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1. Introduction

Kolmogorov [1,2] proposed a model for the energy spectrum of turbulence in the inertial
range, predicting that the spectrum f(k) would follow a power law f(k) ∝ k−5/3 where k is
the frequency. Kolmogorov based this prediction on a dimensional analysis, and confirmed
it with experimental data [3]. Mandelbrot and Van Ness [4] pointed out the Kolmogorov
spectrum corresponds to a stochastic process they termed fractional Brownian motion,
defined as the fractional integral of a Brownian motion. The fractional Brownian motion
with Hurst scaling index H = 1/3 exhibits the Kolmogorov spectrum, and hence provides
a stochastic process model for turbulence in the inertial range.

Figure 1 illustrates the complete Kolmogorov spectral model for turbulence, and the
power law approximation in the inertial range. Large eddies are produced in the low
frequency range. In the inertial range, larger eddies are continuously broken down into
smaller eddies, until they eventually dissipate, in the high frequency range. The inertial
range prediction has been verified by a number of earlier studies based on data collected
in the oceans [5], lakes [6] and the atmospheric boundary layer [7]. For more details, see
for example [8, 9].

In applications, one usually collects data on turbulence at regular time intervals. These
time series can be modeled as a fractional Brownian motion sampled at discrete time
points, or more directly as a time series. A time series model called ARFIMA, whose
fractional difference is a Gaussian white noise sequence of uncorrelated random variables,
is the discrete time analogue of a fractional Brownian motion. Hence it can serve as a useful
discrete time stochastic model for turbulent velocity data, that captures the Kolmogorov
scaling in the inertial frequency range.

In this paper, we describe and validate a new time series model for turbulence, called
the ARTFIMA, that can fit turbulent velocity data over the entire frequency range. The
ARTFIMA power spectrum behaves like a negative power law of frequency for moderate
frequencies, but remains bounded as the frequency tends to zero. The new model is based
on tempered fractional calculus, which is more flexible than the fractional calculus used
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Figure 1. Kolmogorow spectral density (solid line) and power law approximation
in the inertial range (dotted line).

to define a fractional Brownian motion or an ARFIMA time series. The new model is then
carefully validated using data on turbulent water velocities in the Great Lakes region. It is
demonstrated that the model effectively captures both the correlation properties and the
underlying probability distribution of these data. Hence it provides the ability to simulate
realistic turbulence time series of any length.

2. Tempered fractional calculus

Fractional derivatives were invented by Leibnitz, soon after their more familiar integer-
order analogues, but did not become popular in applications until the last few decades.
They are now important in virtually every area of science and engineering. The sim-
plest description of a fractional derivative uses the Fourier transform. If f(x) is a func-
tion with Fourier transform F (k) =

∫
e−ikxf(x)dx, then the (Riemann–Liouville) frac-

tional derivative Dαf(x) is the function with Fourier transform (ik)αF (k), extending the
familiar integer-order formula [10–12]. Recently, researchers have begun exploring the
tempered fractional derivative Dα,λf(x), defined as the function with Fourier transform
(λ + ik)αF (k), along with its inverse, the tempered fractional integral Iα,λf(x), whose
Fourier transform is (λ + ik)−αF (k) [13–16]. Because of tempering, the Fourier symbol
(λ+ik)−α does not blow up at the origin, making the tempered fractional calculus simpler
and more well-behaved from an abstract mathematical point of view.

Remark. The tempered fractional derivative has also been applied in poroelasticity,
where it is called the ‘shifted fractional derivative’ [17]. It should not be confused with
the material derivative (substantial derivative) [18–20] where λ represents the Laplace
transform variable, corresponding to a first derivative in time.

doi:10.1088/1742-5468/2014/09/P09023 3

http://dx.doi.org/10.1088/1742-5468/2014/09/P09023


J. S
tat. M

ech. (2014) P
09023

Tempered fractional model for geophysical turbulence

Tempered fractional derivatives are the limits of tempered fractional difference
quotients. We define the tempered fractional difference operator

Δα,λ
h f(x) =

∞∑
j=0

wje−λjhf(x− jh) with wj := (−1)j α
j

=
(−1)jΓ(1 + α)
j!Γ(1 + α− j)

(1)

for α > 0 and λ > 0, where Γ(·) is the Euler gamma function. Then we have

Dα,λf(x) = lim
h→0

h−αΔα,λ
h f(x)

whenever f and its derivatives up to order n > 1+α exist and are absolutely integrable [21,
Theorem 5.1]. If λ = 0 and α is a positive integer, then equation (1) reduces to the usual
definition of the derivative as the limit of a difference quotient.

