Multivariate Analysis Homework 3

A49109720 Yi-Chen Zhang

April 13, 2018
8.4. Find the principal components and the proportion of the total population variance explained by each when the covariance matrix is

$$
\boldsymbol{\Sigma}=\left(\begin{array}{ccc}
\sigma^{2} & \sigma^{2} \rho & 0 \\
\sigma^{2} \rho & \sigma^{2} & \sigma^{2} \rho \\
0 & \sigma^{2} \rho & \sigma^{2}
\end{array}\right), \quad-\frac{1}{\sqrt{2}}<\rho<\frac{1}{\sqrt{2}}
$$

Sol. To find the eigenvalues, we let $\operatorname{det}(\boldsymbol{\Sigma}-\lambda \boldsymbol{I})=0$, i.e.,

$$
\left|\begin{array}{ccc}
\sigma^{2}-\lambda & \sigma^{2} \rho & 0 \\
\sigma^{2} \rho & \sigma^{2}-\lambda & \sigma^{2} \rho \\
0 & \sigma^{2} \rho & \sigma^{2}-\lambda
\end{array}\right|=0
$$

By solving the system, we obtain the characteristic polynomial in terms of λ as:

$$
\left(\sigma^{2}-\lambda\right)\left(\sigma^{4}-2 \sigma^{4} \rho^{2}-2 \lambda \sigma^{2}+\lambda^{2}\right)=0
$$

and we get $\lambda_{1}=\sigma^{2}(1+\sqrt{2} \rho), \lambda_{2}=\sigma^{2}$, and $\lambda_{3}=\sigma^{2}(1-\sqrt{2} \rho)$. To solve the eigenvector, we need to solve $\boldsymbol{\Sigma} \boldsymbol{e}_{i}=\lambda_{i} \boldsymbol{e}_{i}$, for $i=1,2,3$. We found that

$$
\boldsymbol{e}_{1}=\left(\begin{array}{c}
1 / 2 \\
\sqrt{2} / 2 \\
1 / 2
\end{array}\right), \boldsymbol{e}_{2}=\left(\begin{array}{c}
\sqrt{2} / 2 \\
0 \\
-\sqrt{2} / 2
\end{array}\right), \quad \text { and } \boldsymbol{e}_{3}=\left(\begin{array}{c}
1 / 2 \\
-\sqrt{2} / 2 \\
1 / 2
\end{array}\right)
$$

Therefore, the principal components become

$$
\begin{aligned}
& Y_{1}=\boldsymbol{e}_{1}^{T} \boldsymbol{X}=\frac{1}{2} X_{1}+\frac{\sqrt{2}}{2} X_{2}+\frac{1}{2} X_{3} \\
& Y_{2}=\boldsymbol{e}_{2}^{T} \boldsymbol{X}=\frac{\sqrt{2}}{2} X_{1}-\frac{\sqrt{2}}{2} X_{3} \\
& Y_{3}=\boldsymbol{e}_{3}^{T} \boldsymbol{X}=\frac{1}{2} X_{1}-\frac{\sqrt{2}}{2} X_{2}+\frac{1}{2} X_{3}
\end{aligned}
$$

The total population variance is

$$
\sum_{i=1}^{3} \operatorname{Var}\left(Y_{i}\right)=\sum_{i=1}^{3} \lambda_{i}=\sigma^{2}(1+\sqrt{2} \rho)+\sigma^{2}+\sigma^{2}(1-\sqrt{2} \rho)=3 \sigma^{2}
$$

and the proportion of total population variance explained by each principal components is: $\frac{1}{3}(1+\sqrt{2} \rho), \frac{1}{3}$, and $\frac{1}{3}(1-\sqrt{2} \rho)$, for Y_{1}, Y_{2}, and Y_{3}, respectively.
8.10. The weekly rates of return for five stocks listed on the New York Stock Exchange are given in Table 8.4.
(a) Construct the sample covariance matrix \boldsymbol{S}, and find the sample principal components in (8-20).
(b) Determine the proportion of the total sample variance explained by the first three principal components. Interpret these components.
(c) Construct Bonferroni simultaneous 90% confidence intervals for the variances λ_{1}, λ_{2}, and λ_{3} of the first three population components Y_{1}, Y_{2}, and Y_{3}.
(d) Given the results in Parts (a)-(c), do you feel that the stock rates-of-return data can be summarized in fewer than five dimensions? Explain.

Sol. (a) The sample covariance matrix \boldsymbol{S} is shown below:

	JPMorgan	CitiBank	WellsFargo	RoyDutShell ExxonMobil	
JPMorgan	0.00043327	0.00027567	0.00015903	0.00006412	0.00008897
CitiBank	0.00027567	0.00043872	0.00017997	0.00018145	0.00012326
WellsFargo	0.00015903	0.00017997	0.00022397	0.00007341	0.00006055
RoyDutShell	0.00006412	0.00018145	0.00007341	0.00072250	0.00050828
ExxonMobil	0.00008897	0.00012326	0.00006055	0.00050828	0.00076567

The sample principle components are:

```
Standard deviations (1, .., p=5):
[1] 0.03698213 0.02647942 0.01593118 0.01194163 0.01090352
```

Rotation (n x k) $=(5 \mathrm{x} 5$):

