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Abstract

Continuous time random walks incorporate a random waiting time between random jumps. They are
used in physics to model particle motion. When the time between particle jumps has a slowly varying
probability tail, the resulting plume disperses at a slowly varying rate. The limiting stochastic process is
useful for modeling ultraslow diffusion in physics.
r 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Continuous time walks, in which the waiting time between jumps is random, are a useful model
for particle motion in physics (Metzler and Klafter, 2000; Montroll and Weiss, 1965; Scher and
Lax, 1973). An interesting and previously unexplored case is where the waiting times between
particle jumps have slowly varying probability tails. In this case, none of the moments of the
see front matter r 2004 Elsevier B.V. All rights reserved.
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waiting times exist, so the usual arguments based on stable domains of attraction (Becker-Kern
et al., 2004, 2003; Meerschaert and Scheffler, 2004) do not apply. Instead we find that the time
process (sums of IID waiting times) converges to an extremal process, since the largest summand
dominates. If the simple random walk of particle jumps converges to some Lévy process AðtÞ; then
the continuous time random walk will be shown to converge to a subordinated process AðEðtÞÞ
where EðtÞ is the inverse or hitting time process of the extremal process. The continuous time
random walk limit process AðEðtÞÞ is useful in physics as a model for ultraslow diffusion
(Chechkin et al., 2002, 2003), where a dispersing plume of particles spreads at a slowly varying
rate. In the case of finite variance particle jumps, this limit process has a Laplace distribution at
every time, with increments that are all defective Laplace distributed.
Let J1; J2; . . . be nonnegative independent and identically distributed (i.i.d.) random variables

that model the waiting times between jumps of a particle. We set Tð0Þ ¼ 0 and TðnÞ ¼
Pn

j¼1 Jj; the
time of the nth jump. The particle jumps are given by i.i.d. random vectors Y 1;Y 2; . . . on Rd which
are assumed independent of ðJiÞ: Let S0 ¼ 0 and Sn ¼

Pn
i¼1 Y i; the position of the particle after

the nth jump. For tX0 let

Nt ¼ maxfnX0 : TðnÞptg (1.1)

the number of jumps up to time t and define

X ðtÞ ¼ SNt
¼

XNt

i¼1

Y i (1.2)

the position of a particle at time t. The stochastic process fX ðtÞgtX0 is called a continuous time

random walk (CTRW). In Section 2, we will establish the limiting behavior of the waiting time
process Nt; and then in Section 3, we will apply a transfer theorem from Becker-Kern et al. (2003)
to prove a limit theorem for the CTRW process X ðtÞ: The limiting process represents the behavior
of a random particle in the long-time limit.
2. Waiting time process

Let LðtÞ40 be a strictly increasing continuous function of tXt0 with Lðt0Þ ¼ 1: Assume L is
slowly varying, so that LðltÞ=LðtÞ ! 1 as t ! 1 for all l40; and suppose that PfJi4tg ¼ 1=LðtÞ:
For tX0 let TðtÞ ¼

P½t	
j¼1 Jj: Then Theorem 2.1 in Kasahara (1986) (see also Watanabe (1980))

implies that

fc
1LðTðctÞÞgtX0)
f :d:

fDðtÞgtX0 as c ! 1; (2.1)

where )
f :d:

denotes convergence in distribution of all finite dimensional marginal distributions, and
the extremal process fDðtÞg has finite dimensional distributions given for any 0pt1o � � �otm and
0px1o � � �oxm by

PfDðt1Þpx1; . . . ;DðtnÞpxng ¼ e
t1=x1e
ðt2
t1Þ=x2 � � � e
ðtn
tn
1Þ=xn : (2.2)

The inverse or hitting time process of the extremal process DðtÞ is defined by

EðtÞ ¼ inffx : DðxÞ4tg: (2.3)
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Since DðtÞ has strictly increasing sample paths (this follows from the representation of DðtÞ in
Eq. (2.1) of Kasahara (1986)) we have for any 0pt1o � � �otm and x1; . . . ;xmX0 that

fEðtiÞpxi for i ¼ 1; . . . ;mg ¼ fDðxiÞXti for i ¼ 1; . . . ;mg: (2.4)

Then it follows from (2.2) that for any t40 and xX0 we have

PfEðtÞpxg ¼ PfDðxÞXtg ¼ 1
 PfDðxÞotg ¼ 1
 e
x=t

so that EðtÞ has an exponential distribution with mean t. Note that by (2.2) for any c40 we have
PfDðctiÞpcxi 8ig ¼ PfDðtiÞpxi 8ig so that