The fractional difference operator (1) can also be useful in time series analysis. The
ARMA(p, q) model, which combines an autoregression of order p with a moving average
of order q, is defined by

Xt −
p∑

j=1

φjXt−j = Zt +
q∑

i=1

θiZt−i (2)

where {Zt} is an i.i.d. sequence of uncorrelated random variables (white noise). We say
that Xt follows an ARTFIMA(p,α,λ, q) model if

Yt := Δα,λ
1 Xt =

∞∑
j=0

wje−λjXt−j

follows an ARMA(p, q) model. Then we also have Xt = Δ−α,λ
1 Yt, a tempered fractionally

integrated ARMA(p, q) model. The fractional integration operator Δ−α,λ
1 , the inverse of

Δα,λ
1 , is also defined by (1).

The spectral density

fX(k) =
+∞∑

j=−∞
eikhγ(h)

of a stationary time series Xt with mean zero is the discrete Fourier transform of its
covariance function γ(h) = E[XtXt+h]. For a white noise sequence Zt of i.i.d. random
variables with mean E[Zt] = 0 and variance E[Z2

t ] = σ2, the spectral density fZ(k) =
σ2/(2π) is a constant. Using the backward shift operator BXt = Xt−1, one can write the
time series Xt =

∑
j ψjZt−j in the form Xt = Ψ(B)Zt where Ψ(z) =

∑
j ψjz

j. Then the
general theory of linear filters implies thatXt has spectral density fX(k) = |Ψ(e−ik)|2fZ(k)
using the complex absolute value (e.g. see [22]). For example, the ARMA(p, q) model
Φ(B)Xt = Θ(B)Zt with Φ(z) = 1 − φ1z − · · · − φpz

p and Θ(z) = 1 + θ1z + · · · θqz
q can

be written in the form Xt = Ψ(B)Zt, where Ψ(z) = Θ(z)/Φ(z), and hence its spectral
density is

fX(k) =
|Θ(e−ik)|2
|Φ(e−ik)|2 fZ(k).

Since the tempered fractional difference operator

Δα,λ
1 =

∞∑
j=0

(−1)j αj e−λjBj = (1 − e−λB)α
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in operator notation, a similar argument shows that the spectral density of an
ARTFIMA(p,α,λ, q) time series is given by

fX(k) = σ2 |Θ(e−ik)|2
|Φ(e−ik)|2

∣∣1 − e−(λ+ik)
∣∣−2α

. (3)

Remark 2.1. Peiris [23] has proposed a generalized autoregressive GAR(p) time series
model (1 − βB)αXt = Zt for applications in finance, where |β| < 1. Taking β = e−λ we
obtain the ARTFIMA(0,α,λ, 0) model. �

Kolmogorov [1] argued that the spectral density of turbulent velocity data in the
inertial range should be proportional to k−5/3 for moderate frequencies k. The simplest
time series model with this property is the ARFIMA(0,α, 0). Its spectral density, obtained
by taking λ = 0 in equation (3), is proportional to |1−e−ik|−2α ∼ |k|−2α as |k| → 0. Taking
α = 5/6, we obtain a time series model for turbulence that follows the Kolmogorov
spectrum in the inertial range. The more general ARTFIMA(0,α,λ, 0) model has spectral
density proportional to

∣∣e−(λ+ik) − 1
∣∣−2α ≈ (λ2+k2)−α when k,λ are sufficiently small. For

small values of the tempering parameter λ, the spectral density of an ARTFIMA(0,α,λ, 0)
time series grows like k−2α as |k| decreases, but remains bounded as |k| → 0, in agreement
with the general theory of turbulence illustrated in figure 1. In the next section, we will
fit both the ARFIMA(0,α, 0) and ARTFIMA(0,α,λ, 0) to turbulent velocity data, to
demonstrate the the more general ARTFIMA model is capable of capturing the spectrum
of turbulence over the entire range of frequencies.

