersive transport.

Benson et al. (2000) developed the fractional ADE
theory, which models contaminant migration based on
a generalization of the normal distribution called the a-
stable distribution. The parameter a in this distribution
has the range 1 � a � 2. The normal distribution is con-
tained within the family of a-stable distributions and is
recovered in the case where a = 2. For values of a < 2, the
distribution looks similar to the normal, but there is con-
siderably more probability of finding extreme values.
Because of the relatively larger probabilities in the distri-
bution tails for smaller values of a, stable distributions are
also known as heavy-tailed distributions (Meerschaert and
Scheffler 2001).

Fractional ADE models based on a-stable dis-
tributions have been used successfully to model the
migration of contaminant plumes for a number of labora-
tory experiments and field tracer tests (Benson et al.
2000, 2001). They are based on fractional derivatives
(Samko et al. 1993) that model enhanced dispersion in a
heterogeneous medium due to high-velocity contrasts
(Schumer et al. 2001), leading to fractal particle traces
(Taylor 1986). Ground water transport is a complex

phenomenon, and many sophisticated models are avail-
able that allow prediction of travel times. Most of these
models require either a detailed site characterization or a
number of additional assumptions about the stochastic
nature of aquifer descriptors, such as hydraulic conductiv-
ity, as well as significant numerical computation.

There remains a great deal of controversy about the
broader applicability (Lu and Molz 2001; Lu et al. 2002)
and physical meaning (Molz et al. 2002) of heavy-tailed
models in ground water hydrology. However, the frac-
tional ADE provides a simple way to account for scale-
dependent dispersivity in the classical ADE as well as the
power-law tailing typically seen in ground water plumes
and in our opinion provides the most useful basis for
a quick and effective estimation of travel time at the field
scale. Benson et al. (2000) showed that the 1-D solution
to the fractional ADE equation is

C ¼ 1

2

"
12serfa

 
x2vt

ðavtÞ1=a
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ð7Þ

where C = normalized concentration, 0 � C � 1; a =
fractional dispersivity; v = average velocity, and serfa is
the analogue of the error function erf, with a normal den-
sity replaced by an a-stable density (see Appendix Equa-
tion 22). The value of a is related to the degree of
heterogeneity. A value of a = 2 would be equivalent to
a perfectly homogeneous aquifer, and values of a < 1.5
corresponding to very heterogeneous aquifers. For
instance, the well-known tracer test at Columbus Air
Force Base, Mississippi, has been shown to have a value
of a = 1.1 and variance of the logarithm of hydraulic con-
ductivity, log K = 4.6 (Benson et al. 2001). For the more
homogeneous tracer test at the Cape Cod site, it was
found that a = 1.8 (Benson et al. 2000) and the variance
of log K = 0.24 (Garabedian 1991). The parameter a can
also be estimated by determining how fast the plume vari-
ance is growing (Benson et al. 2001), which shows that a
is related to the fractal dimension of Wheatcraft and Tyler
(1988). With this information, we can consider the frac-
tional ADE (Equation 7) in the same manner as we did
the classical ADE (see Appendix for details). This com-
parison leads to the fractional travel time equation

Figure 2. Travel time vs. distance for an ADE front. Figure 3. The ADE solution for a contaminant pulse/plume.
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xC ¼ vt þ baðavtÞ1=a ð8Þ

where ba is the 1 2 C quantile of the standard, symmetric
a-stable distribution. Table 2 provides some common
concentration levels and the corresponding ba values.
Note that Equation 8 reduces to Equation 2 if a = 2. This
happens because the normal distribution is simply a spe-
cial case of an a-stable distribution when a = 2. However,
due to the definition of the stable density, there is a factor
of

ffiffiffi
2

p
within the calculations. Notice that when a = 2 in

Table 2 for ba, the values must be divided by
ffiffiffi
2

p
in order

to obtain the same values as the normal b in Table 1.
Also, when a = 2 the concentration, which spreads like
t1/a, will now disperse at a rate of t1/2, as in the classical
model. Using C = 0.01, we show the relationship between
xC, the location of the C concentration at time t for differ-
ent a, in Figure 4. As before, to obtain the travel time t
from Equation 8, input the distance downstream xC, the
advective velocity v, the dispersivity a, and the stable
quantile ba for the desired relative concentration level C
from Table 2, then solve for t.

