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8.4. Find the principal components and the proportion of the total population variance ex-
plained by each when the covariance matrix is

Σ =

 σ2 σ2ρ 0
σ2ρ σ2 σ2ρ
0 σ2ρ σ2

 , − 1√
2
< ρ <

1√
2

Sol. To find the eigenvalues, we let det(Σ− λI) = 0, i.e.,∣∣∣∣∣∣
σ2 − λ σ2ρ 0
σ2ρ σ2 − λ σ2ρ
0 σ2ρ σ2 − λ

∣∣∣∣∣∣ = 0.

By solving the system, we obtain the characteristic polynomial in terms of λ as:

(σ2 − λ)(σ4 − 2σ4ρ2 − 2λσ2 + λ2) = 0

and we get λ1 = σ2(1 +
√

2ρ), λ2 = σ2, and λ3 = σ2(1−
√

2ρ). To solve the eigenvector,
we need to solve Σei = λiei, for i = 1, 2, 3. We found that

e1 =

 1/2√
2/2

1/2

 , e2 =

 √2/2
0

−
√

2/2

 , and e3 =

 1/2

−
√

2/2
1/2


Therefore, the principal components become

Y1 = eT1X =
1

2
X1 +

√
2

2
X2 +

1

2
X3

Y2 = eT2X =

√
2

2
X1 −

√
2

2
X3

Y3 = eT3X =
1

2
X1 −

√
2

2
X2 +

1

2
X3

The total population variance is

3∑
i=1

V ar(Yi) =
3∑
i=1

λi = σ2(1 +
√

2ρ) + σ2 + σ2(1−
√

2ρ) = 3σ2

and the proportion of total population variance explained by each principal components
is: 1

3
(1 +

√
2ρ), 1

3
, and 1

3
(1−

√
2ρ), for Y1, Y2, and Y3, respectively.

8.10. The weekly rates of return for five stocks listed on the New York Stock Exchange are
given in Table 8.4.

1



(a) Construct the sample covariance matrix S, and find the sample principal components
in (8-20).

(b) Determine the proportion of the total sample variance explained by the first three
principal components. Interpret these components.

(c) Construct Bonferroni simultaneous 90% confidence intervals for the variances λ1, λ2,
and λ3 of the first three population components Y1, Y2, and Y3.

(d) Given the results in Parts (a)-(c), do you feel that the stock rates-of-return data can
be summarized in fewer than five dimensions? Explain.

Sol. (a) The sample covariance matrix S is shown below:

JPMorgan CitiBank WellsFargo RoyDutShell ExxonMobil

JPMorgan 0.00043327 0.00027567 0.00015903 0.00006412 0.00008897

CitiBank 0.00027567 0.00043872 0.00017997 0.00018145 0.00012326

WellsFargo 0.00015903 0.00017997 0.00022397 0.00007341 0.00006055

RoyDutShell 0.00006412 0.00018145 0.00007341 0.00072250 0.00050828

ExxonMobil 0.00008897 0.00012326 0.00006055 0.00050828 0.00076567

The sample principle components are:

Standard deviations (1, .., p=5):

[1] 0.03698213 0.02647942 0.01593118 0.01194163 0.01090352

Rotation (n x k) = (5 x 5):

PC1 PC2 PC3 PC4 PC5

JPMorgan -0.2228228 0.6252260 -0.32611218 0.6627590 -0.11765952

CitiBank -0.3072900 0.5703900 0.24959014 -0.4140935 0.58860803

WellsFargo -0.1548103 0.3445049 0.03763929 -0.4970499 -0.78030428

RoyDutShell -0.6389680 -0.2479475 0.64249741 0.3088689 -0.14845546

ExxonMobil -0.6509044 -0.3218478 -0.64586064 -0.2163758 0.09371777

(b) From part (a),

λ̂1 = 0.00137, λ̂2 = 0.00070, λ̂3 = 0.00025, λ̂4 = 0.00014, λ̂5 = 0.00012,

so the total sample variance is
∑5

i=1 λ̂i = 0.00258 and the proportion of total variance

explained by the first three component is
∑3

i=1 λ̂i
/∑5

i=1 λ̂i = 0.8988. The first
component might be interpreted as a “market” component with the greast weight
on Royal Dutch Shell and Exxon Mobil, the second component as an “industry”
component that separates bank and gas companies, and the third component is a
contrast between these five stocks which is difficult to interpret.