3. Applications

We used geophysical flow datasets in our analysis including water velocity data from
Lakes Michigan and Huron and the Red Cedar River in Michigan. The Lake Huron water
data were collected during years 2009–2010 using a 300 kHz RD Instruments acoustic
Doppler current profiler (ADCP) at the mouth of the Saginaw Bay (GPS coordinates:
44.2699 N, 83.2609 W) where the depth is approximately 27 m [24]. Data used for analysis
in this paper are taken from a vertical bin located approximately 9 m above the lake
bottom. Velocity data associated with turbulent supercritical flow in the Red Cedar
River, a fourth-order stream in Michigan (Coordinates: 42.72908 N, 84.48228 W) were
collected at a sampling rate of 50 Hz using a 16 MHz Sontek Micro-ADV (Acoustic Doppler
Velocimeter) on May 26, 2014. Hydrodynamic data were collected in southern Lake
Michigan (coordinates: 41.71059 N, 87.20996 W) during summer 2008 using a 600 kHz RDI
Workhorse Monitor ADCP in 18.3 m depth using 1 m vertical bins and a sampling rate
of 1 Hz as described in [25]. Data from bins 9 and 6 are used here for spectral analysis.
Turbulent flow fields have been variously hypothesized as consisting of superimposed
waves, or coherent localized vortices or superimposed wave packets with intermittence
or pure noise. These datasets contain flow features over a range of spatial and temporal
scales associated with turbulent flows in the natural environment and are believed to be
appropriate for analysis of energy spectra.

We first consider the dataset for Saginaw Bay, Lake Huron, Michigan, USA (station
SB32 in [24]). Complex, unsteady turbulent flow patterns have been noted near the station
where data were collected [26]. The log-log plot of the spectrum (periodogram) for these
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Figure 2. Spectral density of water velocity data, along with fitted ARTFIMA
spectrum (thick line), and Kolmogorov spectrum with slope −5/3 (thin dashed
line). Since the data falls below the straight line at low frequencies, the
ARTFIMA model provides a better fit.

data in figure 2 shows a typical linear pattern, indicating a power law spectrum. In
this and other geophysical datasets whose spectra have been reported in the literature,
the behavior of the spectrum for low values of the frequency k is controlled by several
factors including the large-scale current patters and their evolution. Unlike laboratory-
scale flows, turbulence in geophysical flows evolves in the presence of a current that varies
over much larger scales than the energy-containing scales of turbulence. In addition, shear,
stratification and the proximity of boundaries are all known to influence the production
of turbulence and hence influence the behavior of the spectrum at low k values.

Consistent with the Kolmogorov theory of turbulence in the inertial range, we find a
good fit to a straight line (the thin dashed line in figure 2) with slope −5/3 for moderate
frequencies, i.e. the spectrum is proportional to k−5/3 where k is the frequency. The thick
line in figure 2 is the spectrum (3) of the best fitting ARTFIMA(0,α,λ, 0), with α = 5/6
and tempering parameter λ = 0.006. Since the data spectrum falls off from the straight
line on a log-log plot for low frequencies, the ARTFIMA spectral density provides a
better fit. In fact, the apparently straight line plotted in figure 2 is actually the power
spectrum (3) of the simpler ARTFIMA(0,α,λ, 0) process with α = 5/6 and λ = 0. The
deviation from a straight line is impossible to detect at these frequencies. Hence, while the
simpler ARFIMA model provides a reasonable approximation in the inertial range, the
ARTFIMA model based on tempered fractional calculus provides a suitable time series
model for turbulence in the inertial range, and also successfully captures the spectrum in
the low frequency (eddy production) range.

To further delineate the ARTFIMA model for this data, we examine the model
residuals. First we apply a tempered fractional difference with λ = 0.006 and α = 5/6
to the Saginaw Bay velocity data Xt. Then we compute the autocorrelations of the
filtered data Zt = Δα,λ

1 Xt, to verify that the correlation has been removed. The computed
autocorrelations are −0.19, 0.03, 0.10, and 0.02 at lags 1 through 4, and the remaining
autocorrelation values are all less than 0.05, indicating that the serial correlations has
been successfully removed. Since the differenced data Zt = Δα,λ

1 Xt is uncorrelated, it
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Figure 3. Filtered water velocity data, after applying a tempered fractional
difference with α = 5/6 and λ = 0.01, showing a good fit to a normal distribution.

