Multivariate Analysis Homework 1

A49109720 Yi-Chen Zhang

March 16, 2018
4.2. Consider a bivariate normal population with $\mu_{1}=0, \mu_{2}=2, \sigma_{11}=2, \sigma_{22}=1$, and $\rho_{12}=0.5$.
(a) Write out the bivariate normal density.
(b) Write out the squared generalized distance expression $(\boldsymbol{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})$ as a function of x_{1} and x_{2}.
(c) Determine (and sketch) the constant-density contour that contains 50% of the probability.

Sol. (a) The multivariate normal density is defined by the following equation.

$$
f(\boldsymbol{x})=\frac{1}{(2 \pi)^{p / 2}|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left\{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right\}
$$

In this question, we have $p=2, \boldsymbol{x}=\binom{x_{1}}{x_{2}}, \boldsymbol{\mu}=\binom{\mu_{1}}{\mu_{2}}, \boldsymbol{\Sigma}=\left(\begin{array}{ll}\sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22}\end{array}\right)$, and $\sigma_{12}=\rho_{12} \sqrt{\sigma_{11}} \sqrt{\sigma_{22}}$. Note that $\boldsymbol{\mu}=\binom{0}{2}, \boldsymbol{\Sigma}=\left(\begin{array}{cc}2 & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & 1\end{array}\right),|\boldsymbol{\Sigma}|=2 \times 1-\left(\frac{\sqrt{2}}{2}\right)^{2}=\frac{3}{2}$, $|\boldsymbol{\Sigma}|^{1 / 2}=\sqrt{\frac{3}{2}}$, and $\boldsymbol{\Sigma}^{-1}=\frac{2}{3}\left(\begin{array}{cc}1 & -\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & 2\end{array}\right)$. So the bivariate normal density is

$$
\begin{aligned}
& f(\boldsymbol{x})=\frac{1}{(2 \pi)^{2 / 2} \sqrt{\frac{3}{2}}} \exp \left\{-\frac{1}{2}\left(\begin{array}{ll}
x_{1} & \left.x_{2}-2\right) \\
3 & \left.\frac{2}{3}\left(\begin{array}{cc}
1 & -\frac{\sqrt{2}}{2} \\
-\frac{\sqrt{2}}{2} & 2
\end{array}\right)\binom{x_{1}}{x_{2}-2}\right\}, ~
\end{array}\right.\right. \\
& =\frac{1}{\sqrt{6} \pi} \exp \left\{-\frac{1}{3}\left(x_{1}^{2}-\sqrt{2} x_{1}\left(x_{2}-2\right)+2\left(x_{2}-2\right)^{2}\right)\right\}
\end{aligned}
$$

(b)

$$
\begin{aligned}
(\boldsymbol{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu}) & =\left(\begin{array}{ll}
x_{1} & \left.x_{2}-2\right) \frac{2}{3}\left(\begin{array}{cc}
1 & -\frac{\sqrt{2}}{2} \\
-\frac{\sqrt{2}}{2} & 2
\end{array}\right)\binom{x_{1}}{x_{2}-2} \\
& =\frac{2}{3}\left(x_{1}^{2}-\sqrt{2} x_{1}\left(x_{2}-2\right)+2\left(x_{2}-2\right)^{2}\right) .
\end{array} . . \begin{array}{c}
\end{array}\right)
\end{aligned}
$$

(c) For $\alpha=0.5$, the solid ellipsoid of $\left(x_{1}, x_{2}\right)$ satisfy $(\boldsymbol{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu}) \leq \chi_{p, \alpha}^{2}=$ c^{2} will have probability 50%. From the quantile function in R we have $\chi_{2,0.5}^{2}=$ $\mathrm{qchisq}(0.5, \mathrm{df}=2)=1.3863$, therefore, $c=1.1774$. The eigenvalues of Σ are $\left(\lambda_{1}, \lambda_{2}\right)=(2.3660,0.6340)$ with eigenvectors $\left(\begin{array}{ll}\boldsymbol{e}_{1} & \boldsymbol{e}_{2}\end{array}\right)=\left(\begin{array}{cc}-0.8881 & 0.4597 \\ -0.4597 & -0.8881\end{array}\right)$.
Therefore, we have the axes as: $c \sqrt{\lambda_{1}}=1.8111$ and $c \sqrt{\lambda_{2}}=0.9375$. The contour is plotted in Figure 1.

