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Introduction

To define iterated Brownian motion Zt, due

to Burdzy (1993), started at z ∈ IR, let X+
t , X−

t

and Yt be three independent one-dimensional

Brownian motions, all started at 0. Two-

sided Brownian motion is defined to be

Xt =

 X+
t , t ≥ 0

X−
(−t), t < 0.

Then iterated Brownian motion started at z ∈
IR is

Zt = z +X(Yt), t ≥ 0.
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BM versus IBM: This process has many

properties analogous to those of Brownian mo-

tion; we list a few

(1) Zt has stationary (but not independent)

increments, and is a self-similar process of

index 1/4.

(2) Laws of the iterated logarithm (LIL)

holds: usual LIL by Burdzy (1993)

lim sup
t→∞

Z(t)

t1/4(log log(1/t))3/4
=

25/4

33/4
a.s.

Chung-type LIL by Khoshnevisan and Lewis

(1996) and Hu et al. (1995).

(3) Khoshnevisan and Lewis (1999) extended

results of Burdzy (1994), to develop a sto-

chastic calculus for iterated Brownian mo-

tion.
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(4) In 1998, Burdzy and Khosnevisan showed

that IBM can be used to model diffusion in a

crack.

(5) Local times of this process was studied by

Burdzy and Khosnevisan (1995), Csáki, Csörgö,

Földes, and Révész (1996), Shi and Yor (1997),

Xiao (1998), and Hu (1999).

(6) Bañuelos and DeBlassie (2006) studied the

distribution of exit place for iterated Brown-

ian motion in cones.
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PDE-connection:

In addition to the above properties there is an

interesting connection between iterated Brown-

ian motion and the biharmonic operator ∆2;

the function

u(t, x) = Ex[f(Zt)]

solves the Cauchy problem (Allouba and Zheng

(2001) and DeBlassie (2004))

∂

∂t
u(t, x) =

∆f(x)√
2πt

+
1

2
∆2u(t, x),

t > 0, x ∈ IRn

u(0, x) = f(x), x ∈ IRn.

Let τD(Z) be the first exit time of iterated

Brownian motion from a domain D, started at

z ∈ D. Then Pz[τD(Z) > t] provides a mea-

sure of the lifetime of iterated Brownian

motion in D.
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In light of the above PDE connection to bi-

harmonic operator, there is hope the function

u(t, x) = Px[τD(Z) > t] solves

∂

∂t
u(t, x) =

1

2
∆2u(t, x), t > 0, x ∈ D,

u(0, x) = 1, x ∈ D,
u(t, x) = 0, x ∈ ∂D.

But, DeBlassie (2004) established that the func-

tion

u(t, x) = Px[τ(0,1)(Z) > t]

does not satisfy

∂

∂t
u(t, x) = a

∂4

∂x4
u(t, x)

for any a > 0.

We follow another path to study the distri-

bution of the exit time of iterated Brownian

motion in domains in IRn.
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ITERATED PROCESSES IN UNBOUNDED

DOMAINS

Let D be a domain in IRn. Let

τD(Z) = inf{t ≥ 0 : Zt /∈ D}

be the first exit time of Zt from D. Write

τ±D(z) = inf{t ≥ 0 : X±
t + z /∈ D},

and if I ⊂ IR is an open interval, write

ηI = η(I) = inf{t ≥ 0 : Yt /∈ I}.
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By continuity of the paths of Zt = z + X(Yt)
(for f the pdf of τ±D(z))

Pz[τD(Z) > t]

= Pz[Zs ∈ D for all s ≤ t]

= P [z +X+(0 ∨ Ys) ∈ D and

z +X−(0 ∨ (−Ys)) ∈ D for all s ≤ t]

= P [τ+D (z) > 0 ∨ Ys and τ−D(z) > 0 ∨ (−Ys)
for all s ≤ t]

= P [−τ−D(z) < Ys < τ+D (z)for all s ≤ t]

= P [η(−τ−D(z), τ+D (z)) > t],

=
∫ ∞
0

∫ ∞
0

P0[η(−u,v) > t]f(u)f(v)dvdu.

