Package ‘HMMASE’

February 4, 2014

Type Package

Title HMMASE R package

Version 1.0

Date 2014-02-04

Author Juan R. Steibel, Heng Wang, Ping-Shou Zhong

Maintainer Heng Wang <hengwang@msu.edu>

Description An R package that predicts cSNP genotypes from RNA sequence data in presence of allelic imbalance.

License GPL-2/GPL-3

Depends R.utils

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMMASE-package</td>
<td>1</td>
</tr>
<tr>
<td>HMM</td>
<td>2</td>
</tr>
<tr>
<td>HMMNASE</td>
<td>4</td>
</tr>
<tr>
<td>membership</td>
<td>6</td>
</tr>
<tr>
<td>membershipc</td>
<td>7</td>
</tr>
<tr>
<td>select_run</td>
<td>8</td>
</tr>
<tr>
<td>total</td>
<td>10</td>
</tr>
</tbody>
</table>

Description

An R package that predicts cSNP genotypes from RNA sequence data in presence of allelic imbalance.
Details

Package: HMMASE
Type: Package
Version: 1.0
Date: 2014-02-04
License: GPL-2 | GPL-3
Depends: R.utils

Author(s)

Juan P. Steibel, Heng Wang, Ping-Shou Zhong

Maintainer: Heng Wang <hengwang@msu.edu>

References

Examples

```r
library(HMMASE)
library(R.utils)
data(total)
mbs<-membership(total,1000,2)
reps=1
epsilon0<-0.0001
alpha10=3
beta010=3
alpha20=3
beta020=3
maxiter=20
estimate.alpha=TRUE
common.alpha=TRUE
dist.dep=FALSE
ASE=TRUE

result<-select_run(gpr=5, members=mbs, tcon=total, epsilon0=epsilon0, alpha10=alpha10, beta010=beta010, alpha20=alpha20, beta020=beta020, estimate.alpha=estimate.alpha, common.alpha=common.alpha, dist.dep=dist.dep, ASE=ASE)
```

HMM

```r
function HMM()
```

Description

The main function used to predict the genotype, ASE status and allelic specific ratio.
HMM

Usage

HMM(allecounts, dist, reps = 1, epsilon0 = 0.075, alpha10 = 2,
 beta010 = 2, alpha20 = 2, beta020 = 2, maxiter = 20, cnv = NULL,
 estimate.alpha = TRUE, common.alpha = FALSE, dist.dep = FALSE)

Arguments

allecounts An array of #SNP * 2 * #animal. Element [s, 1, a] is the allele count of the first
allele for s-th SNP of the a-th animal; and element [s, 2, a] is the allele count of
the second allele for s-th SNP of a-th animal a.
dist A vector of length #SNP-1 for the distances between two adjacent SNP markers.
reps Number of replications. Set reps=1 for real data set.
epsilon0 Error rate, a value between 0 and 1.
alpha10 Starting values for the first parameter, alpha, in beta distribution for ASE-Low
rate.
beta010 Starting values for the second parameter, beta, in beta distribution for ASE-Low
ratio.
alpha20 Starting values for the first parameter, alpha, in beta distribution for ASE-High
ratio.
beta020 Starting values for the second parameter, beta, in beta distribution for ASE-High
ratio.
maxiter Maximum number of iteration

Value

A list of 8.

allecounts The original input data.

GenoEsti 3 dimensional array with genotype prediction result [SNP, Animal, replicate].
For real data, #replicate=1, so the dimension is [#SNPs, #Animals, 1]. 1 represents homogeneous genotype carrying two alleles form the first allele, 2 represents heterozygous genotype with no ASE, 3 represents heterozygous genotype with first allele ASE, 4 represents heterozygous genotype with second allele ASE, 5 represents homogeneous genotype carrying two alleles form the second allele.