Figure 1: Contour that contains 50% of the probability
4.4. Let \boldsymbol{X} be $N_{3}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ with $\boldsymbol{\mu}^{T}=(2,-3,1)$ and $\boldsymbol{\Sigma}=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 3 & 2 \\ 1 & 2 & 2\end{array}\right)$
(a) Find the distribution of $3 X_{1}-2 X_{2}+X_{3}$.
(b) Relabel the variables if necessary, and find a 2×1 vector \boldsymbol{a} such that X_{2} and $X_{2}-\boldsymbol{a}^{T}\binom{X_{1}}{X_{3}}$ are independent.

Sol. (a) Let $\boldsymbol{a}=(3,-2,1)^{T}$, then $\boldsymbol{a}^{T} \boldsymbol{X}=3 X_{1}-2 X_{2}+X_{3}$. Therefore,

$$
\boldsymbol{a}^{T} \boldsymbol{X} \sim N\left(\boldsymbol{a}^{T} \boldsymbol{\mu}, \boldsymbol{a}^{T} \boldsymbol{\Sigma} \boldsymbol{a}\right)
$$

where

$$
\boldsymbol{a}^{T} \boldsymbol{\mu}=\left(\begin{array}{lll}
3 & -2 & 1
\end{array}\right)\left(\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right)=13
$$

and

$$
\boldsymbol{a}^{T} \boldsymbol{\Sigma} \boldsymbol{a}=\left(\begin{array}{lll}
3 & -2 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 3 & 2 \\
1 & 2 & 2
\end{array}\right)\left(\begin{array}{c}
3 \\
-2 \\
1
\end{array}\right)=9
$$

The distribution of $3 X_{1}-2 X_{2}+X_{3}$ is $N_{3}(13,9)$.
(b) Let $\boldsymbol{a}=\left(\begin{array}{ll}a_{1} & a_{2}\end{array}\right)^{T}$, then $Y=X_{2}-\boldsymbol{a}^{T}\binom{X_{1}}{X_{3}}=-a_{1} X_{1}+X_{2}-a_{2} X_{3}$.

Now, let $\boldsymbol{A}=\left(\begin{array}{ccc}0 & 1 & 0 \\ -a_{1} & 1 & -a_{2}\end{array}\right)$, then $\boldsymbol{A} \boldsymbol{X}=\binom{X_{2}}{Y} \sim N\left(\boldsymbol{A} \boldsymbol{\mu}, \boldsymbol{A} \boldsymbol{\Sigma} \boldsymbol{A}^{T}\right)$, where

$$
\begin{aligned}
\boldsymbol{A} \boldsymbol{\Sigma} \boldsymbol{A}^{T} & =\left(\begin{array}{ccc}
0 & 1 & 0 \\
-a_{1} & 1 & -a_{2}
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 3 & 2 \\
1 & 2 & 2
\end{array}\right)\left(\begin{array}{cc}
0 & -a_{1} \\
1 & 1 \\
0 & -a_{2}
\end{array}\right) \\
& =\left(\begin{array}{cc}
3 & -a_{1}-2 a_{2}+3 \\
-a_{1}-2 a_{2}+3 & a_{1}^{2}-2 a_{1}-4 a_{2}+2 a_{1} a_{2}+2 a_{2}^{2}+3
\end{array}\right)
\end{aligned}
$$