	PC1	PC2	PC3	PC4	PC5
JPMorgan	-0.2228228	0.6252260	-0.32611218	0.6627590	-0.11765952
CitiBank	-0.3072900	0.5703900	0.24959014	-0.4140935	0.58860803
WellsFargo	-0.1548103	0.3445049	0.03763929	-0.4970499	-0.78030428
RoyDutShell	-0.6389680	-0.2479475	0.64249741	0.3088689	-0.14845546
ExxonMobil	-0.6509044	-0.3218478	-0.64586064	-0.2163758	0.09371777

(b) From part (a),

$$
\hat{\lambda}_{1}=0.00137, \hat{\lambda}_{2}=0.00070, \hat{\lambda}_{3}=0.00025, \hat{\lambda}_{4}=0.00014, \hat{\lambda}_{5}=0.00012
$$

so the total sample variance is $\sum_{i=1}^{5} \hat{\lambda}_{i}=0.00258$ and the proportion of total variance explained by the first three component is $\sum_{i=1}^{3} \hat{\lambda}_{i} / \sum_{i=1}^{5} \hat{\lambda}_{i}=0.8988$. The first component might be interpreted as a "market" component with the greast weight on Royal Dutch Shell and Exxon Mobil, the second component as an "industry" component that separates bank and gas companies, and the third component is a contrast between these five stocks which is difficult to interpret.
(c) The Bonferroni simultaneous $100(1-\alpha) \%$ confidence interval for λ_{i} can be constructed by

$$
\frac{\hat{\lambda}_{i}}{1+z\left(\frac{\alpha}{2 m}\right) \sqrt{\frac{2}{n}}} \leq \lambda_{i} \leq \frac{\hat{\lambda}_{i}}{1-z\left(\frac{\alpha}{2 m}\right) \sqrt{\frac{2}{n}}}
$$

Thus the 90% confidence intervals for the three variance of the population components are:

$$
\lambda_{1}:(0.001055,0.001944)
$$

$$
\begin{aligned}
& \lambda_{2}:(0.000541,0.000997) \\
& \lambda_{3}:(0.000196,0.000361)
\end{aligned}
$$

(d) Stock returns are probably best summarized in two dimensions with 80% of the total variation accounted for by a "market" component and an "industry" component without much loss of information.
8.28. Survey data were collected as part of a study to assess options for enhancing food security through the sustainable use of natural resources in the Sikasso region of Mali (West Africa). A total of $n=76$ farmers were surveyed and observations on the nine variables

$$
\begin{aligned}
& x_{1}=\text { Family (total number of individuals in household) } \\
& x_{2}=\text { DistRd (distance in kilometers to nearest passable road) } \\
& x_{3}=\text { Cotton (hectares of cotton planted in year 2000) } \\
& x_{4}=\text { Maize (hectares of maize planted in year 2000) } \\
& x_{5}=\text { Sorg (hectares of sorghum planted in year 2000) } \\
& x_{6}=\text { Millet (hectares of millet planted in year 2000) } \\
& x_{7}=\text { Bull (total number of bullocks or draft animals) } \\
& x_{8}=\text { Cattle (total) } ; x_{9}=\text { Goats (total) }
\end{aligned}
$$

were recorded.The data are listed in Table 8.7.
(a) Construct two-dimensional scatterplots of Family versus DistRd, and DistRd versus Cattle. Remove any obvious outliers from the data set.
(b) Perform a principal component analysis using the correlation matrix \boldsymbol{R}. Determine the number of components to effectively summarize the variability. Use the proportion of variation explained and a scree plot to aid in your determination.
(c) Interpret the first five principal components. Can you identify, for example, a "farm size" component? A, perhaps, "goats and distance to road" component?

Sol. (a) Scatterplots of the two pairs of specified variables are shown in Figure 1.

Figure 1: Scatterplots of Family versue DistRd (left) and DistRd versus Cattle (right).

Figure 2: Scatterplots of Family versue DistRd (left) and DistRd versus Cattle (right). The outliers are removed from the dataset.

Based on these scatterplots, we removed the four outliers (observations 25, 34, 69, 72) from the dataset. The scatterplots with outlier removed are plotted in Figure 2 .
(b) The principal component analysis of \boldsymbol{R} follows. Removing the outliers has some but relatively little effect on the analysis.

```
Standard deviations (1, .., p=9):
[1] 2.0457593 1.1992026 1.0413933 0.8898414 0.7773833 0.6050916
[7] 0.4899220 0.4145180 0.3437368
```

Rotation ($\mathrm{n} \times \mathrm{k}$) $=(9 \mathrm{x} 9)$:

| | PC1 | PC2 | PC3 | PC4 | PC5 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Family | 0.433842713 | -0.065088695 | 0.09840025 | -0.17120143 | 0.01132705 |
| DistRD | 0.007587031 | 0.496670914 | -0.56856059 | -0.49561039 | -0.37766811 |
| Cotton | 0.446140316 | 0.008917253 | 0.13211700 | 0.02733684 | -0.21870789 |
| Maize | 0.352228405 | 0.352571495 | 0.38820350 | -0.24020492 | -0.07920345 |
| Sorg | 0.203622111 | -0.603667416 | -0.11149246 | 0.05854254 | -0.64457738 |
| Millet | 0.240361102 | -0.415159516 | -0.11595977 | -0.61632679 | 0.52696668 |
| Bull | 0.445273680 | 0.068042477 | -0.03038787 | 0.14559178 | -0.02829987 |
| Cattle | 0.355411548 | 0.284473439 | 0.01382636 | 0.37293370 | 0.21753184 |
| Goats | 0.254549533 | -0.048668251 | -0.68695528 | 0.35078804 | 0.24867109 |
| | PC6 | PC7 | PC8 | PC9 | |
| Family | -0.03997862 | -0.79746017 | -0.26281017 | -0.24862206 | |
| DistRD | 0.18658220 | 0.02106965 | -0.04790053 | -0.06469259 | |
| Cotton | -0.19968612 | 0.36124785 | 0.32948454 | -0.67521059 | |
| Maize | -0.27321206 | -0.02382879 | 0.36297395 | 0.57444950 | |
| Sorg | 0.24598733 | -0.02061874 | 0.12556392 | 0.29340194 | |
| Millet | 0.18077867 | 0.24070610 | 0.07713302 | 0.04795829 | |
| Bull | -0.13405398 | 0.39621919 | -0.75050803 | 0.18962561 | |
| Cattle | 0.75905049 | -0.01063587 | 0.16866186 | 0.03806691 | |
| Goats | -0.40218231 | -0.13068360 | 0.27368097 | 0.14936105 | |

The proportion of variance explained by each component are: 46.50\%, 15.98\%, $12.05 \%, 8.80 \%, 6.71 \%, 4.07 \%, 2.67 \%, 1.91 \%$, and 1.31%. Based on the screeplot and cumulative proportion of variance plot in Figure 3, we would like to choose the first five principal components to summarize this dataset. The first five components explain about 90% of the total variability in the data set and seems a reasonable number given the screeplot.

Figure 3: Screeplot (left) and cumulative proportion of variance (right).
(c) All the variables (all crops, all livestock, family) except for distance to road (RistRd) load about equally on the first component. This component might be called a farm size component. Millet and sorghum load negative and distance to road and maize load positively on the second component. Without additional subject matter knowledge, this component is difficult to interpret. The third component is essentially a distance to the road and goats component. This component might represent subsistence farms. The fourth component appears to be a contrast between distance to road and millet versus cattle and goats. Again, this component is difficult to interpret. The fifth component appears to contrast sorghum with millet.
10.2. The (2×1) random vectors $\boldsymbol{X}^{(1)}$ and $\boldsymbol{X}^{(2)}$ have the joint mean vector and joint covariance matrix

$$
\begin{gathered}
\boldsymbol{\mu}=\left(\frac{\boldsymbol{\mu}^{(1)}}{\boldsymbol{\mu}^{(2)}}\right)=\left(\begin{array}{c}
-3 \\
2 \\
\hline 0 \\
1
\end{array}\right) ; \\
\boldsymbol{\Sigma}=\left(\begin{array}{l|l}
\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\
\hline \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}
\end{array}\right)=\left(\begin{array}{rr|rr}
8 & 2 & 3 & 1 \\
2 & 5 & -1 & 3 \\
\hline 3 & -1 & 6 & -2 \\
1 & 3 & -2 & 7
\end{array}\right)
\end{gathered}
$$

(a) Calculate the canonical correlations ρ_{1}, ρ_{2}.
(b) Determine the canonical variate pairs $\left(U_{1}, V_{1}\right)$ and $\left(U_{2}, V_{2}\right)$.
(c) Let $\boldsymbol{U}=\left(U_{1}, U_{2}\right)^{T}$ and $\boldsymbol{V}=\left(V_{1}, V_{2}\right)^{T}$. From the first principles, evaluate

$$
E\binom{\boldsymbol{U}}{\hline \boldsymbol{V}} \text { and } \operatorname{Cov}\binom{\boldsymbol{U}}{\hline \boldsymbol{V}}=\left(\begin{array}{l|l}
\boldsymbol{\Sigma}_{U U} & \boldsymbol{\Sigma}_{U V} \\
\hline \boldsymbol{\Sigma}_{V U} & \boldsymbol{\Sigma}_{V V}
\end{array}\right)
$$

Compare your results with the properties in Result 10.1.
Sol. (a) The inverse and square root of the inverse of $\boldsymbol{\Sigma}_{11}$ and $\boldsymbol{\Sigma}_{22}$ are calculated by R compiled in the Appendix. We have

$$
\begin{gathered}
\boldsymbol{\Sigma}_{11}^{-1}=\left(\begin{array}{cc}
0.1389 & -0.0556 \\
-0.0556 & 0.2222
\end{array}\right), \quad \boldsymbol{\Sigma}_{11}^{-\frac{1}{2}}=\left(\begin{array}{cc}
0.3667 & -0.0667 \\
-0.0667 & 0.4667
\end{array}\right), \\
\boldsymbol{\Sigma}_{22}^{-1}=\left(\begin{array}{cc}
0.1842 & 0.0526 \\
0.0526 & 0.1579
\end{array}\right), \boldsymbol{\Sigma}_{22}^{-\frac{1}{2}}=\left(\begin{array}{cc}
0.4243 & 0.0645 \\
0.0645 & 0.3921
\end{array}\right) .
\end{gathered}
$$