Parameters A vector of length 31 if dist.dep=TRUE. Estimation of parameter values after
convergence. These parameters includes epsilon, alpha1, beta1, alpha2, beta2, rho, and a 5 by 5 transition matrix in a vector form. It is of length 30 if dist.dep=FALSE with the parameter rho deleted.
Convergence Returns TRUE if convergence criterion is met. FALSE if convergence criterion is not met.
niter Number of iterations take.
ASEest The ASE ratio estimate for the ASE-High and ASE-Low SNPs.
PostdenH The posterior densities of ASE ratio evaluated at a list ASE ratios from 0.5 to 1, for the ASE-High SNPs.
PostdenL The posterior densities of ASE ratio evaluated at a list ASE ratios at from 0 to 0.5, for the ASE-Low SNPs.

Author(s)
J. Steibel, H. Wang, P.S. Zhong

References

Examples
library("HMMASE")
library(R.utils)
data(total)
mbs<-membership(total,1000,2)
idid<-5

allecounts1<-total[mbs[2]==iid,]
allecounts<-array(0, c(nrow(allecounts1), 2, 24))
for (ani in 1:24)
{
 allecounts[,ani]<-as.matrix(allecounts1[,c(3+ani*2, 4+ani*2)])
}
distance<-diff(allecounts1[,2])
reps<-1
epsilon0<-0.0001
alpha10=3
beta010=3
alpha20=3
beta020=3
maxiter=20
cnv=NULL
estimate.alpha=TRUE
common.alpha=TRUE
dist.dep=FALSE

result<-HMM(allecounts, dist=distance, reps=reps,
epsilon0=epsilon0, alpha10=alpha10, beta010=beta010, alpha20=alpha20,
beta020=beta020, common.alpha=common.alpha, dist.dep=dist.dep)
Description

The main function used to predict the genotype without considering allelic specific expression.

Usage

HMMNASE(allecounts, dist, reps = 1, epsilon0 = 0.075, maxiter = 20, cnv = NULL, dist.dep = FALSE)

Arguments

allecounts An array of #SNP * 2 * #animal. Element [s, 1, a] is the allele count of the first allele for s-th SNP of the a-th animal; and element [s, 2, a] is the allele count of the second allele for s-th SNP of a-th animal a.
dist A vector of length #SNP-1 for the distances between two adjacent SNP markers.
reps Number of replications. Set reps=1 for real data set.
epsilon0 Error rate, a value between 0 and 1.
maxiter Maximum number of iteration
cnv Convergence criterion. HMM function stops with convergence either the number of estimated genotype state is different with less than T*n*cnv from the last iteration or the log-likelihood does not change. If cnv=NULL (by default), then the default value cnv=0.01.
dist.dep TRUE or FALSE. The transition matrix depends on distances between adjacent SNPs if dist.dep==TRUE.

Value

A list of 5.

allecounts The original input data.
GenoEsti 3 dimension array with genotype prediction result [SNP, Animal, replicate]. For real data, #replicate=1, so the dimension is [#SNPs, #Animals, 1]. 1 represents homogeneous genotype carrying two alleles form the first allele, 2 represents heterozygous genotype with no ASE, 3 represents heterozygous genotype with first allele ASE, 4 represents heterozygous genotype with second allele ASE, 5 represents homogeneous genotype carrying two alleles form the second allele.

Parameters A vector of length 31 if dist.dep=TRUE. Estimation of parameter values after convergence. These parameters includes epsilon, alpha1, beta1, alpha2, beta2, rho, and a 5 by 5 transition matrix in a vector form. It is of length 30 if dist.dep=FALSE with the parameter rho deleted.

Convergence Returns TRUE if convergence criterion is met. FALSE if convergence criterion is not met.
niter Number of iterations take.
Authors
J. Steibel, H. Wang, P.S. Zhong

References

Examples
library("HMMASE")
library(R.utils)
data(total)
mb<-membership(total,1000,2)
idid<-5

allecounts1<-total[mbs[,2]==idid,]
allecounts<-array(0, c(nrow(allecounts1), 2, 24))
for (ani in 1:24)
{
 allecounts[,ani]<-as.matrix(allecounts1[,c(3+ani*2, 4+ani*2)])
}
distance<-diff(allecounts1[,2])
reps<-1
epsilon0<-0.0001
alpha10=3
beta010=3
alpha20=3
beta020=3
maxiter=20
cnv=NULL
estimate.alpha=TRUE
common.alpha=TRUE
dist.dep=FALSE

result<-HMMASE(allecounts, dist=dist, reps=reps, epsilon0=epsilon0, dist.dep=dist.dep)

membership

Description
membership() divides the total data set into several small pieces. Each piece contains at least one SNP with genotype from SNP chip data, which is considered as a "gold standard" in this our real data analysis. Only useful in the example data. For general use, see membershipc().