Let τD be the first exit time of the Brownian
motion Xt from D. In the case of Brownian
motion in general cones, this has been done
by several people including Bañuelos and Smits
(1997), Burkholder (1977) and DeBlassie (1987):
for x ∈ D,

Px[τD > t] ∼ C(x)t−p(D), as t→∞.
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When D is a generalized cone, using the results

of Bañuelos and Smits, DeBlassie obtained;

Theorem. 1 (DeBlassie (2004)) For z ∈ D,

as t→∞,

Pz[τD(Z) > t] ≈


t−p(D), p(D) < 1
t−1 ln t, p(D) = 1

t−(p(D)+1)/2, p(D) > 1.

Here f ≈ g means that for some positive C1

and C2, C1 ≤ f/g ≤ C2.

For parabola-shaped domains the study of

exit time asymptotics for Brownian motion was

initiated by Bañuelos, DeBlassie and Smits.

Theorem. 2 (Bañuelos, et al. (2001)) Let

P = {(x, y) : x > 0, |y| <
√
x}.

Then for z ∈ P,

log Pz[τP > t] ≈ −t
1
3
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Subsequently, Lifshits and Shi found that the

above limit exists for parabola-shaped domains

Pα = {(x, Y ) ∈ IR× IRn−1 : x > 0, |Y | < Axα},
0 < α < 1 and A > 0 in any dimension;

Theorem. 3 (Lifshits and Shi (2002)) For z ∈
Pα,

lim
t→∞

t
−(1−α

1+α) logPz[τPα > t] = −l, (1)

where

l = (
1 + α

α
)

LΓ2(1−α
2α )

Γ2( 1
2α)

 α
(α+1)

. (2)

where

L =
π

2/α
(n−3)/2

A22(3α+1)/α((1− α)/α)(1−α)/α
.

Here (n−3)/2 denotes the smallest positive zero

of the Bessel function J(n−3)/2 and Γ is the

Gamma function.
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By integration by parts Pz[τD(Z) > t] equals to∫ ∞
0

∫ ∞
0

(
∂

∂u

∂

∂v
P0[η(−u,v) > t]

)
.P [τD(z) > u]P [τD(z) > v]dvdu.

Theorem. 4 Let 0 < α < 1, A > 0 and let

Pα = {(x, Y ) ∈ IR× IRn−1 : x > 0, |Y | < Axα}.

Then for z ∈ Pα,

lim
t→∞

t
−(1−α

3+α) logPz[τPα(Z) > t] = −Cα,

where for l as in the limit given by (2)

Cα = (
3 + α

2 + 2α
)(

1 + α

1− α
)(

1−α
3+α)π

(2−2α
3+α )

l
(2+2α

3+α )
.

In particular, for a planar iterated Brownian

motion in a parabola, the limit l = 3π2/8 in

equation (2). Then from Theorem 4 for z ∈ P,

lim
t→∞

t−
1
7 logPz[τP(Z) > t] = −

7π2

225/7
.
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ITERATED PROCESSES IN BOUNDED

DOMAINS

For many bounded domains D ⊂ IRn the as-

ymptotics of Pz[τD > t] is well-known. For

z ∈ D,

lim
t→∞

eλDtPz[τD > t] = ψ(z)
∫
D
ψ(y)dy, (3)

where λD is the first eigenvalue of 1
2∆ with

Dirichlet boundary conditions and ψ is its cor-

responding eigenfunction.

DeBlassie proved the following result for iter-

ated Brownian motion in bounded domains;

Theorem. 5 (DeBlassie (2004)) For z ∈ D,

lim
t→∞

t−1/3 logPz[τD(Z) > t] = −
3

2
π2/3λ

2/3
D .

(4)
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We have the following theorem which improves

the limit in (4).

Theorem. 6 Let D ⊂ IRn be a bounded do-

main for which (3) holds point-wise and let λD
and ψ be as above. Then for z ∈ D,

lim
t→∞

t−1/2 exp
(
3

2
π2/3λ

2/3
D t1/3

)
Pz[τD(Z) > t]

=
λD27/2
√

3π

(
ψ(z)

∫
D
ψ(y)dy

)2
.
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Ingredients of the proof of Theorem 6 It
turns out that the integral over the set A is
the dominant one: K > 0 and M > 0 define A
as

A =

(u, v) : K ≤ u ≤
1

2

√
t

M
, u ≤ v ≤

√
t

M
− u

 .
As t→∞, uniformly for x ∈ (0,1),

Px[η(0,1) > t] ∼
4

π
e−

π2t
2 sinπx.

