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Abstract

Continuous time random walks incorporate a random waiting time between random jumps. They are
used in physics to model particle motion. When the time between particle jumps has a slowly varying
probability tail, the resulting plume disperses at a slowly varying rate. The limiting stochastic process is
useful for modeling ultraslow diffusion in physics.
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1. Introduction

Continuous time walks, in which the waiting time between jumps is random, are a useful model
for particle motion in physics (Metzler and Klafter, 2000; Montroll and Weiss, 1965; Scher and
Lax, 1973). An interesting and previously unexplored case is where the waiting times between
particle jumps have slowly varying probability tails. In this case, none of the moments of the
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waiting times exist, so the usual arguments based on stable domains of attraction (Becker-Kern
et al., 2004, 2003; Meerschaert and Scheffler, 2004) do not apply. Instead we find that the time
process (sums of IID waiting times) converges to an extremal process, since the largest summand
dominates. If the simple random walk of particle jumps converges to some Lévy process A(¢), then
the continuous time random walk will be shown to converge to a subordinated process A(E(?))
where E(#) is the inverse or hitting time process of the extremal process. The continuous time
random walk limit process A(E(¢)) is useful in physics as a model for ultraslow diffusion
(Chechkin et al., 2002, 2003), where a dispersing plume of particles spreads at a slowly varying
rate. In the case of finite variance particle jumps, this limit process has a Laplace distribution at
every time, with increments that are all defective Laplace distributed.

Let J1,J2,... be nonnegative independent and identically distributed (i.i.d.) random variables
that model the waiting times between jumps of a particle. We set 7(0) = 0 and 7'(n) = Z}lz Jj, the
time of the nth jump. The particle jumps are given by i.i.d. random vectors Y, Y5, ... on R® which
are assumed independent of (J;). Let Sy =0 and S, = >, Y, the position of the particle after
the nth jump. For 1>0 let

N, = max{n=0: T(n) <) (1.1)

the number of jumps up to time ¢ and define
N,
X(1) = Sy, = Z Y; (1.2)
i=1

the position of a particle at time ¢. The stochastic process {X(?)},~( is called a continuous time
random walk (CTRW). In Section 2, we will establish the limiting behavior of the waiting time
process N,, and then in Section 3, we will apply a transfer theorem from Becker-Kern et al. (2003)
to prove a limit theorem for the CTRW process X (). The limiting process represents the behavior
of a random particle in the long-time limit.

2. Waiting time process

Let L(z)>0 be a strictly increasing continuous function of t>=1¢, with L(z) = 1. Assume L is
slowly varying, so that L(Af)/L(t) — 1 as t — oo for all A>0, and suppose that P{J;>1} = 1/L(z).
For t=0 let T(¢) = Zj[il Jj. Then Theorem 2.1 in Kasahara (1986) (see also Watanabe (1980))
implies that

f.d.
([ LT ()20 =(D(D}z0 as ¢ — o0, 2.1)
f.d.
where = denotes convergence in distribution of all finite dimensional marginal distributions, and

the extremal process {D(¢)} has finite dimensional distributions given for any 0<¢ < --- <¢,, and
0<x; < - <xp by

P{D(1))<x1,...,D(t,) <xp} = e /¥~ 2mt)/x o=(b=ti)/Xn (2.2)
The inverse or hitting time process of the extremal process D(7) is defined by
E(t) = inf{x : D(x)>1}. (2.3)
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Since D(¢) has strictly increasing sample paths (this follows from the representation of D(¢) in
Eq. (2.1) of Kasahara (1986)) we have for any 0<t, < --- <t,,, and x1,..., x,, >0 that

