
Multivariate Analysis Homework 1

A49109720 Yi-Chen Zhang

March 16, 2018

4.2. Consider a bivariate normal population with µ1 = 0, µ2 = 2, σ11 = 2, σ22 = 1, and
ρ12 = 0.5.

(a) Write out the bivariate normal density.

(b) Write out the squared generalized distance expression (x − µ)TΣ−1(x − µ) as a
function of x1 and x2.

(c) Determine (and sketch) the constant-density contour that contains 50% of the prob-
ability.

Sol. (a) The multivariate normal density is defined by the following equation.

f(x) =
1

(2π)p/2|Σ|1/2
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
.

In this question, we have p = 2, x =

(
x1
x2

)
, µ =

(
µ1

µ2

)
, Σ =

(
σ11 σ12
σ21 σ22

)
, and

σ12 = ρ12
√
σ11
√
σ22. Note that µ =

(
0
2

)
, Σ =

(
2

√
2
2√

2
2

1

)
, |Σ| = 2×1−

(√
2
2

)2
= 3

2
,

|Σ|1/2 =
√

3
2
, and Σ−1 = 2

3

(
1 −

√
2
2

−
√
2
2

2

)
. So the bivariate normal density is

f(x) =
1

(2π)2/2
√

3
2

exp

{
−1

2

(
x1 x2 − 2

) 2

3

(
1 −

√
2
2

−
√
2
2

2

)(
x1

x2 − 2

)}

=
1√
6π

exp

{
−1

3

(
x21 −

√
2x1(x2 − 2) + 2(x2 − 2)2

)}
(b)

(x− µ)TΣ−1(x− µ) =
(
x1 x2 − 2

) 2

3

(
1 −

√
2
2

−
√
2
2

2

)(
x1

x2 − 2

)
=

2

3

(
x21 −

√
2x1(x2 − 2) + 2(x2 − 2)2

)
.

(c) For α = 0.5, the solid ellipsoid of (x1, x2) satisfy (x − µ)TΣ−1(x − µ) ≤ χ2
p,α =

c2 will have probability 50%. From the quantile function in R we have χ2
2,0.5 =

qchisq(0.5,df=2) = 1.3863, therefore, c = 1.1774. The eigenvalues of Σ are

(λ1, λ2) = (2.3660, 0.6340) with eigenvectors
(
e1 e2

)
=

(
−0.8881 0.4597
−0.4597 −0.8881

)
.

Therefore, we have the axes as: c
√
λ1 = 1.8111 and c

√
λ2 = 0.9375. The contour is

plotted in Figure 1.
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Figure 1: Contour that contains 50% of the probability

4.4. Let X be N3(µ,Σ) with µT = (2,−3, 1) and Σ =

1 1 1
1 3 2
1 2 2


(a) Find the distribution of 3X1 − 2X2 +X3.

(b) Relabel the variables if necessary, and find a 2 × 1 vector a such that X2 and

X2 − aT
(
X1

X3

)
are independent.

Sol. (a) Let a = (3,−2, 1)T , then aTX = 3X1 − 2X2 +X3. Therefore,

aTX ∼ N(aTµ,aTΣa),

where

aTµ =
(
3 −2 1

) 2
−3
1

 = 13

and

aTΣa =
(
3 −2 1

)1 1 1
1 3 2
1 2 2

 3
−2
1

 = 9

The distribution of 3X1 − 2X2 +X3 is N3(13, 9).

(b) Let a =
(
a1 a2

)T
, then Y = X2 − aT

(
X1

X3

)
= −a1X1 +X2 − a2X3.

Now, let A =

(
0 1 0
−a1 1 −a2

)
, then AX =

(
X2

Y

)
∼ N(Aµ,AΣAT ), where

AΣAT =

(
0 1 0
−a1 1 −a2

)1 1 1
1 3 2
1 2 2

0 −a1
1 1
0 −a2


=

(
3 −a1 − 2a2 + 3

−a1 − 2a2 + 3 a21 − 2a1 − 4a2 + 2a1a2 + 2a22 + 3

)
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Since we want to have X2 and Y independent, this implies that −a1 − 2a2 + 3 = 0.
So we have vector

a =

(
3
0

)
+ c

(
−2
1

)
, for c ∈ R

4.6. LetX be distributed as N3(µ,Σ), where µT = (1,−1, 2) and Σ =

 4 0 −1
0 5 0
−1 0 2

. Which

of the following random variables are independent? Explain.