We use Laplace transform method for in-
tegrals (de Bruijn (1958)). Let h and f be
continuous functions on IR. Suppose f is non-
positive and has a global max at x0, f

′(x0) = 0,
f ′′(x0) < 0 and h(x0) 6= 0 and∫ ∞

0
h(x) exp(λf(x)) <∞

for all λ > 0. Then as λ→∞,∫ ∞
0

h(x) exp(λf(x))dx

∼ h(x0) exp(λf(x0))

√
2π

λ|f ′′(x0)|
.
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Pz[τD(Z) > t]

=
∫ ∞
0

∫ ∞
0

P u
u+v

[η(0,1) >
t

(u+ v)2
]f(u)f(v)dvdu

≥ C1
∫ 1

2

√
t/M

K

∫ √t/M−u

u
sin

(
πu

(u+ v)

)

. exp(−
π2t

2(u+ v)2
) exp(−λD(u+ v))dvdu,

where C1 = C1(z) = 2(4/π)A(z)2(1−ε)3. Chang-
ing the variables x = u+ v, z = u the integral
is

= C1
∫ 1

2

√
t/M

K

∫ √t/M
2z

sin
(
πz

x

)
exp(−

π2t

2x2
)

. exp(−λDx)dxdz,

and reversing the order of integration

= C1
∫ √t/M
2K

∫ 1
2x

K
sin

(
πz

x

)
exp(−

π2t

2x2
)

. exp(−λDx)dzdx

= C1/π
∫ √t/M
2K

x cos
(
πK

x

)
exp(−

π2t

2x2
)

. exp(−λDx)dx
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By Laplace transform method, after making

the change of variables x = (atb−1)1/3u, for

a = π2/2, b = λD. As t→∞,∫ ∞
0

x cos
(
πK

x

)
exp(−

π2t

2x2
) exp(−λDx)dx

=
∫ ∞
0

(atb−1)1/3u cos

(
πK

(atb−1)1/3u

)

. exp
(
−a1/3b2/3t1/3(

1

u2
+ u)

)
(atb−1)1/3du

∼ 2
√
π

3
(
π2

2
)1/2λ−1

D t1/2 exp(−
3

2
π2/3λ

2/3
D t1/3).

Above x0 in the Laplace Transform method is

21/3.
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ISOPERIMETRIC-TYPE INEQUALITIES
Let D ⊂ IRn be a domain of finite volume,
and denote by D∗ the ball in IRn centered at the
origin with same volume as D. The class of
quantities related to the Dirichlet Lapla-
cian in D which are maximized or mini-
mized by the corresponding quantities for
D∗ are often called generalized isoperimetric-
type inequalities (C. Bandle (1980)).

Probabilistically generalized isoperimetric-type
inequalities read as

Pz[τD > t] ≤ P0[τD∗ > t] (5)

for all z ∈ D and all t > 0, where τD is the first
exit time of Brownian motion from the domain
D and Pz is the associated probability measure
when this process starts at z.

Theorem. 7 Let D ⊂ IRn be an open set of
finite volume. Then

Pz[τD(Z) > t] ≤ P0[τD∗(Z) > t] (6)

for all z ∈ D and all t > 0.
18



Proof of Theorem 7

The idea of the proof is to use integration
by parts and the corresponding generalized
isoperimetric-type inequalities for Brown-
ian motion. Let f∗ denote the probability
density of τD∗.

Gx(u, v, t) =
(
∂

∂x
P0[η(−u,v) > t]

)
.

By integration by parts Pz[τD(Z) > t] equals∫ ∞
0

∫ ∞
0

P0[η(−u,v) > t]f(u)f(v)dvdu.

=
∫ ∞
0

∫ ∞
0

Gv(u, v, t)P [τD(z) > v]f(u)dvdu

≤
∫ ∞
0

∫ ∞
0

Gv(u, v, t)P [τD∗(0) > v]f(u)dvdu

=
∫ ∞
0

∫ ∞
0

P0[η(−u,v) > t]f(u)f∗(v)dvdu

=
∫ ∞
0

∫ ∞
0

Gu(u, v, t)P [τD(z) > u]f∗(v)dudv

≤
∫ ∞
0

∫ ∞
0

Gu(u, v, t)P [τD∗(0) > u]f∗(v)dudv

= P0[τD∗(Z) > t]
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