Figure 4. Portion of the water velocity time series (left) and the same data after
applying a tempered fractional difference filter with α = 5/6 and λ = 0.01 (right).

follows that the original data Xt = Δ−α,λ
1 Zt fits the ARTFIMA(0,α,λ, 0) time series

model. Next we examine the distribution of the filtered data Zt. A histogram of the
filtered data is shown in figure 3. The best fitting normal distribution is also shown. Since
the data shows a very good fit to the normal density curve with sample mean −0.02 ≈ 0
and sample standard deviation σ = 1.90, it follows that the Saginaw Bay velocity data
can be accurately modeled as an ARTFIMA(0,α,λ, 0), with α = 5/6, λ = 0.006, with
Zt ∼ N (0,σ2).

The left panel in figure 4 shows a portion of the Saginaw Bay velocity data time series.
The overall pattern shows long excursions in the same direction (up or down), typical of
a stationary increment time series with strong serial autocorrelations. The right panel in
figure 4 shows a portion of the same data, after applying a tempered fractional difference
filter with α = 5/6 and λ = 0.006. The filtered data (residuals) resemble a Gaussian white
noise (uncorrelated) time series, consistent with the ARTFIMA model.

A number of additional data sets were analyzed using the ARTFIMA model. Figure 5
shows three examples. The top panel shows data from Lake Michigan, bin 6, and the
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Figure 5. Three additional examples, along with fitted ARTFIMA spectrum
(thick line), and Kolmogorov spectrum with slope −5/3 (thin dashed line). The
data were collected in Lake Michigan (bin 6, top panel; bin 9, middle panel) and
the Red Cedar River (bottom panel).

ARTFIMA spectrum with α = 5/6 and λ = 0.004. The middle panel shows data from
Lake Michigan, bin 9, and the ARTFIMA spectrum with α = 5/6 and λ = 0.0015. The
bottom panel shows data from the Red Cedar River, and the ARTFIMA spectrum with
α = 5/6 and λ = 0.015. In every case, the ARTFIMA model provides a significantly better
fit than the power law (straight line on these log-log plots) Kolmogorov spectral model.

doi:10.1088/1742-5468/2014/09/P09023 8

http://dx.doi.org/10.1088/1742-5468/2014/09/P09023


J. S
tat. M

ech. (2014) P
09023

Tempered fractional model for geophysical turbulence

4. Yaglom noise

Yaglom noise [27–29] is a stochastic model for turbulence in continuous time. In this
section, we show how the ARTFIMA(0,α,λ, 0) time series model can be viewed as a
discrete time version of Yaglom noise. Yaglom noise Y (t) is the tempered fractional
integral of a white noise. The tempered fractional integral introduced in section 2 can
be defined in real space by a convolution [15, definition 2.1]

Iα,λf(x) =
1

Γ(α)

∫ x

−∞
f(u)(x− u)α−1e−λ(x−u)du, (4)

and then a simple calculation, using the formula for the gamma function, shows that
Iα,λf(x) has the Fourier transform (λ+ ik)−αF (k) [15, Lemma 2.6]. Then we can define

Y (t) = Iα,λW (t) =
1

Γ(α)

∫ t

−∞
(t− x)α−1e−λ(t−x) W (x)dx (5)

for any α > 1/2 and λ > 0, where the white noise W (x) = B ′(x) is the (weak) derivative
of a Brownian motion on x ∈ R such that E[B(x)2] = σ2|x|, see [15, section 4.2]. The
stochastic process Y (t) is stationary and Gaussian with mean zero and finite variance

E[Y (t)2] =
σ2

Γ(α)2

∫ t

−∞
(t− x)2α−2e−2λ(t−x) dx =

σ2Γ(2α− 1)
Γ(α)2(2λ)2α−1 .

Next, we show that the ARTFIMA(0,α,λ, 0) process Xt = Δ−α,λ
1 Zt converges to a Yaglom

noise.
Theorem 4.1. Let α > 1/2 and λ > 0, and suppose that {Zt} is an iid sequence of Gaussian
random variables with mean zero and variance σ2 < ∞. Then

n
1
2−αΔ−α, λ

n
1 Zt ⇒ Y (t)

in distribution as n → ∞, where Y (t) is the Yaglom noise (5) with E[B(x)2] = σ2|x|.
The proof requires a few simple lemmas.