Since we want to have X_{2} and Y independent, this implies that $-a_{1}-2 a_{2}+3=0$. So we have vector

$$
\boldsymbol{a}=\binom{3}{0}+c\binom{-2}{1}, \text { for } c \in \mathbb{R}
$$

4.6. Let \boldsymbol{X} be distributed as $N_{3}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where $\boldsymbol{\mu}^{T}=(1,-1,2)$ and $\boldsymbol{\Sigma}=\left(\begin{array}{ccc}4 & 0 & -1 \\ 0 & 5 & 0 \\ -1 & 0 & 2\end{array}\right)$. Which of the following random variables are independent? Explain.
(a) X_{1} and X_{2}
(b) X_{1} and X_{3}
(c) X_{2} and X_{3}
(d) $\left(X_{1}, X_{3}\right)$ and X_{2}
(e) X_{1} and $X_{1}+3 X_{2}-2 X_{3}$

Sol. (a) $\sigma_{12}=\sigma_{21}=0, X_{1}$ and X_{2} are independent.
(b) $\sigma_{13}=\sigma_{31}=-1, X_{1}$ and X_{3} are not independent.
(c) $\sigma_{23}=\sigma_{32}=0, X_{2}$ and X_{3} are independent.
(d) We rearrange the covariance matrix and partition it. The new covariance matrix is as following:

$$
\boldsymbol{\Sigma}^{*}=\left(\begin{array}{cc|c}
4 & -1 & 0 \\
-1 & 2 & 0 \\
\hline 0 & 0 & 5
\end{array}\right)
$$

It is clear that $\left(X_{1}, X_{3}\right)$ and X_{2} are independent.
(e) Let $\boldsymbol{A}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 1 & 3 & -2\end{array}\right)$, then $\boldsymbol{A} \boldsymbol{X}=\binom{X_{1}}{X_{1}+3 X_{2}-2 X_{3}}$ and $\boldsymbol{A} \boldsymbol{X} \sim N\left(\boldsymbol{A} \boldsymbol{\mu}, \boldsymbol{A} \boldsymbol{\Sigma} \boldsymbol{A}^{T}\right)$, where

$$
\begin{aligned}
\boldsymbol{A} \boldsymbol{\Sigma} \boldsymbol{A}^{T} & =\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 3 & -2
\end{array}\right)\left(\begin{array}{ccc}
4 & 0 & -1 \\
0 & 5 & 0 \\
-1 & 0 & 2
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
0 & 3 \\
0 & -2
\end{array}\right) \\
& =\left(\begin{array}{cc}
4 & 6 \\
6 & 61
\end{array}\right)
\end{aligned}
$$

It is clear that X_{1} and $X_{1}+3 X_{2}-2 X_{3}$ are not independent.
4.7. Refer to Exercise 4.6 and specify each of the following.
(a) The conditional distribution of X_{1}, given that $X_{3}=x_{3}$.
(b) The conditional distribution of X_{1}, given that $X_{2}=x_{2}$ and $X_{3}=x_{3}$.

Sol. We use the result 4.6 from textbook. Let $\boldsymbol{X}=\left(\frac{\boldsymbol{X}_{1}}{\boldsymbol{X}_{2}}\right) \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ with $\boldsymbol{\mu}=\left(\frac{\boldsymbol{\mu}_{1}}{\boldsymbol{\mu}_{2}}\right)$ and $\boldsymbol{\Sigma}=\left(\begin{array}{l|l}\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \hline \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}\end{array}\right)$ and $\left|\boldsymbol{\Sigma}_{22}\right|>0$. Then

$$
\boldsymbol{X}_{1} \mid \boldsymbol{X}_{2}=\boldsymbol{x}_{2} \sim N\left(\boldsymbol{\mu}_{1}+\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1}\left(\boldsymbol{x}_{2}-\boldsymbol{\mu}_{2}\right), \boldsymbol{\Sigma}_{11}-\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21}\right)
$$

(a)

$$
\left.\begin{array}{rl}
X_{1} \mid X_{3} & =x_{3} \\
\sim \quad N\left(1+(-1)(2)^{-1}\left(x_{3}-2\right), 4-(-1)(2)^{-1}(-1)\right) \\
\Rightarrow \quad X_{1} \mid X_{3} & =x_{3}
\end{array}\right) N\left(-\frac{1}{2} x_{3}+2,\right)
$$