PfDðctiÞpxi 8ig ¼ PfDðctiÞpcc
1xi 8ig

¼ PfDðtiÞpc
1xi 8ig

¼ PfcDðtiÞpxi 8ig ð2:5Þ

and hence DðtÞ is self-similar with index H ¼ 1: This means that fDðtÞgtX0 is continuous in law
with fDðctÞgtX0 ¼

d
fcHDðtÞgtX0 for all c40; where ¼

d
indicates equality of all finite dimensional

distributions, see for example Embrechts and Maejima (2002) and Meerschaert and Scheffler
(2001). Then we also have

PfEðctiÞpxi 8ig ¼ PfDðxiÞXcti 8ig

¼ Pfc
1DðxiÞXti 8ig

¼ PfDðc
1xiÞXti 8ig

¼ PfEðtiÞpc
1xi 8ig

¼ PfcEðtiÞpxi 8ig ð2:6Þ

so that EðtÞ is self-similar with the same index H ¼ 1:

Theorem 2.1. Under the assumptions at the beginning of this section, letting L
1 denote the inverse
function, we have

fc
1NL
1ðctÞgtX0)
f :d:

fEðtÞgtX0 as c ! 1: (2.7)
Proof. Fix 0pt1o � � �otm and x1; . . . ; xmX0 and note that fNtXxg ¼ fTðdxeÞptg where dxe is
the smallest integer greater than or equal to x. Then using (2.1) as c ! 1

Pfc
1NL
1ðctiÞ
oxi 8ig ¼ PfNL
1ðctiÞ

ocxi 8ig

¼ PfTðdcxieÞ4L
1ðctiÞ 8ig

¼ Pfc
1LðTðdcxieÞÞ4c
1LðL
1ðctiÞÞ 8ig
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! PfDðxiÞ4ti 8ig

¼ PfDðxiÞXti 8ig

¼ PfEðtiÞpxi 8ig

¼ PfEðtiÞoxi 8ig ð2:8Þ

since by (2.2) and (2.4) both EðtÞ and DðxÞ have a density. &

See Dwass (1964) for more information on the structure of the extremal process DðtÞ in (2.1).
The inverse extremal process EðtÞ also has some interesting structure that we will now investigate.
Recall that EðtÞ has an exponential distribution with mean t for every t40: Assume 0px1px2

and 0ot1ot2: Then

PfEðt1Þpx1;Eðt2Þpx2g ¼ PfDðx1ÞXt1;Dðx2ÞXt2g

¼ 1
 PfDðx1Þot1 or Dðx2Þot2g

¼ 1
 PfDðx1Þot1g þ PfDðx2Þot2g 
 PfDðx1Þot1;Dðx2Þot2gð Þ

¼ 1
 e
x1=t1 
 e
x2=t2 þ e
x1=t1e
ðx2
x1Þ=t2 : ð2:9Þ

Now take U1 exponential with rate l1 ¼ 1=t1 
 1=t2; U2 exponential with rate l2 ¼ 1=t2 and
independent of U1; and let U ¼ minðU1;U2Þ so that U is exponential with rate l1 þ l2 ¼ 1=t1:

Proposition 2.2. ðEðt1Þ;Eðt2ÞÞ¼
d
ðU ;U2Þ:

Proof. Assume 0px1px2 and let A ¼ fUpx1g and B ¼ fU2px2g: Then

PfUpx1;U2px2g ¼ PðA \ BÞ

¼ PðAÞ þ PðBÞ 
 PðA [ BÞ

¼ PðAÞ þ PðBÞ 
 1þ PðAc \ BcÞ;

where PðAÞ ¼ 1
 e
x1=t1 ; PðBÞ ¼ 1
 e
x2=t2 ; and

PðAc \ BcÞ ¼ PðU4x1;U24x2Þ

¼ PðU14x1;U24x1;U24x2Þ

¼ e
l1 x1e
l2 x2

¼ e
x1=t1e
ðx2
x1Þ=t2

and then it follows that

PfUpx1;U2px2g ¼ 1
 e
x1=t1 
 e
x2=t2 þ e
x1=t1e
ðx2
x1Þ=t2

and comparing with (2.9) completes the proof. &

Proposition 2.3. For 0ot1ot2 the increment Eðt2Þ 
 Eðt1Þ has a defective exponential distribution

with PfEðt2Þ 
 Eðt1Þ4xg ¼ ð1
 t1=t2Þe

x=t2 and PfEðt2Þ 
 Eðt1Þ ¼ 0g ¼ t1=t2:

Proof. Using Proposition 2.2 we have PfEðt2Þ 
 Eðt1Þ ¼ 0g ¼ PfU2oU1g ¼ l2=ðl1 þ l2Þ ¼ t1=t2:
Also PfEðt2Þ 
 Eðt1Þ4xg ¼ PfU2 
 U4xg and since U ¼ minðU1;U2Þ this equals
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PfU2 
 U14x;U24U1g ¼ e
x=t2 � l1=ðl1 þ l2Þ which finishes the proof since l1=ðl1 þ l2Þ ¼
ð1
 t1=t2Þ: &