We will illustrate use of the fractal travel time equa-
tion by using the same data as before, collected by the
USGS during a 511-d tracer test within a relatively uni-
form sand and gravel aquifer on Cape Cod. These data
were analyzed by Benson et al. (2000), and they esti-
mated a = 1.8, v = 0.43 m/d for the average velocity, and
a = 0.58 for the fractional dispersivity. Solving Equation
8 with these values along with xC = 100 m, we obtain t =
232.558 d. This means that the average concentration
traveled 100 m from the injection point in ~233 d. In
comparison, we also calculated the travel time for the
10% concentration (C = 0.10, so that ba = 1.880) and
found that it traveled 100 m downstream from the injec-
tion point in 194.75 d. This is about 38 d earlier than the
time that would have been predicted using the average
concentration. The travel time for the 1% concentration
(C = 0.01, so that ba = 4.227) was 157.1 d.

Since this paper illustrates two different models for
travel time, it is useful to compare them now. The travel
time for the 50% concentration or plume center of mass

is the same for both models, 100 m in 233 d, since this
travel time only depends on the advective velocity. For
the 10% concentration level, 100-m travel time is around
195 d for both models, perhaps because the dispersivity
parameters were chosen to fit the plume spread at about
this level. The 100-m travel time for the 1% concentra-
tion level is 169 d for the classical ADE and 157 d for
the fractional ADE. The fractional model predicts signifi-
cantly earlier arrival at very low concentrations. Hence, if
low levels of contamination are of concern, we advise use
of the fractional model.

Comparison of Travel Distances
It is very interesting to compare the travel distances

for values of a < 2 with those for the traditional ADE
(a = 2). Their ratio is

vt þ baðavtÞ
1=a

vt þ bðavtÞ1=2
ð9Þ

This equation is plotted in Figure 5 for a concentration of
C = 0.01. This plot illustrates the fact that, especially for
low concentrations, travel distances for low values of a
are much farther than what would be predicted by the
traditional ADE (a = 2). For example, for a = 1.1 (a very
heterogeneous aquifer such as the MADE site) after 100
d, the contaminant has traveled nearly 10 times farther
than the traditional ADE prediction. This may help
explain why at the MADE site, mass was continually
‘‘lost’’ at each sampling period (Garabedian et al. 1991).
In other words, the sampling points used at a given sam-
pling period were chosen based on predictions of the tra-
ditional ADE and stochastic theories. However, it has
been shown that the plume can be well modeled by the
fractional ADE (Benson et al. 2001), which means that
travel distances for low concentrations would be much
larger than those predicted by traditional theories. The
"lost mass" may be just the heavy plume tail traveling much
faster than traditional predictions, as shown in Figure 5.

Table 2
Quantiles, ba, for a Standard Symmetric a-Stable Distribution. When a = 2 the Values Are the

Same as the Standard Normal Distribution Multiplied by a Factor of O2. The Factor of O2 is Due to a
Change in Parameterization