(b)

$$
\begin{aligned}
X_{1} \mid X_{2} & =x_{2}, X_{3}=x_{3} \\
& \sim N\left(1+\left(\begin{array}{ll}
0 & -1
\end{array}\right)\left(\begin{array}{cc}
5 & 0 \\
0 & 2
\end{array}\right)^{-1}\binom{x_{2}-(-1)}{x_{3}-2}, 4-\left(\begin{array}{ll}
0 & -1
\end{array}\right)\left(\begin{array}{cc}
5 & 0 \\
0 & 2
\end{array}\right)^{-1}\binom{0}{-1}\right) \\
\Rightarrow \quad X_{1} \mid X_{2} & =x_{2}, X_{3}=x_{3} \sim N\left(-\frac{1}{2} x_{3}+2,\right)
\end{aligned}
$$

4.16. Let $\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \boldsymbol{X}_{3}$, and \boldsymbol{X}_{4} be independent $N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ random vectors.
(a) Find the marginal distributions for each of the random vectors

$$
\boldsymbol{V}_{1}=\frac{1}{4} \boldsymbol{X}_{1}-\frac{1}{4} \boldsymbol{X}_{2}+\frac{1}{4} \boldsymbol{X}_{3}-\frac{1}{4} \boldsymbol{X}_{4}
$$

and

$$
\boldsymbol{V}_{2}=\frac{1}{4} \boldsymbol{X}_{1}+\frac{1}{4} \boldsymbol{X}_{2}-\frac{1}{4} \boldsymbol{X}_{3}-\frac{1}{4} \boldsymbol{X}_{4}
$$

(b) Find the joint density of the random vectors \boldsymbol{V}_{1} and \boldsymbol{V}_{2} defined in (a).

Sol. (a) By result 4.8 in the textbook, \boldsymbol{V}_{1} and \boldsymbol{V}_{2} have the following distribution

$$
N_{p}\left(\sum_{i=1}^{n} c_{i} \boldsymbol{\mu},\left(\sum_{i=1}^{n} c_{i}^{2}\right) \boldsymbol{\Sigma}\right)
$$

Then we have $\boldsymbol{V}_{1} \sim N_{p}\left(\mathbf{0}, \frac{1}{4} \boldsymbol{\Sigma}\right)$ and $\boldsymbol{V}_{2} \sim N_{p}\left(\mathbf{0}, \frac{1}{4} \boldsymbol{\Sigma}\right)$.
(b) Also by result 4.8, \boldsymbol{V}_{1} and \boldsymbol{V}_{2} are jointly multivariate normal with covariance matrix

$$
\left(\begin{array}{cc}
\left(\sum_{i=1}^{n} c_{i}^{2}\right) \boldsymbol{\Sigma} & \left(\boldsymbol{b}^{T} \boldsymbol{c}\right) \boldsymbol{\Sigma} \\
\left(\boldsymbol{b}^{T} \boldsymbol{c}\right) \boldsymbol{\Sigma} & \left(\sum_{j=1}^{n} b_{j}^{2}\right) \boldsymbol{\Sigma}
\end{array}\right)
$$

with $\boldsymbol{c}=\left(\frac{1}{4},-\frac{1}{4}, \frac{1}{4},-\frac{1}{4}\right)^{T}$ and $\boldsymbol{b}=\left(\frac{1}{4}, \frac{1}{4},-\frac{1}{4},-\frac{1}{4}\right)^{T}$. So that we have the joint distribution of \boldsymbol{V}_{1} and \boldsymbol{V}_{2} as following:

$$
\binom{\boldsymbol{V}_{1}}{\boldsymbol{V}_{2}} \sim N_{2 p}\left(\binom{\mathbf{0}}{\mathbf{0}},\left(\begin{array}{cc}
\frac{1}{4} \boldsymbol{\Sigma} & \mathbf{0} \\
\mathbf{0} & \frac{1}{4} \boldsymbol{\Sigma}
\end{array}\right)\right)
$$

4.18. Find the maximum likelihood estimates of the 2×1 mean vector $\boldsymbol{\mu}$ and the 2×2 covariance matrix $\boldsymbol{\Sigma}$ based on the random sample

$$
\boldsymbol{X}=\left(\begin{array}{ll}
3 & 6 \\
4 & 4 \\
5 & 7 \\
4 & 7
\end{array}\right)
$$

from a bivariate normal population.