{E(t)<x;fori=1,...,m} ={D(x;))=t; fori=1,...,m}. (2.4)
Then it follows from (2.2) that for any >0 and x>0 we have
P{E()<x} = P(D(x)=1} =1 — P(D(x)<t}=1—¢/"

so that E(¢) has an exponential distribution with mean ¢. Note that by (2.2) for any ¢>0 we have
P{D(ct;)<cx; Vi) = P{D(t;) < x; Vi} so that
P{D(ct;})<x; Vi} = P{D(ct})<cc 'x; Vi)
= P{D(t;))<c 'x; Vi}
= P{cD(t;) < x; Vi} (2.5)
and hence D(t) ids self-similar with index H = 1. This means that {D(?)},> is continuous in law
with {D(ct)};s={c"' D(f)},5( for all ¢>0, where = indicates equality of all finite dimensional
distributions, see for example Embrechts and Maejima (2002) and Meerschaert and Scheffler
(2001). Then we also have
P{E(ct;)<x; Vi} = P{D(x;) = ct; Vi}
= P(c™'D(xi) > 1; Vi)
= P{D(c"'x;)=1; Vi)
= P{E(t;)<c¢'x; Vi}
= P{cE(t;) < x; Vi} (2.6)

so that E(¢) is self-similar with the same index H = 1.

Theorem 2.1. Under the assumptions at the beginning of this section, letting L™" denote the inverse
function, we have

f.d.
(T N p1phiz0 HE®) 50 as ¢ — oo, 2.7)

Proof. Fix 0<# < --- <t and x,..., X, >0 and note that {N,>=x} = {T([x]) <t} where [x] is
the smallest integer greater than or equal to x. Then using (2.1) as ¢ — oo
P{TIN o1y <xi Vi) = P{N -1, <cx; Vi)
= P{T([exi1)> L™ (ct;) Vi)
= P{c" ' L(T(Texi1)> ¢ L(L™ (ety)) Vi)



18 M.M. Meerschaert, H.-P. Scheffler | Statistics & Probability Letters 71 (2005) 15-22

— P{D(x;)>t; Vi}
= P{D(x;)=1; Vi}
= P{E(t;) < x; Vi}
since by (2.2) and (2.4) both E(¢) and D(x) have a density. [

See Dwass (1964) for more information on the structure of the extremal process D(¢) in (2.1).
The inverse extremal process E(¢) also has some interesting structure that we will now investigate.
Recall that E(¢) has an exponential distribution with mean ¢ for every #>0. Assume 0<x; <x»
and 0<t; <t,. Then

P{E(t) < x1, E(12) < X2} = P{D(x1) =11, D(x2) = 12}
=1- P{D(X1)<ll or D(X2)<l2}
=1—(P{D(x1)<t1} + P{D(x2)<tr} — P{D(x1)<t1, D(x2)<12})
=1 e—xl/tl _ e—xz/fz + e—xl/tle—(xz—xl)/tZ. (29)

Now take U, exponential with rate 1; = 1/¢; — 1/t,, U, exponential with rate 1, = 1/f, and
independent of Uy, and let U = min(U,, U) so that U is exponential with rate 1; + 4, = 1/1;.

Proposition 2.2. (E(1)), E(t)) =(U, Us).
Proof. Assume 0<x;<x; and let 4 = {U<x;} and B = {U,<x»}. Then

PlU<Lx,Uy<x2} = P(AN B)
= P(4)+ P(B) — P(AU B)
= P(A)+ P(B) — 1 4+ P(A° N B),
where P(4) =1 —e /1 P(B)=1—e /2 and
PA°NB)=P(U>x1,U;>x5)
=P(U1>x1,Usy>x1, Uy >x3)
— e—il xle—iz x>
— e N1/lg=(2=x1)/12

and then it follows that
PlULx, Uy<xpl =1 — e—X1/I1 _ e—Xz/tz + e—X1/lle—(X2—x1)/fz
and comparing with (2.9) completes the proof. [

Proposition 2.3. For 0<t; <t, the increment E(t,) — E(t,) has a defective exponential distribution
with P{E(t;) — E(t;)>x} = (1 — t;/t)e ™" and P{E(t;) — E(t;) = 0} = t, /1.