Example 2.4. Take r40 and let LðtÞ ¼ ðlog tÞr for tXt0 ¼ e: Then L
1ðtÞ ¼ expðt1=rÞ and in this
case, we can write (2.7) in the form

fc
rNscgsX1 )
f :d:

f ~EðsÞgsX1 as c ! 1; (2.10)

where ~EðsÞ ¼ EðLðsÞÞ: Note that ~EðsÞ has an exponential distribution with mean LðsÞ ¼ ðlog sÞr:
To see this, let t ¼ LðsÞ so that t1=r ¼ log s and L
1ðctÞ ¼ sc1=r and hence (2.7) becomes

fc
1N
sc1=r gsX1)

f :d:
f ~EðsÞgsX1 as c ! 1:

The substitute cr for c to get (2.10).
3. CTRW limit theorem

Assume that ðY iÞ are i.i.d. R
d-valued random variables independent of ðJiÞ and assume that Y 1

belongs to the strict generalized domain of attraction of some full operator stable law n; where full
means that n is not supported on any proper hyperplane of Rd; and strictly operator stable means
that there exists a linear operator E on Rd such that nt ¼ tEn for all t40; where nt denotes the t-
fold convolution power of the infinitely divisible law n; and tEnðdxÞ ¼ nðt
E dxÞ is the image
measure of n under the linear operator tE ¼ expðE log tÞ: By Theorem 8.1.5 of Meerschaert and
Scheffler (2001) there exists a function B 2 RVð
EÞ (that is, BðcÞ is invertible for all c40 and
BðlcÞBðcÞ
1

! l
E as c ! 1 for any l40) such that

BðnÞ
Xn

i¼1

Y i ) A as n ! 1; (3.1)

where A has distribution n: Note that by Theorem 7.2.1 of Meerschaert and Scheffler (2001) the
real parts of the eigenvalues of E are greater than or equal to 1=2:
Moreover, if we define the stochastic process fSðtÞgtX0 by SðtÞ ¼

P½t	
i¼1 Y i it follows from

Example 11.2.18 in Meerschaert and Scheffler (2001) that

fBðcÞSðctÞgtX0)
f :d:

fAðtÞgtX0 as c ! 1; (3.2)

where AðtÞ has stationary independent increments with Að0Þ ¼ 0 almost surely and PAðtÞ ¼ nt ¼

tEn for all t40; PX denoting the distribution of X. Then AðtÞ is continuous in law, and it follows
that

fAðctÞgtX0 ¼
f :d:

fcEAðtÞgtX0 (3.3)

so, by Definition 11.1.2 of Meerschaert and Scheffler (2001), AðtÞ is operator selfsimilar with
exponent E. The stochastic process AðtÞ is called an operator Lévy motion. If the exponent E ¼ aI

a constant multiple of the identity, then n is a stable law with index a ¼ 1=a; and AðtÞ is a classical
d-dimensional Lévy motion. In the special case a ¼ 1=2 the process AðtÞ is a d-dimensional
Brownian motion.
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Theorem 3.1. Let X ðtÞ be the continuous time random walk defined in (1.2). Under the assumptions

on ðY iÞ described at the beginning of this section and the assumptions on ðJiÞ described at the
beginning of Section 2 we have

fBðcÞX ðL
1ðctÞÞgtX0 )
f :d:

fAðEðtÞÞgtX0 as c ! 1: (3.4)

Proof. The proof is similar to Theorem 4.2 in Becker-Kern et al. (2003). Fix any 0ot1o � � �otm:
Let rc be the distribution of ðc
1NL
1ðctiÞ

: 1pipmÞ and let r be the distribution of ðEðtiÞ :
1pipmÞ: Then rc; r are probability measures on Rm and it follows from Theorem 2.1 that rc ) r
as c ! 1: Furthermore, for x ¼ ðx1; . . . ; xmÞ 2 Rm

þ let

mcðxÞ ¼ PðBðcÞSðcxiÞ:1pipmÞ;

nðxÞ ¼ PðAðxiÞ:1pipmÞ:

Then mcðxÞ; nðxÞ are probability measures on ðRdÞ
m and since fAðtÞgtX0 as a Lévy process is

stochastically continuous the mapping x7!nðxÞ is weakly continuous. Then in view of the
independence of ðJiÞ and ðY iÞ we obtain