Sol. Since the random samples $\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \boldsymbol{X}_{3}$, and \boldsymbol{X}_{4} are from normal population, the maximum likelihood estimates of $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$ are $\overline{\boldsymbol{X}}$ and $\frac{1}{n} \sum_{i=1}^{n}\left(\boldsymbol{X}_{i}-\overline{\boldsymbol{X}}\right)\left(\boldsymbol{X}_{i}-\overline{\boldsymbol{X}}\right)^{T}$. Therefore,

$$
\hat{\boldsymbol{\mu}}=\overline{\boldsymbol{X}}=\binom{4}{6} \text { and } \widehat{\boldsymbol{\Sigma}}=\frac{1}{4} \sum_{i=1}^{4}\left(\boldsymbol{X}_{i}-\overline{\boldsymbol{X}}\right)\left(\boldsymbol{X}_{i}-\overline{\boldsymbol{X}}\right)^{T}=\left(\begin{array}{ll}
1 / 2 & 1 / 4 \\
1 / 4 & 3 / 2
\end{array}\right)
$$

4.19. Let $\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{20}$ be a random sample of size $n=20$ from an $N_{6}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ population. Specify each of the following completely.
(a) The distribution of $\left(\boldsymbol{X}_{1}-\boldsymbol{\mu}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{X}_{1}-\boldsymbol{\mu}\right)$
(b) The distributions of $\overline{\boldsymbol{X}}$ and $\sqrt{n}(\overline{\boldsymbol{X}}-\boldsymbol{\mu})$
(c) The distribution of $(n-1) \boldsymbol{S}$

Sol. (a) $\left(\boldsymbol{X}_{1}-\boldsymbol{\mu}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{X}_{1}-\boldsymbol{\mu}\right)$ is distributed as χ_{6}^{2}
(b) $\overline{\boldsymbol{X}}$ is distributed as $N_{6}\left(\boldsymbol{\mu}, \frac{1}{20} \boldsymbol{\Sigma}\right)$ and $\sqrt{n}(\overline{\boldsymbol{X}}-\boldsymbol{\mu})$ is distributed as $N_{6}(\mathbf{0}, \boldsymbol{\Sigma})$
(c) $(n-1) \boldsymbol{S}$ is distributed as Wishart distribution $\sum_{i=1}^{20-1} \boldsymbol{Z}_{i} \boldsymbol{Z}_{i}^{T}$, where $\boldsymbol{Z}_{i} \sim N_{6}(\mathbf{0}, \boldsymbol{\Sigma})$.

We write this as $W_{6}(19, \boldsymbol{\Sigma})$, i.e., Wishart distribution with dimensionality 6 , degrees of freedom 19, and covariance matrix $\boldsymbol{\Sigma}$.
4.21. Let $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{60}$ be a random sample of size 60 from a four-variate normal distribution having mean $\boldsymbol{\mu}$ and covariance $\boldsymbol{\Sigma}$. Specify each of the following completely.
(a) The distribution of $\overline{\boldsymbol{X}}$
(b) The distribution of $\left(\boldsymbol{X}_{1}-\boldsymbol{\mu}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{X}_{1}-\boldsymbol{\mu}\right)$
(c) The distribution of $n(\overline{\boldsymbol{X}}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\overline{\boldsymbol{X}}-\boldsymbol{\mu})$
(d) The approximate distribution of $n(\overline{\boldsymbol{X}}-\boldsymbol{\mu})^{T} \boldsymbol{S}^{-1}(\overline{\boldsymbol{X}}-\boldsymbol{\mu})$