Lemma 4.2. Given α > 1/2 and λ > 0, define

Cλ
j =

1
Γ(α)

jα−1e−λj for j � 1, and Cλ
j = 0 otherwise. (6)

Then as n → ∞ as have

n1−2α

∞∑
j=0

∣∣∣C λ
n
j

∣∣∣2 → 1
Γ(α)2

∫ t

−∞

∣∣∣(t− x)α−1e−λ(t−x)
∣∣∣2 dx. (7)

Proof. For any t real, a change of variable j = [nt] −m in the sum yields

n1−2α

∞∑
j=0

∣∣∣C λ
n
j

∣∣∣2 = n1−2α

∞∑
j=0

∣∣∣ 1
Γ(α)

jα−1e− λ
n

j
∣∣∣2

=
n1−2α

Γ(α)2

[nt]∑
m=−∞

∣∣∣([nt] −m)α−1e− λ
n

([nt]−m)
∣∣∣2
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=
1

Γ(α)2

⎧⎨
⎩ 1
n

[nt]∑
m=−∞

∣∣∣∣∣
(

[nt]
n

− m

n

)α−1

exp
[
−λ

(
[nt]
n

− m

n

)]∣∣∣∣∣
2
⎫⎬
⎭

→ 1
Γ(α)2

∫ t

−∞

∣∣∣(t− x)α−1e−λ(t−x)
∣∣∣2 dx

as n → ∞ by the definition of the Riemann integral. �
Lemma 4.3. Given α > 1/2 and λ > 0, define

ωλ
j = (−1)j

( −α
j

)
e−λj forj � 0. (8)

Then as n → ∞ as have

n1−2α

∞∑
j=0

∣∣∣ω λ
n
j

∣∣∣2 → 1
Γ(α)2

∫ t

−∞

∣∣∣(t− x)α−1e−λ(t−x)
∣∣∣2 dx. (9)

Proof. It follows from Stirling’s approximation that

ω
λ
n
j = (−1)j

( −α
j

)
e− λ

n ∼ α

Γ(1 + α)
jα−1e− λ

n = C
λ
n
j as j → ∞,

where Cλ
j is from (6), see [11, p 24]. Hence for any ε > 0 there exists some positive integer

N such that

(1 − ε)C
λ
n
j < ω

λ
n
j < (1 + ε)C

λ
n
j (10)

for all j > N .
It follows that

lim
n→∞

n1−2α

∞∑
j=0

|ω
λ
n
j |2 � lim

n→∞
n1−2α

[ N∑
j=0

|ω
λ
n
j |2 + (1 + ε)2

∞∑
j=N+1

|C
λ
n
j |2

]
(11)

� lim
n→∞

n1−2α
[ N∑

j=0

|ω
λ
n
j |2 + (1 + ε)2

∞∑
j=0

|C
λ
n
j |2

]

� (1 + ε)2

Γ(α)2

∫ t

−∞

∣∣∣(t− x)α−1e−λ(t−x)
∣∣∣2 dx,

since limn→∞ n1−2α
∑N

j=0 |ω
λ
n
j |2 = 0. Similarly, n1−2α

∑N
j=0 |C

λ
n
j |2 → 0, so that

lim
n→∞

n1−2α

∞∑
j=0

|ω
λ
n
j |2 � lim

n→∞
n1−2α

[ N∑
j=0

|ω
λ
n
j |2 + (1 − ε)2

∞∑
j=N+1

|C
λ
n
j |2

]

= (1 − ε)2 lim
n→∞

n1−2α

∞∑
j=0

|C
λ
n
j |2

=
(1 − ε)2

Γ(α)2

∫ t

−∞

∣∣∣(t− x)α−1e−λ(t−x)
∣∣∣2 dx

by lemma 4.2. Since ε > 0 is arbitrary, (9) follows. �
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Proof of theorem 4.1. Compute the characteristic function of n
1
2−αΔ−α, λ

n
1 Zt and take the

limit as n → ∞ using lemma 4.3 to see that

lim
n→∞

E

[
exp{iθn

1
2−αΔ−α, λ

n
1 Zt}

]
= exp

{
− lim

n→∞
n1−2αθ2σ2

∞∑
j=0

∣∣∣ω λ
n
j

∣∣∣2
}

= exp
{

− θ2σ2

Γ(α)2

∫ t

−∞

∣∣∣(t− x)α−1e−λ(t−x)
∣∣∣2 dx

}
= E [exp{iθY (t)}] .