(a) X1 and X2

(b) X1 and X3

(c) X2 and X3

(d) (X1, X3) and X2

(e) X1 and X1 + 3X2 − 2X3

Sol. (a) σ12 = σ21 = 0, X1 and X2 are independent.

(b) σ13 = σ31 = −1, X1 and X3 are not independent.

(c) σ23 = σ32 = 0, X2 and X3 are independent.

(d) We rearrange the covariance matrix and partition it. The new covariance matrix is
as following:

Σ∗ =

 4 −1 0
−1 2 0
0 0 5


It is clear that (X1, X3) and X2 are independent.

(e) LetA =

(
1 0 0
1 3 −2

)
, thenAX =

(
X1

X1 + 3X2 − 2X3

)
andAX ∼ N(Aµ,AΣAT ),

where

AΣAT =

(
1 0 0
1 3 −2

) 4 0 −1
0 5 0
−1 0 2

1 1
0 3
0 −2


=

(
4 6
6 61

)
It is clear that X1 and X1 + 3X2 − 2X3 are not independent.

4.7. Refer to Exercise 4.6 and specify each of the following.

(a) The conditional distribution of X1, given that X3 = x3.

(b) The conditional distribution of X1, given that X2 = x2 and X3 = x3.

Sol. We use the result 4.6 from textbook. Let X =

(
X1

X2

)
∼ N(µ,Σ) with µ =

(
µ1

µ2

)
and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
and |Σ22| > 0. Then

X1

∣∣X2 = x2 ∼ N
(
µ1 + Σ12Σ

−1
22 (x2 − µ2),Σ11 −Σ12Σ

−1
22 Σ21

)

3



(a)

X1

∣∣X3 = x3 ∼ N
(
1 + (−1)(2)−1(x3 − 2), 4− (−1)(2)−1(−1)

)
⇒ X1

∣∣X3 = x3 ∼ N

(
−1

2
x3 + 2,

)

(b)

X1

∣∣X2 = x2, X3 = x3

∼ N

(
1 +

(
0 −1

)(5 0
0 2

)−1(
x2 − (−1)
x3 − 2

)
, 4−

(
0 −1

)(5 0
0 2

)−1(
0
−1

))

⇒ X1

∣∣X2 = x2, X3 = x3 ∼ N

(
−1

2
x3 + 2,

)
4.16. Let X1, X2, X3, and X4 be independent Np(µ,Σ) random vectors.

(a) Find the marginal distributions for each of the random vectors

V1 =
1

4
X1 −

1

4
X2 +

1

4
X3 −

1

4
X4

and

V2 =
1

4
X1 +

1

4
X2 −

1

4
X3 −

1

4
X4

(b) Find the joint density of the random vectors V1 and V2 defined in (a).

Sol. (a) By result 4.8 in the textbook, V1 and V2 have the following distribution

Np

(
n∑
i=1

ciµ,

(
n∑
i=1

c2i

)
Σ

)
Then we have V1 ∼ Np(0,

1
4
Σ) and V2 ∼ Np(0,

1
4
Σ).

(b) Also by result 4.8, V1 and V2 are jointly multivariate normal with covariance matrix
(

n∑
i=1

c2i

)
Σ (bTc)Σ

(bTc)Σ

(
n∑
j=1

b2j

)
Σ

 ,

with c = (1
4
,−1

4
, 1
4
,−1

4
)T and b = (1

4
, 1
4
,−1

4
,−1

4
)T . So that we have the joint distri-

bution of V1 and V2 as following:(
V1

V2

)
∼ N2p

((
0
0

)
,

(
1
4
Σ 0
0 1

4
Σ

))
4.18. Find the maximum likelihood estimates of the 2×1 mean vector µ and the 2×2 covariance

matrix Σ based on the random sample

X =


3 6
4 4
5 7
4 7


from a bivariate normal population.
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Sol. Since the random samplesX1,X2,X3, andX4 are from normal population, the maximum

likelihood estimates of µ and Σ are X̄ and
1

n

n∑
i=1

(Xi − X̄)(Xi − X̄)T . Therefore,

µ̂ = X̄ =

(
4
6

)
and Σ̂ =

1

4

4∑
i=1

(Xi − X̄)(Xi − X̄)T =

(
1/2 1/4
1/4 3/2

)
4.19. Let X1, X2, . . . , X20 be a random sample of size n = 20 from an N6(µ,Σ) population.