Since $\boldsymbol{\rho}^{2}=\left(\rho_{1}^{2}, \rho_{2}^{2}\right)$ are the eigenvalues of the matrix $\boldsymbol{\Sigma}_{11}^{-\frac{1}{2}} \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-\frac{1}{2}}$ with corresponding (2×1) eigenvectors $\boldsymbol{h}_{1}, \boldsymbol{h}_{2}$. (The quantities $\boldsymbol{\rho}^{2}$ are also the eigenvalues of the matrix $\boldsymbol{\Sigma}_{22}^{-\frac{1}{2}} \boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-\frac{1}{2}}$ with corresponding (2×1) eigenvectors $\boldsymbol{f}_{1}, \boldsymbol{f}_{2}$.)

$$
\Sigma_{11}^{-\frac{1}{2}} \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21} \Sigma_{11}^{-\frac{1}{2}}=\left(\begin{array}{cc}
0.2756 & -0.0322 \\
-0.0322 & 0.2690
\end{array}\right)
$$

and

$$
\Sigma_{22}^{-\frac{1}{2}} \boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-\frac{1}{2}}=\left(\begin{array}{cc}
0.2946 & -0.0234 \\
-0.0234 & 0.2500
\end{array}\right)
$$

The eigenvalues are $\left(\rho_{1}^{2}, \rho_{2}^{2}\right)=(0.3046,0.2400)$ with the corresponding eigenvectors $\boldsymbol{H}=\left(\boldsymbol{h}_{1}, \boldsymbol{h}_{2}\right)$ and $\boldsymbol{Q}=\left(\boldsymbol{f}_{1}, \boldsymbol{f}_{2}\right)$, respectively. Here

$$
\boldsymbol{h}_{1}=\binom{-0.7422}{0.6702}, \boldsymbol{h}_{2}=\binom{-0.6702}{-0.7422}, \boldsymbol{f}_{1}=\binom{-0.9194}{0.3936}, \text { and } \boldsymbol{f}_{2}=\binom{-0.3936}{-0.9193} .
$$

So the canonical correlations $\left(\rho_{1}, \rho_{2}\right)=(0.5519,0.4899)$.
(b) The canonical variate pairs:

$$
\begin{aligned}
& U_{1}=\boldsymbol{h}_{1}^{T} \boldsymbol{\Sigma}_{11}^{-\frac{1}{2}} \boldsymbol{X}^{(1)}=-0.3168 X_{1}^{(1)}+0.3622 X_{2}^{(1)} \\
& V_{1}=\boldsymbol{f}_{1}^{T} \boldsymbol{\Sigma}_{22}^{-\frac{1}{2}} \boldsymbol{X}^{(2)}=-0.3647 X_{1}^{(2)}+0.0951 X_{2}^{(2)} \\
& U_{2}=\boldsymbol{h}_{2}^{T} \boldsymbol{\Sigma}_{11}^{-\frac{1}{2}} \boldsymbol{X}^{(1)}=-0.1962 X_{1}^{(1)}-0.3017 X_{2}^{(1)} \\
& V_{2}=\boldsymbol{f}_{1}^{T} \boldsymbol{\Sigma}_{22}^{-\frac{1}{2}} \boldsymbol{X}^{(2)}=-0.2263 X_{1}^{(2)}-0.3858 X_{2}^{(2)}
\end{aligned}
$$

(c) Since $\boldsymbol{U}=\binom{U_{1}}{U_{2}}=\boldsymbol{H}^{T} \boldsymbol{\Sigma}_{11}^{-\frac{1}{2}} \boldsymbol{X}^{(1)}$ and $\boldsymbol{V}=\binom{V_{1}}{V_{2}}=\boldsymbol{Q}^{T} \boldsymbol{\Sigma}_{22}^{-\frac{1}{2}} \boldsymbol{X}^{(2)}$

$$
\begin{aligned}
E\left(\frac{\boldsymbol{U}}{\boldsymbol{V}}\right) & =\left(\frac{\boldsymbol{H}^{T} \boldsymbol{\Sigma}_{11}^{-\frac{1}{2}} \boldsymbol{\mu}^{(1)}}{\boldsymbol{Q}^{T} \boldsymbol{\Sigma}_{22}^{-\frac{1}{2}} \boldsymbol{\mu}^{(2)}}\right)=\left(\begin{array}{c}
1.6749 \\
\frac{-0.0146}{0.0951} \\
-0.3858
\end{array}\right) \\
\operatorname{Cov}\left(\frac{\boldsymbol{U}}{\boldsymbol{V}}\right) & =\operatorname{Cov}\left(\frac{\boldsymbol{H}^{T} \boldsymbol{\Sigma}_{11}^{-\frac{1}{2}} \boldsymbol{X}^{(1)}}{\boldsymbol{Q}^{T} \boldsymbol{\Sigma}_{22}^{-\frac{1}{2}} \boldsymbol{X}^{(2)}}\right) \\
& =\left(\begin{array}{cc|cc}
\boldsymbol{H}^{T} \boldsymbol{\Sigma}_{11}^{-\frac{1}{2}} \boldsymbol{\Sigma}_{11} \boldsymbol{\Sigma}_{11}^{-\frac{1}{2}} \boldsymbol{H} & \boldsymbol{H}^{T} \boldsymbol{\Sigma}_{11}^{-\frac{1}{2}} \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-\frac{1}{2}} \boldsymbol{Q} \\
\hline \boldsymbol{Q}^{T} \boldsymbol{\Sigma}_{22}^{-\frac{1}{2}} \boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-\frac{1}{2}} \boldsymbol{H} & \boldsymbol{Q}^{T} \boldsymbol{\Sigma}_{22}^{-\frac{1}{2}} \boldsymbol{\Sigma}_{22} \boldsymbol{\Sigma}_{22}^{-\frac{1}{2}} \boldsymbol{Q}
\end{array}\right) \\
& =\left(\begin{array}{cc|cc}
1 & 0 & 0.5519 & 0 \\
0 & 1 & 0 & 0.4899 \\
\hline 0.5519 & 0 & 1 & 0 \\
0 & 0.4899 & 0 & 1
\end{array}\right)
\end{aligned}
$$