Since convergence of characteristic functions implies convergence in distribution, this
completes the proof. �

Theorem 4.1 shows that the ARTFIMA(0,α,λ, 0) time series is a discrete time version
of a Yaglom noise. Next we recall some properties of Yaglom noise, and compare to the
ARTFIMA model. To make the paper self-contained, we include some details, see also [30].
The stochastic integral I(f) =

∫
f(x)W (x)dx defines a Gaussian random variable such

that I(f)I(g) = σ2
∫
f(x)g(x)dx for any f , g ∈ L2(R) [31, chapter 3]. Hence Yaglom noise

has the covariance function

γ(h) = E [Y (t)Y (t+ h)]

=
σ2

Γ(α)2

∫ t

−∞
e−λ(t−x)(t− x)α−1e−λ(t+h−x)(t+ h− x)α−1 dx

=
σ2

Γ(α)2

∫ ∞

0
e−λ(y+h)(y + h)α−1e−λyyα−1 dy

=
σ2

Γ(α)2

∫ ∞

0
e−2λye−λ(h)(y + h)α−1yα−1 dy

=
σ2

Γ(α)
√
π

( h

2λ

)α− 1
2
K 1

2−α(λh).

using integral formula No. 8 on p. 344 of Gradshteyn and Ryzhik [32]. The spectral density
of Yaglom noise is the inverse Fourier transform of its covariance function:

fY (k) =
1
2π

∫ ∞

−∞
eikxγ(x) dx

=
σ2

Γ(α)
√
π(2λ)α− 1

2

∫ ∞

−∞
cos(kx)|x|α− 1

2K 1
2−α(λ|x|) dx

=
σ2

Γ(α)
√
π(2λ)α− 1

2

√
π(2λ)α− 1

2 Γ(α)(λ2 + k2)−α

= σ2(λ2 + k2)−α,

using formula [32, No 12, p 724] to evaluate the integral in the second line. As noted at
the end of section 2, the spectrum of an ARTFIMA(0,α,λ, 0) time series is proportional
to

∣∣e−(λ+ik) − 1
∣∣−2α ≈ (λ2 +k2)−α when k,λ are sufficiently small, connecting the spectral

behavior of the ARTFIMA model to Yaglom noise. Both follow the Kolmogorov model
f(k) ≈ k−5/3 for turbulence when α = 5/6.
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4.1. Tempered fractional Gaussian noise

Tempered fractional Gaussian noise (TFGN) is a stationary time series which can be
defined by Xt := Y (t) − Y (t − 1), where Y (t) is the Yaglom noise (5). Then it follows
immediately from the theory of linear filters that its spectral density is given by

f(k) =
σ2

2π

∣∣e−ik − 1
∣∣2 (λ2 + k2)−α (12)

for all real k, see also [33, section 4]. A Taylor expansion shows that
∣∣e−ik − 1

∣∣2 =
2 − 2 cos k ∼ k2 as k → 0. If the tempering parameter λ is sufficiently small, then
the spectral density grows like the divergent power law k2−2α as k decreases, and we can
take α = 11/6 to recover the Kolmogorov spectrum. Hence TFGN can provide another
alternative time series model for turbulence. However, the ARTFIMA model has the
advantage that the tempered fractional difference filter can be easily inverted, as we did
for figure 3, to obtain the model residuals. Furthermore, the TFGN spectrum tends to
zero as k → 0, whereas the ARTFIMA spectrum levels off. For applications to geophysics,
the ARTFIMA spectrum seems to provide a more suitable model, see figures 2 and 5.

References

[1] Kolmogorov A N 1940 Dokl. Akad. Nauk SSSR 26 115
[2] Friedlander S K and Topper L (ed) 1961 Turbulence: Classical Papers On Statistical Theory (New York:

Interscience)
[3] Shiryaev A N 1999 Kolmogorov and the Turbulence (University of Aarhus: Centre for Mathematical Physics

and Stochastics)
[4] Mandelbrot B and Van Ness J 1968 SIAM Rev. 10 422
[5] Grant H, Moilliet L A and Vogel W M 1968 J. Fluid Mech. 34 443
[6] Dillon T M and Powell T M J 1976 Geophys. Res. 81 6421
[7] Kaimal J C, Wyngaard J C, Izumi Y and Cote O R 1972 Q. J. R. Meteorol. Soc. 98 563
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