Specify each of the following completely.

(a) The distribution of (X1 − µ)TΣ−1(X1 − µ)

(b) The distributions of X̄ and
√
n(X̄ − µ)

(c) The distribution of (n− 1)S

Sol. (a) (X1 − µ)TΣ−1(X1 − µ) is distributed as χ2
6

(b) X̄ is distributed as N6

(
µ, 1

20
Σ
)

and
√
n
(
X̄ − µ

)
is distributed as N6 (0,Σ)

(c) (n− 1)S is distributed as Wishart distribution
20−1∑
i=1

ZiZ
T
i , where Zi ∼ N6(0,Σ).

We write this as W6(19,Σ), i.e., Wishart distribution with dimensionality 6, degrees
of freedom 19, and covariance matrix Σ.

4.21. Let X1, . . . ,X60 be a random sample of size 60 from a four-variate normal distribution
having mean µ and covariance Σ. Specify each of the following completely.

(a) The distribution of X̄

(b) The distribution of (X1 − µ)TΣ−1(X1 − µ)

(c) The distribution of n(X̄ − µ)TΣ−1(X̄ − µ)

(d) The approximate distribution of n(X̄ − µ)TS−1(X̄ − µ)

Sol. (a) X̄ is distributed as N4

(
µ, 1

60
Σ
)
.

(b) (X1 − µ)TΣ−1(X1 − µ) is distributed as χ2
4.

(c) n(X̄ − µ)TΣ−1(X̄ − µ) is distributed as χ2
4.

(d) Since 60� 4, n(X̄ − µ)TS−1(X̄ − µ) can be approximated as χ2
4.

4.23. Consider the annual rates of return (including dividends) on the Dow-Jones industrial
average for the years 1996-2005. These data, multiplied by 100, are

−0.6 3.1 25.3 −16.8 −7.1 −6.2 25.2 22.6 26.0

Use these 10 observations to complete the following.

(a) Construct a Q-Q plot. Do the data seem to be normally distributed? Explain.

(b) Carry out a test of normality based on the correlation coefficient rQ. Let the signif-
icance level be α = 0.1.

Sol. (a) The Q-Q plot of this data is plotted in Figure 2. It seems that all the sample quantiles
are close the theoretical quantiles. However, the Q-Q plots are not particularly
informative unless the sample size is moderate to large, for instance, n ≥ 20. There
can be quite a bit of variability in the straightness of the Q-Q plot for small samples,
even when the observations are known to come from a normal population.
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Figure 2: Normal Q-Q plot

(b) From (4-31) in the textbook, the qQ is defined by

rQ =

∑n
j=1(x(j) − x̄)(q(j) − q̄)√∑n

j=1(x(j) − x̄)2
√∑n

j=1(q(j) − q̄)2

Using the information from the data, we have rQ = 0.9351. The R code of this
calculation is compiled in Appendix. From Table 4.2 in the textbook we know that
the critical point to test of normality at the 10% level of significance corresponding
to n = 9 and α = 0.1 is between 0.9032 and 0.9351. Since rQ = 0.9351 > the critical
point, we do not reject the hypothesis of normality.

4.26. Exercise 1.2 gives the age x1, measured in years, as well as the selling price x2, measured
in thousands of dollars, for n = 10 used cars. These data are reproduced as follows:

x1 1 2 3 3 4 5 6 8 9 11
x2 18.95 19.00 17.95 15.54 14.00 12.95 8.94 7.49 6.00 3.99

(a) Use the results of Exercise 1.2 to calculate the squared statistical distances
(xj − x̄)TS−1(xj − x̄), j = 1, 2, . . . , 10, where xTj = (xj1, xj2).

(b) Using the distances in Part (a), determine the proportion of the observations falling
within the estimated 50% probability contour of a bivariate normal distribution.