The above result shows that $\operatorname{Corr}\left(U_{k}, V_{k}\right)=\rho_{k}$ and

$$
\begin{aligned}
\operatorname{Var}\left(U_{k}\right) & =\operatorname{Var}\left(V_{k}\right)=1 \\
\operatorname{Cov}\left(U_{k}, U_{l}\right) & =\operatorname{Corr}\left(U_{k}, U_{l}\right)=0 \quad k \neq l \\
\operatorname{Cov}\left(V_{k}, V_{l}\right) & =\operatorname{Corr}\left(V_{k}, V_{l}\right)=0 \quad k \neq l \\
\operatorname{Cov}\left(U_{k}, V_{l}\right) & =\operatorname{Corr}\left(U_{k}, V_{l}\right)=0 \quad k \neq l
\end{aligned}
$$

for $k, l=1,2$. This result coincide with the properties in Result 10.1.
10.10. In a study of poverty, crime, and deterrence, Parker and Smith [10] report certain summary crime statistics in various states for the years 1970 and 1973. A portion of their sample correlation matrix is

$$
\boldsymbol{R}=\left(\begin{array}{l|l}
\boldsymbol{R}_{11} & \boldsymbol{R}_{12} \\
\hline \boldsymbol{R}_{21} & \boldsymbol{R}_{22}
\end{array}\right)=\left(\begin{array}{rr|rr}
1.000 & 0.615 & -0.111 & -0.266 \\
0.615 & 1.000 & -0.195 & -0.085 \\
\hline-0.111 & -0.195 & 1.000 & -0.269 \\
-0.266 & -0.085 & -0.269 & 1.000
\end{array}\right)
$$

The variables are
$X_{1}^{(1)}=1973$ nonprimary homicides
$X_{2}^{(1)}=1973$ primary homicides (homicides involving family or acquaintances)
$X_{1}^{(2)}=1970$ severity of punishment (median months served)
$X_{2}^{(2)}=1970$ certainty of punishment (number of admissions to prison divided by number of homicides)
(a) Find the sample canonical correlations.
(b) Determine the first canonical pair \hat{U}_{1}, \hat{V}_{1} and interpret these quantities.

Sol. (a) The inverse and square root of the inverse of \boldsymbol{R}_{11} and \boldsymbol{R}_{22} are calculated by R compiled in the Appendix. We have

$$
\begin{gathered}
\boldsymbol{R}_{11}^{-1}=\left(\begin{array}{cc}
1.6083 & -0.9891 \\
-0.9891 & 1.6083
\end{array}\right), \quad \boldsymbol{R}_{11}^{-\frac{1}{2}}=\left(\begin{array}{cc}
1.1993 & -0.4124 \\
-0.4124 & 1.1993
\end{array}\right) \\
\boldsymbol{R}_{22}^{-1}=\left(\begin{array}{cc}
1.0780 & 0.2900 \\
0.2900 & 1.0780
\end{array}\right), \quad \boldsymbol{R}_{22}^{-\frac{1}{2}}=\left(\begin{array}{cc}
1.0287 & 0.1410 \\
0.1410 & 1.0287
\end{array}\right) \\
\boldsymbol{R}_{11}^{-\frac{1}{2}} \boldsymbol{R}_{12} \boldsymbol{R}_{22}^{-1} \boldsymbol{R}_{21} \boldsymbol{R}_{11}^{-\frac{1}{2}}=\left(\begin{array}{cc}
0.0986 & 0.0237 \\
0.0237 & 0.0374
\end{array}\right)
\end{gathered}
$$

and

$$
\boldsymbol{R}_{22}^{-\frac{1}{2}} \boldsymbol{R}_{21} \boldsymbol{R}_{11}^{-1} \boldsymbol{R}_{12} \boldsymbol{R}_{22}^{-\frac{1}{2}}=\left(\begin{array}{cc}
0.0459 & 0.0318 \\
0.0318 & 0.0900
\end{array}\right)
$$

The eigenvalues are $\left(\rho_{1}^{2}, \rho_{2}^{2}\right)=(0.1067,0.0293)$ with the corresponding eigenvectors $H=\left(\boldsymbol{h}_{1}, \boldsymbol{h}_{2}\right)$ and $\boldsymbol{Q}=\left(\boldsymbol{f}_{1}, \boldsymbol{f}_{2}\right)$, respectively. Here

$$
\boldsymbol{h}_{1}=\binom{-0.9463}{-0.3232}, \boldsymbol{h}_{2}=\binom{0.3232}{-0.9463}, \boldsymbol{f}_{1}=\binom{0.4634}{0.8861}, \text { and } \boldsymbol{f}_{2}=\binom{-0.8861}{0.4634} .
$$