Usage
membership(alc, maxdist, min.snp)
The function is currently defined as

```r
function (alc, maxdist, minsnp)
{
  memb <- rep(0, nrow(alc))
  mdi <- maxdist
  ns <- c(NULL, NULL)
  psts <- alc[, 53]
  j <- 0
  for (i in psts) {
    j <- j + 1
    dst <- alc[, 2] - i
    repeat {
      selected <- abs(dst) < mdi
      if (sum(selected) >= minsnp) {
        break
      } else {
        mdi <- mdi + 1000
      }
    }
    ns <- rbind(ns, c(sum(selected), mdi))
    mdi <- maxdist
    memb[selected] <- j
  }
  return(list(ns, memb))
}
```

membershipc
membershipc function.

Description

membershipc() divides the total data set into several small pieces. Each piece contains at least one SNP with genotype from SNP chip data, which is considered as a "gold standard" in this our real data analysis. For general use.

Usage

```r
membershipc(alc, maxdist, minsnp)
```

Arguments

- **alc**: Input data set with the following format: a column with chromosome, position, reference allele, alternative allele and then 2 columns per sample: count for reference and alternative.
- **maxdist**: maximum distance to consider
- **minsnp**: minimum number of SNP in segment
Value
A list of 2.

comp1
a two column matrix with the first column recording the number of SNPs of each segment, and the second column recording the length of that segment.

comp2
a vector indicates the segmentational membership of each SNP.

Examples

```r
## The function is currently defined as
function (alc, maxdist, minsnp) {
  memb <- rep(0, nrow(alc))
  mdi <- maxdist
  ns <- c(NULL, NULL)
  psts <- alc[, 2]
  j <- 1
  i <- 1
  repeat {
    dst <- psts - psts[j]
    repeat {
      selected <- (abs(dst) < mdi) & (dst >= 0)
      toselect <- (dst >= mdi)
      if (sum(selected) >= minsnp) {
        break
      } else {
        mdi <- mdi + 1000
      }
    }
    if (sum(toselect) < minsnp) {
      selected <- (toselect | selected)
      toselect <- toselect & F
      mdi <- max(psts[selected]) - min(psts[selected])
    }
    ns <- rbind(ns, c(sum(selected),mdi))
    mdi <- maxdist
    memb[selected] <- i
    i <- i + 1
    j <- j + sum(selected)
    if (sum(toselect) == 0) {
      break
    }
  }
  return(list(ns, memb))
}
```

select_run function

Description
A function to run a particular SNP segment.
Usage

```r
select_run(gpr, members, tcon, epsilon0=0.0001, alpha10 = 3,
          beta010 = 3, alpha20 = 3, beta020 = 3, estimate.alpha = TRUE,
          common.alpha = TRUE, dist.dep = FALSE, ASE=TRUE)
```