C = 0.99 0.95 0.90 0.75 0.50 0.25 0.10 0.05 0.01

a = 1.1 222.071 25.165 22.729 20.989 0.000 0.989 2.729 5.165 22.071
1.2 216.160 24.369 22.480 20.982 0.000 0.982 2.480 4.369 16.160
1.3 212.313 23.795 22.297 20.976 0.000 0.976 2.297 3.795 12.313
1.4 29.659 23.370 22.162 20.972 0.000 0.972 2.162 3.370 9.659
1.5 27.736 23.052 22.061 20.969 0.000 0.969 2.061 3.052 7.736
1.6 26.284 22.814 21.985 20.966 0.000 0.966 1.985 2.814 6.284
1.7 25.152 22.637 21.927 20.963 0.000 0.963 1.927 2.637 5.152
1.8 24.277 22.505 21.880 20.960 0.000 0.960 1.880 2.505 4.277
1.9 23.669 22.404 21.843 20.957 0.000 0.957 1.843 2.404 3.669
2.0 23.290 22.326 21.812 20.954 0.000 0.954 1.812 2.326 3.290
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Conclusions
A fractional travel distance/time relationship (Equa-

tion 8) has been developed in a manner similar to the
method developed by Wheatcraft (2000) for the traditional
ADE. Equation 8 depends on two parameters in addition
to the advective velocity and dispersivity:

1. The concentration C that one wishes to know the travel

distance or time for

2. The value of a chosen based on the degree of heterogene-

ity of the aquifer.

As a guideline

1. Relatively homogeneous aquifers would be expected to

have 1.7 � a � 2.0

2. Aquifers of ‘‘average heterogeneity’’ would be expected

to have 1.3 � a � 1.7

3. Relatively heterogeneous aquifers would be expected to

have 1.0 � a � 1.3.

Once values of concentration and a have been selected,
ba is obtained from Table 2 and Equation 8 can be solved
directly for travel time. Because a is a fraction, one cannot
solve Equation 8 directly, so solver routines must be em-
ployed (e.g., the solver in Excel). For low concentrations
in a highly heterogeneous aquifer, travel distances can be
far in excess (more than a factor of 10 in ~100 d) for a con-
taminant that is following the fractional ADE, as compared
to a contaminant that is following the traditional ADE.

The travel distance/time Equation 8 developed here
can be used to provide better estimates of travel distance
or time than Darcy’s law calculations that are only valid
for the mean concentration or for the center of mass of
a plume.

Appendix: Derivation of Travel Time Equations
In this section, our approach to developing the travel

time equations is a probabilistic one. We will start with
the ADE solution for a contaminant front (Equation 1).
With a contaminant front, the level of concentration con-
tinues to increase with time. As time approaches infinity,
the contaminant will approach a level of 100% (Figure 1).
This means that the relative concentration C (x,t) for a
contaminant front refers to the contaminant level at loca-
tion x at time t as a percentage of the highest level that
will ultimately be observed. Equation 1 contains the com-
plementary error function, which is defined as

erfcðaÞ ¼ 2ffiffiffi
p

p
Z N

a

e2y2dy ð10Þ

The complementary error function can also be written as

erfcðaÞ ¼ 2PðY > aÞ ð11Þ
where Y is a normal random variable with mean = 0 and
standard deviation = 1=

ffiffiffi
2

p
. Therefore, Equation 1 sim-

plifies to

C ¼ P

�
Y >

xC2vt

2
ffiffiffiffiffiffi
avt

p
�

ð12Þ

If we standardize this normal probability by sub-
tracting the mean and dividing by the standard deviation,
we get

C ¼ P
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where Z is a standard normal variable with mean = 0 and
standard deviation = 1. Then

12C ¼ P

�
Z � xC2vtffiffiffiffiffiffiffiffiffi

2avt
p

�
ð14Þ

and comparing with Equation 3 implies that

xC2vtffiffiffiffiffiffiffiffiffi
2avt

p ¼ b ð15Þ

where b is the 12C quantile of the standard normal distri-
bution, as discussed earlier. Solving for xC, we arrive at
the travel time Equation 2.
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Figure 5. Travel time ratio (fractional/classical) vs. location
for an ADE front with C = 0.01, a = 1 m, and v = 0.1 m/d.