So the canonical correlations $\left(\rho_{1}, \rho_{2}\right)=(0.3266,0.1711)$.
(b) The first canonical variate pairs:

$$
\begin{aligned}
& \hat{U}_{1}=\boldsymbol{h}_{1}^{T} \boldsymbol{\Sigma}_{11}^{-\frac{1}{2}} \boldsymbol{Z}^{(1)}=-1.0016 Z_{1}^{(1)}+0.0026 Z_{2}^{(1)} \approx-Z_{1}^{(1)} \\
& \hat{V}_{1}=\boldsymbol{f}_{1}^{T} \boldsymbol{\Sigma}_{22}^{-\frac{1}{2}} \boldsymbol{Z}^{(2)}=0.6016 Z_{1}^{(2)}+0.9769 Z_{2}^{(2)} \approx \frac{3}{5} Z_{1}^{(2)}+Z_{2}^{(2)}
\end{aligned}
$$

Since \hat{U}_{1} approximately equals $-Z_{1}^{(1)}$, we can interpret the canonical variate \hat{U}_{1} as the standardized $X_{1}^{(1)}=1973$ nonprimary homicides. On the other hand, \hat{V}_{1} approximately equals $\frac{3}{5} Z_{1}^{(2)}+Z_{2}^{(2)}$, we can interpret the canonical variate \hat{V}_{1} as a punishment index. Punishment appears to be correlated with nonprimary homicides but not primary homicides.
10.13. Waugh [12] provides information about $n=138$ samples of Canadian hard red spring wheat and the flour made from the samples. The $p=5$ wheat measurements (in standardized form) were

$$
\begin{aligned}
& z_{1}^{(1)}=\text { kernel texture } \\
& z_{2}^{(1)}=\text { test weight } \\
& z_{3}^{(1)}=\text { damaged kernels } \\
& z_{4}^{(1)}=\text { foreign material } \\
& z_{5}^{(1)}=\text { crude protein in the wheat }
\end{aligned}
$$

The $q=4$ (standardized) flour measurements were

$$
\begin{aligned}
& z_{1}^{(2)}=\text { wheat per barrel of flour } \\
& z_{2}^{(2)}=\text { ash in flour } \\
& z_{3}^{(2)}=\text { crude protein in flour } \\
& z_{4}^{(2)}=\text { gluten quality index }
\end{aligned}
$$

The sample correlation matrix was

$$
\begin{aligned}
\boldsymbol{R} & =\left(\begin{array}{r|l}
\boldsymbol{R}_{11} & \boldsymbol{R}_{12} \\
\hline \boldsymbol{R}_{21} & \boldsymbol{R}_{22}
\end{array}\right) \\
& =\left(\begin{array}{rrrrr|rrr}
1.000 & & & & & & & \\
0.754 & 1.000 & & & & & \\
-0.690 & -0.712 & 1.000 & & & & & \\
-0.446 & -0.515 & 0.323 & 1.000 & & & & \\
0.692 & 0.412 & -0.444 & -0.334 & 1.000 & & & \\
\hline-0.605 & -0.772 & 0.737 & 0.527 & -0.383 & 1.000 & & \\
-0.479 & -0.419 & 0.361 & 0.461 & -0.505 & 0.251 & 1.000 & \\
0.780 & 0.542 & -0.546 & -0.393 & 0.737 & -0.490 & -0.434 & 1.000 \\
-0.152 & -0.102 & 0.172 & -0.019 & -0.148 & 0.250 & -0.079 & -0.163 \\
1.000
\end{array}\right)
\end{aligned}
$$

(a) Find the sample canonical variates corresponding to significant (at the $\alpha=0.01$ level) canonical correlations.
(b) Interpret the first sample canonical variates \hat{U}_{1}, \hat{V}_{1}. Do they in some sense represent the overall quality of the wheat and flour, respectively?
(c) What proportion of the total sample variance of the first set $\boldsymbol{Z}^{(1)}$ is explained by the canonical variate \hat{U}_{1} ? What proportion of the total sample variance of the $\boldsymbol{Z}^{(2)}$ set is explained by the canonical variate \hat{V}_{1} ? Discuss your answers.

Sol. (a) We calculate the canonical correlation by R compiled in Appendix. The canonical correlations are: $\left(\hat{\rho}_{1}, \hat{\rho}_{2}, \hat{\rho}_{3}, \hat{\rho}_{4}\right)=(0.9158,0.6706,0.2544,0.0940)$. We then run the hypothesis testing and summarize the results in the following table:

$$
\begin{aligned}
& \begin{array}{lcccc}
\text { Null hypothesis } & \text { Test Statisitc } & \text { Df } & \chi^{2} \text {-value } & \text { Conclusion } \\
\hline H_{0}: \boldsymbol{\Sigma}_{12}=\rho_{12}=0 & 329.6947 & 20 & 37.5662 & \text { Reject } H_{0}
\end{array} \\
& H_{0}: \begin{array}{l}
\rho_{1} \neq 0, \\
\rho_{2}=\rho_{3}=\rho_{4}=0
\end{array} \quad 88.8550 \quad 12 \quad 26.2170 \quad \text { Reject } H_{0} \\
& H_{0}: \begin{array}{l}
\rho_{1} \neq 0, \rho_{2} \neq 0, \\
\rho_{3}=\rho_{4}=0
\end{array} \quad 10.0012 \quad 6 \quad 16.8119 \quad \text { Do not reject } H_{0} \\
& \hat{U}_{1}=-0.1176 z_{1}^{(1)}-0.3004 z_{2}^{(1)}+0.3160 z_{3}^{(1)}+0.2509 z_{4}^{(1)}-0.2937 z_{5}^{(1)} \\
& \hat{V}_{1}=0.5930 z_{1}^{(2)}+0.2856 z_{2}^{(2)}-0.4017 z_{3}^{(2)}-0.0366 z_{4}^{(2)} \\
& \hat{U}_{2}=-1.0204 z_{1}^{(1)}+0.7809 z_{2}^{(1)}-0.5102 z_{3}^{(1)}-0.2463 z_{4}^{(1)}-0.5000 z_{5}^{(1)} \\
& \hat{V}_{2}=0.9809 z_{1}^{(2)}-0.0020 z_{2}^{(2)}+0.9956 z_{3}^{(2)}-0.1821 z_{4}^{(2)}
\end{aligned}
$$

(b) \hat{U}_{1} appears to measure quality of wheat as a contrast between negative aspects $z_{1}^{(1)}$, $z_{2}^{(1)}$, and $z_{5}^{(1)}$ and positive aspects $z_{3}^{(1)}$ and $z_{4}^{(1)}$. \hat{V}_{1} appears to measure the quality of the flour as represented by $z_{1}^{(2)}, z_{2}^{(2)}$, and $z_{3}^{(2)}$.
(c) We find that the proportion of the total sample variance of the first set $\boldsymbol{Z}^{(1)}$ explained by the canonical variate \hat{U}_{1} is $\rho_{1}^{(1)}=\frac{1}{p}\left(\boldsymbol{a}_{z}^{(1)}\right)^{T} \boldsymbol{a}_{z}^{(1)}=0.6297$ and the proportion of the total sample variance of the $\boldsymbol{Z}^{(2)}$ set explained by the canonical variate \hat{V}_{1} is $\rho_{1}^{(2)}=\frac{1}{q}\left(\boldsymbol{b}_{z}^{(1)}\right)^{T} \boldsymbol{b}_{z}^{(1)}=0.4453$.

Appendix

R code for Problem 8.10

```
> stocks <- read.table('./T8-4.DAT', col.names = c("JPMorgan", "CitiBank",
+ "WellsFargo", "RoyDutShell", "ExxonMobil"))
>
> # (a)
> S <- cov(stocks)
> pca <- prcomp(stocks)
>
> # (b)
> lambda <- pca$sdev^2
> cumsum(lambda/sum(lambda))
>
> # (c)
> n <- nrow(stocks)
> alpha <- 0.1
> m <- 3
> CI.LB <- lambda[1:m]/(1+qnorm(1-alpha/(2*m))*sqrt(2/n))
> CI.UB <- lambda[1:m]/(1-qnorm(1-alpha/(2*m))*sqrt(2/n))
```


R code for Problem 8.28.

```
> farm <- read.table('./T8-7.DAT', col.names = c("Family", "DistRD", "Cotton",
+ "Maize", "Sorg", "Millet", "Bull", "Cattle", "Goats"))
>
> # (a) scatterplots of Family versus DistRd
> plot(farm$Family,farm$DistRD, xlab="Family", ylab="DistRD")
> plot(farm$DistRD,farm$Cattle, xlab="DistRD", ylab="Cattle")
>
> farm1 <- farm[-c(25,34,69,72),]
> plot(farm1$Family,farm1$DistRD, xlab="Family", ylab="DistRD")
> plot(farm1$DistRD,farm1$Cattle, xlab="DistRD", ylab="Cattle")
>
> # (b) PCA on correlation matrix R
> pca <- prcomp(farm1, center = TRUE, scale = TRUE)
> # screeplot
> plot(1:length(pca$sdev), pca$sdev^2, type="b",
+ xlab="Number of PCs", ylab="Variance explained")
>
> # porportion of variance explained
> plot(1:length(pca$sdev), cumsum(pca$sdev^2)/sum(pca$sdev^2), type="b",
+ xlab="number of PCs", ylab="Cumulative proportion")
>
> # proportion of variance explained by each component
> pca$sdev^2/sum(pca$sdev^2)*100
```


R code for Problem 10.2.

```
> mu1 <- c(-3,2)
> mu2 <- c(0,1)
> S11 <- matrix(c(8,2,2,5), nrow=2, ncol=2)
> S12 <- matrix(c(3,-1,1,3), nrow=2, ncol=2)
> S21 <- t(S12)
> S22 <- matrix(c(6,-2,-2,7), nrow=2, ncol=2)
>
> eig11 <- eigen(S11)
> S11inv <- solve(S11)
> S11invsq <- eig11$vectors %*% diag(sqrt(eig11$values)^(-1)) %*% t(eig11$vectors)
>
> eig22 <- eigen(S22)
> S22inv <- solve(S22)
> S22invsq <- eig22$vectors %*% diag(sqrt(eig22$values)^(-1)) %*% t(eig22$vectors)
>
> # (a)
> rho <- sqrt(eigen(S11invsq %*% S12 %*% S22inv %*% S21 %*% S11invsq)$values)
>
> # (b)
> H <- eigen(S11invsq %*% S12 %*% S22inv %*% S21 %*% S11invsq)$vectors
> Q <- eigen(S22invsq %*% S21 %*% S11inv %*% S12 %*% S22invsq)$vectors
>
> t(H) %*% S11invsq
> t(Q) %*% S22invsq
```

```
>
```