Sol. (a) $\overline{\boldsymbol{X}}$ is distributed as $N_{4}\left(\boldsymbol{\mu}, \frac{1}{60} \boldsymbol{\Sigma}\right)$.
(b) $\left(\boldsymbol{X}_{1}-\boldsymbol{\mu}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{X}_{1}-\boldsymbol{\mu}\right)$ is distributed as χ_{4}^{2}.
(c) $n(\overline{\boldsymbol{X}}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\overline{\boldsymbol{X}}-\boldsymbol{\mu})$ is distributed as χ_{4}^{2}.
(d) Since $60 \gg 4, n(\overline{\boldsymbol{X}}-\boldsymbol{\mu})^{T} \boldsymbol{S}^{-1}(\overline{\boldsymbol{X}}-\boldsymbol{\mu})$ can be approximated as χ_{4}^{2}.
4.23. Consider the annual rates of return (including dividends) on the Dow-Jones industrial average for the years 1996-2005. These data, multiplied by 100, are

$$
\begin{array}{ccccccccc}
-0.6 & 3.1 & 25.3 & -16.8 & -7.1 & -6.2 & 25.2 & 22.6 & 26.0
\end{array}
$$

Use these 10 observations to complete the following.
(a) Construct a $Q-Q$ plot. Do the data seem to be normally distributed? Explain.
(b) Carry out a test of normality based on the correlation coefficient r_{Q}. Let the significance level be $\alpha=0.1$.

Sol. (a) The $Q-Q$ plot of this data is plotted in Figure 2. It seems that all the sample quantiles are close the theoretical quantiles. However, the $Q-Q$ plots are not particularly informative unless the sample size is moderate to large, for instance, $n \geq 20$. There can be quite a bit of variability in the straightness of the $Q-Q$ plot for small samples, even when the observations are known to come from a normal population.

Figure 2: Normal $Q-Q$ plot
(b) From (4-31) in the textbook, the q_{Q} is defined by

$$
r_{Q}=\frac{\sum_{j=1}^{n}\left(x_{(j)}-\bar{x}\right)\left(q_{(j)}-\bar{q}\right)}{\sqrt{\sum_{j=1}^{n}\left(x_{(j)}-\bar{x}\right)^{2}} \sqrt{\sum_{j=1}^{n}\left(q_{(j)}-\bar{q}\right)^{2}}}
$$

Using the information from the data, we have $r_{Q}=0.9351$. The R code of this calculation is compiled in Appendix. From Table 4.2 in the textbook we know that the critical point to test of normality at the 10% level of significance corresponding to $n=9$ and $\alpha=0.1$ is between 0.9032 and 0.9351 . Since $r_{Q}=0.9351>$ the critical point, we do not reject the hypothesis of normality.
4.26. Exercise 1.2 gives the age x_{1}, measured in years, as well as the selling price x_{2}, measured in thousands of dollars, for $n=10$ used cars. These data are reproduced as follows:

x_{1}	1	2	3	3	4	5	6	8	9	11
x_{2}	18.95	19.00	17.95	15.54	14.00	12.95	8.94	7.49	6.00	3.99

(a) Use the results of Exercise 1.2 to calculate the squared statistical distances $\left(\boldsymbol{x}_{j}-\overline{\boldsymbol{x}}\right)^{T} \boldsymbol{S}^{-1}\left(\boldsymbol{x}_{j}-\overline{\boldsymbol{x}}\right), j=1,2, \ldots, 10$, where $\boldsymbol{x}_{j}^{T}=\left(x_{j 1}, x_{j 2}\right)$.
(b) Using the distances in Part (a), determine the proportion of the observations falling within the estimated 50% probability contour of a bivariate normal distribution.
(c) Order the distances in Part (a) and construct a chi-square plot.
(d) Given the results in Parts (b) and (c), are these data approximately bivariate normal? Explain.

Sol. (a) From Exercise 1.2 we have $\overline{\boldsymbol{x}}=\binom{\bar{x}_{1}}{\bar{x}_{2}}=\binom{5.2}{12.481}$ and $\boldsymbol{S}=\left(\begin{array}{cc}10.6222 & -17.7102 \\ -17.7102 & 30.8544\end{array}\right)$. The squared statistical distances $d_{j}^{2}=\left(\boldsymbol{x}_{j}-\overline{\boldsymbol{x}}\right)^{T} \boldsymbol{S}^{-1}\left(\boldsymbol{x}_{j}-\overline{\boldsymbol{x}}\right), j=1, \ldots, 10$ are calculated and listed below

d_{1}^{2}	d_{2}^{2}	d_{3}^{2}	d_{4}^{2}	d_{5}^{2}	d_{6}^{2}	d_{7}^{2}	d_{8}^{2}	d_{9}^{2}	d_{10}^{2}
1.8753	2.0203	2.9009	0.7352	0.3105	0.0176	3.7329	0.8165	1.3753	4.2152