PðBðcÞX ðL
1ðctiÞÞ 8iÞ ¼ PðBðcÞSðN
L
1ðcti Þ

Þ 8iÞ

¼ PðBðcÞSðc c
1N
L
1ðcti Þ

Þ 8iÞ

¼

Z
PðBðcÞSðcxiÞ 8iÞ dPðc
1N

L
1ðcti Þ
8iÞðx1; . . . ;xnÞ

¼

Z
mcðxÞdrcðxÞ

)

Z
nðxÞdrðxÞ

¼

Z
PðAðxiÞ 8iÞ dPðEðtiÞ 8iÞðx1; . . . ;xnÞ

¼ PðAðEðtiÞÞ 8iÞ ð3:5Þ

as c ! 1 by a transfer theorem, Proposition 4.1 in Becker-Kern et al. (2003), along with the fact
that mcðx

ðcÞÞ ) nðxÞ as c ! 1 whenever xðcÞ ! x 2 Rm
þ; which was established during the proof of

Theorem 4.2 in Becker-Kern et al. (2003). &

Remark 3.2. If the random particle jumps ðY iÞ are one dimensional with a finite variance, then
AðtÞ is a scalar Brownian motion, and the CTRW limit AðEðtÞÞ in (3.4) is a Laplace process,
meaning that AðEðtÞÞ has a Laplace or double-sided exponential distribution with mean zero and
variance s2t for every t40; where s2 is the variance of Að1Þ: This is due to the well known fact that
an exponential scale mixture of a normal law has a Laplace distribution, see for example
Proposition 2.2.1 in Kotz et al. (2001). In the special case LðtÞ ¼ ðlog tÞr we can reparameterize as
in Example 2.4 to get

fBðcrÞSðNscÞgsX1 )
f :d:

fAð ~EðsÞÞgsX1 as c ! 1; (3.6)
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where the limit process Að ~EðsÞÞ is Laplace distributed with mean zero and variance s2ðlog sÞr for
each s40: The limiting process Að ~EðsÞÞ is related to a model for ultraslow diffusion (Chechkin et
al., 2002, 2003) in which a diffusing cloud of particles spreads at a logarithmic rate. In ultraslow
diffusion, the probability density of particle location solves a diffusion equation

Z 1

0

d

dt

� �b

hðx; tÞpðbÞdb ¼
@2

@x2
hðx; tÞ (3.7)

in which the usual first order time derivative is replaced by a fractional derivative of order b;
spread over the interval 0obo1 according to the probability density pðbÞ; a so-called distributed
order fractional derivative (Caputo, 2001). Here ðd=dtÞbhðx; tÞ is the Caputo fractional derivative,
with Laplace transform sb ~hðx; sÞ 
 sb
1hðx; 0Þ; where the Laplace transform ~hðx; sÞ ¼R1

0 e
sthðx; tÞdt; see for example Caputo (1967). In Chechkin et al. (2003) a Tauberian theorem
is used to show that the solution to (3.7) is asymptotic to the Laplace density of Að ~EðsÞÞ as s ! 1:
That paper also connects the solution of (3.7) to a certain kind of CTRW scaling limit with slowly
varying waiting times, but we have not been able to verify that the two limits are actually equal. If
ðY iÞ are random vectors with a finite covariance matrix then AðtÞ is a vector Brownian motion and
AðEðtÞÞ is a multivariable Laplace process. Reparameterizing as before gives a vector analogue to
the ultraslow diffusion process in Chechkin et al. (2002, 2003), which is apparently new. Note that
whether or not we reparameterize, Theorem 3.1 implies that particles following a CTRW with
slowly varying waiting times spread very slowly. In Eq. (3.4) this is seen by noting that the time
scale on the left is very fast, so that it takes a very long time (inverse of a slowly varying function)
for the plume to evolve.

Remark 3.3. Since AðtÞ is a Lévy process independent of the subordinator EðtÞ; the increment
AðEðt2ÞÞ 
 AðEðt1ÞÞ¼

d
AðEðt2Þ 
 Eðt1ÞÞ and then Proposition 2.3 can be used to determine the

increments of this CTRW scaling limit. If AðtÞ is a (multivariable) Brownian motion then the
increments of AðEðtÞÞ have a defective (multivariable) Laplace distribution with PfAðEðt2ÞÞ 


AðEðt1ÞÞ ¼ 0g ¼ t1=t2 for 0ot1ot2: In terms of the ultraslow diffusion process Að ~EðsÞÞ with ~EðsÞ
from Example 2.4, this means that particles rest for random periods of time, and ðlog s2= log s1Þ

r

is the probability that the particle has not moved between times s1 and s2: Unlike the case of
waiting times with power law probability tails considered in Becker-Kern et al. (2003, 2004) and
Meerschaert and Scheffler (2004), when the waiting times have slowly varying tails, the scaling
limit process retains the resting periods implicit in the CTRW model.
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