Figure 4. Travel time vs. location for a fractional ADE front
with C = 0.01 or 1% of the eventual maximum. Here, v = 0.12
m/d and a = 7.5 m.
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Next, we will consider the pulse/plume contaminant
model. Even though we ended up with an equivalent equa-
tion to the front model, the approach differs slightly due to
the definition of relative concentration in the pulse/plume.
With a pulse/plume model, the contaminant concentration
passing point xC will increase with time until the peak of
the plume. After the peak, the concentration will decrease
with time. In order to find the travel time for a particular
concentration, we must consider how much of the pulse/
plume has traveled past point xC. From Figure 3, we can
see that in order to find the relative concentration we should
integrate the ADE solution (Equation 5) from xC to infinity

C ¼
Z N

xC

1

2
ffiffiffiffiffiffiffiffiffi
pavt

p exp

"
2ðx2vtÞ2

4avt

#
dx ð16Þ

Again, we compare this equation to that of a normal
probability density to get

C ¼ PðY > xCÞ ð17Þ

However, this time the normal random variable Y has
mean = vt and standard deviation =

ffiffiffiffiffiffiffiffiffi
2avt

p
. If we stan-

dardize Y by subtracting the mean and dividing by the
standard deviation, we get

C ¼ P
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This simplifies to

C ¼ P
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Z >

xC2vt
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ð19Þ

where Z is again a standard normal random variable
with mean = 0 and standard deviation = 1. This implies that

12C ¼ P

�
Z � xC2vt

2
ffiffiffiffiffiffi
avt

p
�

ð20Þ

and again we apply Equation 3 to arrive at Equation 2. As
mentioned earlier, the concentration is spreading away
from the center of mass at a rate of t1/2.

Our approach to finding the travel time equations
for dispersion modeled by the fractional ADE is iden-
tical to the classical case. The only difference is that we
reference a symmetric a-stable probability density in-
stead of a normal probability density. We will start with-
the solution to the fractional ADE for a contaminant front

C ¼ 1

2

"
12serfa
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ð21Þ

We define the a-stable error function (serfa) similarly to
the error function, i.e., twice the integral of a symmetric
a-stable density from 0 to a

serfaðaÞ ¼ 2

Z a

0

faðxÞdx ð22Þ

where fa(x) is the standard, symmetric a-stable density
characterized by its Fourier transform

faðkÞ ¼
Z N

2N

eikxfaðxÞdx ¼ exp
�
2jkj

a�
ð23Þ

Note the similarity between Equation 23 and that of
the Fourier transform of a standard normal, expð2k2=2Þ:
The slight difference accounts for the

ffiffiffi
2

p
factor be-

tween the standard normal (values in Table 1) and the
standard, symmetric stable when a = 2 (values in Table 2).

When we combine Equation 21 with the definition of
serfa(x) from Equation 22, we get

C ¼ 1
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Using the definition of a probability density, we arrive at

C ¼ 1

2

"
122P

 
0 � Za �

xC2vt

ðavtÞ1=a

!#
ð25Þ

where Za is a standard, symmetric a-stable random vari-
able. Then

C ¼ 1

2

�
12P

�
jZaj �

xC2vt

ðavtÞ1=a

��
=

1

2
P

�
jZaj>

xC2vt

ðavtÞ1=a

�
= P

 
Za >

xC2vt

ðavtÞ1=a

!

so that

12C ¼ P

 
Za �

xC2vt

ðavtÞ1=a

!
ð26Þ

Since the 1 2 C quantile ba of the standard, symmetric
a-stable distribution is defined by

12C ¼ PðZa � baÞ ð27Þ

it follows that

ba ¼
xC2vt

ðavtÞ1=a
ð28Þ

This equation can be solved for xC to obtain the fractional
travel time Equation 8. Equation 8 shows that the contam-
inant is dispersing at the rate of t1/a. For 0 < a < 2, the dis-
persion rate is faster than the classical ADE, resulting in
faster travel times for contaminant concentrations in the
fractional ADE model.
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