Proof. Using Proposition 2.2 we have P{E(t;) — E(t;) =0} = P{U,< U} = 1, /(1 + ) = t1 /2.
Also  P{E(t;) — E(t}))>x} = P{U, — U>x} and since U =min(U;,U,) this equals
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P{U, — U >x,U,>U} =e /0. 21/(Z1 + 72) which finishes the proof since A,/(4; + 42) =
(1- ll/lz). ]

Example 2.4. Take p>0 and let L(¢) = (log ¢)* for t>1t; = e. Then L™'(¢) = exp(¢'/*) and in this
case, we can write (2.7) in the form

(PN} S{EG)} ey as ¢ — oo, (2.10)

where E(s) = E(L(s)). Note that £(s) has an exponential distribution with mean L(s) = (log s)".
To see this, let ¢ = L(s) so that 11/? = log s and L™'(ct) = s and hence (2.7) becomes

B fd o
{¢T'N a1 =HE®)}s1 as ¢ — oo

The substitute ¢* for ¢ to get (2.10).

3. CTRW limit theorem

Assume that (Y;) are i.i.d. R%-valued random variables independent of (J;) and assume that Y
belongs to the strict generalized domain of attraction of some full operator stable law v, where full
means that v is not supported on any proper hyperplane of RY, and strictly operator stable means
that there exists a linear operator £ on R such that v/ = £y for all >0, where v' denotes the #-
fold convolution power of the infinitely divisible law v, and tfv(dx) = v(r £ dx) is the image
measure of v under the linear operator ¥ = exp(E log 7). By Theorem 8.1.5 of Meerschaert and
Scheffler (2001) there exists a function B € RV(—E) (that is, B(c) is invertible for all ¢>0 and
B(¢)B(¢)™' = 27 F as ¢ — oo for any 1>0) such that

Bn)) Y= A asn— oo, (3.1)
=1
where A4 has distribution v. Note that by Theorem 7.2.1 of Meerschaert and Scheffler (2001) the
real parts of the eigenvalues of E are greater than or equal to 1/2.
Moreover, if we define the stochastic process {S(?)},~o by S(¢) = Zgil Y; it follows from
Example 11.2.18 in Meerschaert and Scheffler (2001) that

(BOS(cD)} 120 S{AWD),20 a5 ¢ — oo, (3.2)

where A(7) has stationary independent increments with 4(0) = 0 almost surely and Py, =V =
tEy for all >0; Py denoting the distribution of X. Then A(¢) is continuous in law, and it follows
that

{A(ct)} 0 Z{EAD)) 150 (3.3)

so, by Definition 11.1.2 of Meerschaert and Scheffler (2001), A(z) is operator selfsimilar with
exponent E. The stochastic process A(7) is called an operator Lévy motion. If the exponent E = al
a constant multiple of the identity, then v is a stable law with index o = 1/a, and A(¢) is a classical
d-dimensional Lévy motion. In the special case a = 1/2 the process A(f) is a d-dimensional
Brownian motion.
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Theorem 3.1. Let X(t) be the continuous time random walk defined in (1.2). Under the assumptions
on (Y;) described at the beginning of this section and the assumptions on (J;) described at the
beginning of Section 2 we have

(BOXL ™ (ct)) 20 STAED)) 129 as ¢ — oo, (3.4)

Proof. The proof is similar to Theorem 4.2 in Becker-Kern et al. (2003). Fix any 0<¢; < - - - <t,,.
Let p, be the distribution of (¢c7'N L\ (et - 1<i<m) and let p be the distribution of (E(z;) :
1 <i<m). Then p,, p are probability measures on R” and it follows from Theorem 2.1 that p. = p
as ¢ — oo. Furthermore, for x = (x1,...,x,) € R} let

p(x) =P (B(c)S(cx;):1<i<m)»

V(x) = Play1 <i<m)-
Then p.(x),v(x) are probability measures on (RY)™ and since {A(t)},>0 as a Lévy process is

stochastically continuous the mapping x+>v(x) is weakly continuous. Then in view of the
independence of (J;) and (Y;) we obtain

Pipoxa ey viy = PBOSWN, 1) ¥i)