(b) We plot the data points and 50% probability contour (the blue ellipse) in Figure 3. It is clear that subject $4,5,6,8$, and 9 are falling within the estimated 50% probability contour. The proportion of that is 0.5 .

Figure 3: Contour of a bivariate normal
(c) The squared distances in Part (a) are ordered as below. The chi-square plot is shown in Figure 4.

d_{6}^{2}	d_{5}^{2}	d_{4}^{2}	d_{8}^{2}	d_{9}^{2}	d_{1}^{2}	d_{2}^{2}	d_{3}^{2}	d_{7}^{2}	d_{10}^{2}
0.0176	0.3105	0.7353	0.8165	1.3753	1.8753	2.0203	2.9009	3.7329	4.2153

Figure 4: Chi-square plot
(d) Given the results in Parts (b) and (c), we conclude these data are approximately bivariate normal. Most of the data are around the theoretical line.

Appendix

R code for Problem 4.2 (c).

```
> library(ellipse)
> library(MASS)
> library(mvtnorm)
> set.seed(123)
>
>mu <- c(0,2)
> Sigma <- matrix(c(2,sqrt(2)/2,sqrt(2)/2,1), nrow=2, ncol=2)
> X <- mvrnorm(n=10000,mu=mu, Sigma=Sigma)
> lambda <- eigen(Sigma)$values
> Gamma <- eigen(Sigma)$vectors
> elps <- t(t(ellipse(Sigma, level=0.5, npoints=1000))+mu)
> chi <- qchisq(0.5,df=2)
> c <- sqrt(chi)
> factor <- c*sqrt(lambda)
> plot(X[,1],X[,2])
> lines(elps)
> points(mu[1], mu[2])
> segments(mu[1],mu[2],factor[1]*Gamma[1,1],factor[1]*Gamma[2,1]+mu[2])
> segments(mu[1],mu[2],factor[2]*Gamma[1,2],factor[2]*Gamma[2,2]+mu[2])
```

R code for Problem 4.23.

```
> x <- c(-0.6, 3.1, 25.3, -16.8, -7.1, -6.2, 25.2, 22.6, 26.0)
> # (a)
> qqnorm(x)
> qqline(x)
> # (b)
> y <- sort(x)
> n <- length(y)
> p <- (1:n)-0.5)/n
> q <- qnorm(p)
> QQ <- cor(y,q)
```

R code for Problem 4.26.

```
> n <- 10
> x1 <- c(1,2,3,3,4,5,6,8,9,11)
> x2 <- c(18.95, 19.00, 17.95, 15.54, 14.00, 12.95, 8.94, 7.49, 6.00, 3.99)
> X <- cbind(x1,x2)
> Xbar <- colMeans(X)
> S <- cov(X)
> Sinv <- solve(S)
>
> # (a)
> d <- diag(t(t(X)-Xbar)%*%Sinv%*%(t(X)-Xbar))
>
> # (b)
> library(ellipse)
```

```
> p <- 2
> elps <- t(t(ellipse(S, level=0.85, npoints=1000))+Xbar)
> plot(X[,1],X[,2],type="n")
> index <- d < qchisq(0.5,df=p)
> text(X[,1][index],X[,2][index],(1:n)[index],col="blue")
> text(X[,1][!index],X[,2][!index],(1:n)[!index],col="red")
> lines(elps,col="blue")
>
> # (c)
> names(d) <- 1:10
> sort(d)
> qqplot(qchisq(ppoints(500),df=p), d, main="",
+ xlab="Theoretical Quantiles", ylab="Sample Quantiles")
> qqline(d,distribution=function(x){qchisq(x,df=p)})
```