(c) Order the distances in Part (a) and construct a chi-square plot.

(d) Given the results in Parts (b) and (c), are these data approximately bivariate normal?
Explain.

Sol. (a) From Exercise 1.2 we have x̄ =

(
x̄1
x̄2

)
=

(
5.2

12.481

)
and S =

(
10.6222 −17.7102
−17.7102 30.8544

)
.

The squared statistical distances d2j = (xj − x̄)TS−1(xj − x̄), j = 1, . . . , 10 are cal-
culated and listed below

d21 d22 d23 d24 d25 d26 d27 d28 d29 d210
1.8753 2.0203 2.9009 0.7352 0.3105 0.0176 3.7329 0.8165 1.3753 4.2152
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(b) We plot the data points and 50% probability contour (the blue ellipse) in Figure
3. It is clear that subject 4, 5, 6, 8, and 9 are falling within the estimated 50%
probability contour. The proportion of that is 0.5.
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Figure 3: Contour of a bivariate normal

(c) The squared distances in Part (a) are ordered as below. The chi-square plot is shown
in Figure 4.

d26 d25 d24 d28 d29 d21 d22 d23 d27 d210
0.0176 0.3105 0.7353 0.8165 1.3753 1.8753 2.0203 2.9009 3.7329 4.2153
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Figure 4: Chi-square plot

(d) Given the results in Parts (b) and (c), we conclude these data are approximately
bivariate normal. Most of the data are around the theoretical line.
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Appendix

R code for Problem 4.2 (c).

> library(ellipse)

> library(MASS)

> library(mvtnorm)

> set.seed(123)

>

> mu <- c(0,2)

> Sigma <- matrix(c(2,sqrt(2)/2,sqrt(2)/2,1), nrow=2, ncol=2)

> X <- mvrnorm(n=10000,mu=mu, Sigma=Sigma)

> lambda <- eigen(Sigma)$values

> Gamma <- eigen(Sigma)$vectors

> elps <- t(t(ellipse(Sigma, level=0.5, npoints=1000))+mu)

> chi <- qchisq(0.5,df=2)

> c <- sqrt(chi)

> factor <- c*sqrt(lambda)

> plot(X[,1],X[,2])

> lines(elps)

> points(mu[1], mu[2])

> segments(mu[1],mu[2],factor[1]*Gamma[1,1],factor[1]*Gamma[2,1]+mu[2])

> segments(mu[1],mu[2],factor[2]*Gamma[1,2],factor[2]*Gamma[2,2]+mu[2])

R code for Problem 4.23.

> x <- c(-0.6, 3.1, 25.3, -16.8, -7.1, -6.2, 25.2, 22.6, 26.0)

> # (a)

> qqnorm(x)

> qqline(x)

> # (b)

> y <- sort(x)

> n <- length(y)

> p <- (1:n)-0.5)/n

> q <- qnorm(p)

> rQ <- cor(y,q)

R code for Problem 4.26.

> n <- 10

> x1 <- c(1,2,3,3,4,5,6,8,9,11)

> x2 <- c(18.95, 19.00, 17.95, 15.54, 14.00, 12.95, 8.94, 7.49, 6.00, 3.99)

> X <- cbind(x1,x2)

> Xbar <- colMeans(X)

> S <- cov(X)

> Sinv <- solve(S)

>

> # (a)

> d <- diag(t(t(X)-Xbar)%*%Sinv%*%(t(X)-Xbar))

>

> # (b)

> library(ellipse)
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> p <- 2

> elps <- t(t(ellipse(S, level=0.85, npoints=1000))+Xbar)

> plot(X[,1],X[,2],type="n")

> index <- d < qchisq(0.5,df=p)

> text(X[,1][index],X[,2][index],(1:n)[index],col="blue")

> text(X[,1][!index],X[,2][!index],(1:n)[!index],col="red")

> lines(elps,col="blue")

>

> # (c)

> names(d) <- 1:10

> sort(d)

> qqplot(qchisq(ppoints(500),df=p), d, main="",

+ xlab="Theoretical Quantiles", ylab="Sample Quantiles")

> qqline(d,distribution=function(x){qchisq(x,df=p)})
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