$>$ \# (c)
$>\mathrm{EU}<-\mathrm{t}(\mathrm{H}) \% * \%$ S11invsq $\% * \%$ mu1
$>\mathrm{EV}<-\mathrm{t}(\mathrm{Q}) \% * \% \mathrm{~S} 22$ invsq $\% * \%$ mu2
$>$
$>$ SUU <- t(H) \% *\% S11invsq \% $\% \%$ S11 \% $\% \%$ S11invsq \% $\% \%$ H
$>$ SUV <- t (H) $\% * \%$ S11invsq $\% * \%$ S12 $\% * \%$ S22invsq $\% * \%$ Q
$>$ SVU <- t (Q) $\% * \%$ S22invsq $\% * \%$ S21 $\% * \%$ S11invsq $\% * \%$ H
$>\operatorname{SVV}<-\mathrm{t}(\mathrm{Q}) \% * \%$ S22invsq $\% * \%$ S22 \%*\% S22invsq \%*\% Q

R code for Problem 10.10.

```
> R11 <- matrix(c(1,0.615,0.615,1), nrow=2, ncol=2)
> R12 <- matrix(c(-0.111,-0.195,-0.266,-0.085), nrow=2, ncol=2)
> R21 <- t(R12)
> R22 <- matrix(c(1,-0.269,-0.269,1), nrow=2, ncol=2)
>
> # (a)
> eig11 <- eigen(R11)
> R11inv <- solve(R11)
> R11invsq <- eig11$vectors %*% diag(sqrt(eig11$values)^(-1)) %*% t(eig11$vectors)
>
> eig22 <- eigen(R22)
> R22inv <- solve(R22)
> R22invsq <- eig22$vectors %*% diag(sqrt(eig22$values)^(-1)) %*% t(eig22$vectors)
>
> rho <- sqrt(eigen(R11invsq %*% R12 %*% R22inv %*% R21 %*% R11invsq)$values)
>
> # (b)
> H <- eigen(R11invsq %*% R12 %*% R22inv %*% R21 %*% R11invsq)$vectors
> Q <- eigen(R22invsq %*% R21 %*% R11inv %*% R12 %*% R22invsq)$vectors
>
> t(H[,1]) %*% R11invsq
> t(Q[,1]) %*% R22invsq
```


R code for Problem 10.13.

```
> R11 <- matrix(c(1.000, 0.754,-0.690,-0.446, 0.692,
+ 0.754, 1.000,-0.712,-0.515, 0.412,
+ -0.690,-0.712, 1.000, 0.323,-0.444,
+ -0.446,-0.515, 0.323, 1.000,-0.334,
+ 0.692, 0.412,-0.444,-0.334, 1.000), nrow=5, ncol=5, byrow=TRUE)
> R21 <- matrix(c(-0.605,-0.772, 0.737, 0.527,-0.383,
+ -0.479,-0.419, 0.361, 0.461,-0.505,
+ 0.780, 0.542,-0.546,-0.393, 0.737,
+ -0.152,-0.102, 0.172,-0.019,-0.148), nrow=4, ncol=5, byrow=TRUE)
> R12 <- t(R21)
> R22 <- matrix(c(1.000, 0.251,-0.490, 0.250,
+ 0.251, 1.000,-0.434,-0.079,
+ -0.490,-0.434, 1.000,-0.163,
+ 0.250,-0.079,-0.163, 1.000), nrow=4, ncol=4, byrow=TRUE)
```

```
> n <- 138
> p <- 5
>q<-4
> d <- min(p,q)
> alpha <- 0.01
>
> eig11 <- eigen(R11)
> R11inv <- solve(R11)
> R11invsq <- eig11$vectors %*% diag(sqrt(eig11$values)^(-1)) %*% t(eig11$vectors)
>
> eig22 <- eigen(R22)
> R22inv <- solve(R22)
> R22invsq <- eig22$vectors %*% diag(sqrt(eig22$values)^(-1)) %*% t(eig22$vectors)
>
> rho2 <- eigen(R11invsq %*% R12 %*% R22inv %*% R21 %*% R11invsq)$values
> rho2[p] <- 0
> rho <- sqrt(rho2)
>
> H <- eigen(R11invsq %*% R12 %*% R22inv %*% R21 %*% R11invsq)$vectors
> Q <- eigen(R22invsq %*% R21 %*% R11inv %*% R12 %*% R22invsq)$vectors
>
> # (a) Sequential test
> for ( i in 1:d){
+ TS <- - (n-1-1/2*(p+q+1))*log(prod(1-rho2[i:d]))
+ dfs <- (p-(i-1))*(q-(i-1))
+ pval <- qchisq(1-alpha,df=dfs)
+ print(c(TS, dfs, pval))
+ }
>
> U <- t(H[,1:2]) %*% R11invsq
> V <- t(Q[,1:2]) %*% R22invsq
>
> # (c)
> Azinv <- solve(t(H) %*% R11invsq)
> Bzinv <- solve(t(Q) %*% R22invsq)
>
> rho1exp <- crossprod(Azinv[,1])/p
> rho2exp <- crossprod(Bzinv[,1])/q
```