= Pp)sic Ny 1g) V)

= / Posien viy AP,y vi(X1s -5 Xn)
= [ w0
= / v(x)dp(x)

= / Poaxy viy APEw) vi(X1s .-, Xn)

= PlaEwy) vi (3.3)

as ¢ — oo by a transfer theorem, Proposition 4.1 in Becker-Kern et al. (2003), along with the fact
that p1,(x9) = v(x) as ¢ > oo whenever X9 — x € R”, which was established during the proof of
Theorem 4.2 in Becker-Kern et al. (2003). [

Remark 3.2. If the random particle jumps (Y;) are one dimensional with a finite variance, then
A(?) is a scalar Brownian motion, and the CTRW limit A(E(z)) in (3.4) is a Laplace process,
meaning that A(E(¢)) has a Laplace or double-sided exponential distribution with mean zero and
variance ot for every ¢ >0, where ¢? is the variance of A(1). This is due to the well known fact that
an exponential scale mixture of a normal law has a Laplace distribution, see for example
Proposition 2.2.1 in Kotz et al. (2001). In the special case L(¢) = (log ¢)” we can reparameterize as
in Example 2.4 to get

(B(c")S(N )}y SS{AE )5, as ¢ — oo, (3.6)
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where the limit process A(E(s)) is Laplace distributed with mean zero and variance ¢(log s)” for
each s> 0. The limiting process A(E(s)) is related to a model for ultraslow diffusion (Chechkin et
al., 2002, 2003) in which a diffusing cloud of particles spreads at a logarithmic rate. In ultraslow
diffusion, the probability density of particle location solves a diffusion equation

1 2
/0 <d> h(x, p(p) df = a 72 %) (3.7)

in which the usual first order time derivative is replaced by a fractional derivative of order f,
spread over the interval 0 < f <1 according to the probability density p(f), a so-called distributed
order fractional derivative (Caputo, 2001). Here (d/ d#)’h(x, 1) is the Caputo fractional derivative,
with Laplace transform s*h(x,s) — s~ 'h(x,0), where the Laplace transform A(x,s) =
fo e *"h(x, 1)dt, see for example Caputo (1967). In Chechkin et al. (2003) a Tauberian theorem
is used to show that the solution to (3.7) is asymptotic to the Laplace density of A(E(s)) as s — oo.
That paper also connects the solution of (3.7) to a certain kind of CTRW scaling limit with slowly
varying waiting times, but we have not been able to verify that the two limits are actually equal. If
(Y;) are random vectors with a finite covariance matrix then A(¢) is a vector Brownian motion and
A(E(?)) is a multivariable Laplace process. Reparameterizing as before gives a vector analogue to
the ultraslow diffusion process in Chechkin et al. (2002, 2003), which is apparently new. Note that
whether or not we reparameterize, Theorem 3.1 implies that particles following a CTRW with
slowly varying waiting times spread very slowly. In Eq. (3.4) this is seen by noting that the time
scale on the left is very fast, so that it takes a very long time (inverse of a slowly varying function)
for the plume to evolve.

Remark 3.3. Since A(t) is a Lévy process independent of the subordinator E(r), the increment
A(E(ty)) — A(E(t))) = A(E(tz) E(t1)) and then Proposition 2.3 can be used to determine the
increments of this CTRW scaling limit. If 4(z) is a (multivariable) Brownian motion then the
increments of A(E(f)) have a defective (multivariable) Laplace distribution with P{A(E(t;)) —
A(E(t)) = 0} = t;/t, for 0<t; <t5. In terms of the ultraslow diffusion process 4(E(s)) with E(s)
from Example 2.4, this means that particles rest for random periods of time, and (log s>/ log s51)”
is the probability that the particle has not moved between times s; and s,. Unlike the case of
waiting times with power law probability tails considered in Becker-Kern et al. (2003, 2004) and
Meerschaert and Scheffler (2004), when the waiting times have slowly varying tails, the scaling
limit process retains the resting periods implicit in the CTRW model.
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