Arguments

- **gpr**: Group index to run
- **members**: Membership information obtained from membershipc() or membership()
- **tcon**: Original data set in data(total)
- **epsilon0**: Error rate, a value between 0 and 1.
- **alpha10**: Starting values for the first parameter, alpha, in beta distribution for ASE-Low ratio.
- **beta010**: Starting values for the second parameter, beta, in beta distribution for ASE-Low ratio.
- **alpha20**: Starting values for the first parameter, alpha, in beta distribution for ASE-High ratio.
- **beta020**: Starting values for the second parameter, beta, in beta distribution for ASE-High ratio.
- **estimate.alpha**: TRUE or FALSE for whether or not estimating the alpha parameter in the beta distributions. By default estimate.alpha = TRUE.
- **common.alpha**: TRUE or FALSE. alpha1 is set to be the same as alpha2 if common.alpha=TRUE.
- **dist.dep**: TRUE or FALSE. If dist.dep = TRUE, the transition probability is modeled as a function of distances among adjacent SNPs. By default, dist.dep = FALSE.
- **ASE**: TRUE or FALSE. If ASE = TRUE, the algorithm takes allelic specific expression into consideration when genotyping. In this case, there are 5 possible genotype outcomes: two homozygous genotypes and three heterozygous genotypes (without ASE, with ASE with one reads more than the other, with ASE with one reads less than the other). If ASE = FALSE, the algorithm does not take allelic specific expression into consideration. In this case, there are 3 possible genotype outcomes: two homozygous genotypes and one heterozygous genotype. By default, dist.dep = TRUE.

Value

A list of 8 if ASE is TRUE; and a list of 5 if ASE is FALSE.

- **allecounts**: The original input data.
- **GenoEsti**: A 3 dimensional array with genotype prediction result [SNP, Animal, replicate]. For real data, #replicate=1, so the dimension is [#SNPs, #Animals, 1]. 1 represents homogeneous genotype carrying two alleles form the first allele, 2 represents heterozygous genotype with no ASE, 3 represents heterozygous genotype with first allele ASE, 4 represents heterozygous genotype with second allele ASE, 5 represents homogeneous genotype carrying two alleles form the second allele.

Parameters

A vector of length 31 if dist.dep=TRUE. Estimation of parameter values after convergence. These parameters includes epsilon, alpha1, beta1, alpha2, beta2, rho, and a 5 by 5 transition matrix in a vector form. It is of length 30 if dist.dep=FALSE with the parameter rho deleted.
select_run

Convergence Returns TRUE if convergence criterion is met. FALSE if convergence criterion
is not met.

niter Number of iterations take.

ASEest Only applies when ASE = TRUE. The ASE ratio estimate for the ASE-High
and ASE-Low SNPs.

PostdenH Only applies when ASE = TRUE. The posterior densities of ASE ratio evaluated
at a list of ASE ratio from 0.5 to 1, for the ASE-High SNPs.

PostdenL Only applies when ASE = TRUE. The posterior densities of ASE ratio evaluated
at a list of ASE ratio from 0 to 0.5, for the ASE-Low SNPs.

Author(s)

J. Steibel, H. Wang, P.S. Zhong

References

types from RNA Sequence Data in Presence of Allelic Imbalance by Exploiting Linkage Disequi-
librium.

See Also

See Also as HMM

Examples

library(HMMASE)
library(R.utils)
data(total)

mbs<-membership(total,1000,2)
reps=1
epsilon0<-0.0001
alpha10=3
beta010=3
alpha20=3
beta020=3
maxiter=20
estimate.alpha=TRUE
common.alpha=TRUE
dist.dep=FALSE
ASE=TRUE

result<-select_run(gpr=5,members=mbs,tcon=total,epsilon0=epsilon0,
alpha10=alpha10, beta010=beta010, alpha20=alpha20, beta020=beta020,
estimate.alpha=estimate.alpha, common.alpha=common.alpha,
dist.dep=dist.dep, ASE=ASE)
An example data set named "total".

Description
The example data set.

Usage
data(total)

Format
A data frame with 5364 observations on the following 53 variables.

V1 a numeric vector, the chromosome ID (13)
V2 a numeric vector, physical SNP locations
V3 a factor with levels A C G T, for one haplotype
V4 a factor with levels A C G T, for the other haplotype
V5, V7, V9, ..., V51 The read counts for the first haplotype (V3) of the 24 animals.
V6, V8, V10, ..., V52 The read counts for the second haplotype (V4) of the 24 animals.
V53 a logical vector, indicating if the SNP have the chip data information.

Examples
data(total)
Index

*Topic package
 HMMASE-package, 1

HMM, 2, 10
HMMASE (HMMASE-package), 1
HMMASE-package, 1
HMMNASE, 4

membership, 6
membershipc, 7

select_run, 8

total, 10