(c) The Bonferroni simultaneous 100(1 − α)% confidence interval for λi can be con-
structed by

λ̂i

1 + z
(
α
2m

)√
2
n

≤ λi ≤
λ̂i

1− z
(
α
2m

)√
2
n

.

Thus the 90% confidence intervals for the three variance of the population compo-
nents are:

λ1 : (0.001055, 0.001944)

2



λ2 : (0.000541, 0.000997)

λ3 : (0.000196, 0.000361)

(d) Stock returns are probably best summarized in two dimensions with 80% of the total
variation accounted for by a “market” component and an “industry” component
without much loss of information.

8.28. Survey data were collected as part of a study to assess options for enhancing food security
through the sustainable use of natural resources in the Sikasso region of Mali (West
Africa). A total of n = 76 farmers were surveyed and observations on the nine variables

x1 = Family (total number of individuals in household)

x2 = DistRd (distance in kilometers to nearest passable road)

x3 = Cotton (hectares of cotton planted in year 2000)

x4 = Maize (hectares of maize planted in year 2000)

x5 = Sorg (hectares of sorghum planted in year 2000)

x6 = Millet (hectares of millet planted in year 2000)

x7 = Bull (total number of bullocks or draft animals)

x8 = Cattle (total); x9 = Goats (total)

were recorded.The data are listed in Table 8.7.

(a) Construct two-dimensional scatterplots of Family versus DistRd, and DistRd versus
Cattle. Remove any obvious outliers from the data set.

(b) Perform a principal component analysis using the correlation matrix R. Determine
the number of components to effectively summarize the variability. Use the propor-
tion of variation explained and a scree plot to aid in your determination.

(c) Interpret the first five principal components. Can you identify, for example, a “farm
size” component? A, perhaps, “goats and distance to road” component?

Sol. (a) Scatterplots of the two pairs of specified variables are shown in Figure 1.
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Figure 1: Scatterplots of Family versue DistRd (left) and DistRd versus Cattle (right).
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Figure 2: Scatterplots of Family versue DistRd (left) and DistRd versus Cattle (right). The
outliers are removed from the dataset.

Based on these scatterplots, we removed the four outliers (observations 25, 34, 69,
72) from the dataset. The scatterplots with outlier removed are plotted in Figure 2.

(b) The principal component analysis of R follows. Removing the outliers has some but
relatively little effect on the analysis.

Standard deviations (1, .., p=9):

[1] 2.0457593 1.1992026 1.0413933 0.8898414 0.7773833 0.6050916

[7] 0.4899220 0.4145180 0.3437368

Rotation (n x k) = (9 x 9):

PC1 PC2 PC3 PC4 PC5

Family 0.433842713 -0.065088695 0.09840025 -0.17120143 0.01132705

DistRD 0.007587031 0.496670914 -0.56856059 -0.49561039 -0.37766811

Cotton 0.446140316 0.008917253 0.13211700 0.02733684 -0.21870789

Maize 0.352228405 0.352571495 0.38820350 -0.24020492 -0.07920345

Sorg 0.203622111 -0.603667416 -0.11149246 0.05854254 -0.64457738

Millet 0.240361102 -0.415159516 -0.11595977 -0.61632679 0.52696668

Bull 0.445273680 0.068042477 -0.03038787 0.14559178 -0.02829987

Cattle 0.355411548 0.284473439 0.01382636 0.37293370 0.21753184

Goats 0.254549533 -0.048668251 -0.68695528 0.35078804 0.24867109

PC6 PC7 PC8 PC9

Family -0.03997862 -0.79746017 -0.26281017 -0.24862206

DistRD 0.18658220 0.02106965 -0.04790053 -0.06469259

Cotton -0.19968612 0.36124785 0.32948454 -0.67521059

Maize -0.27321206 -0.02382879 0.36297395 0.57444950

Sorg 0.24598733 -0.02061874 0.12556392 0.29340194

Millet 0.18077867 0.24070610 0.07713302 0.04795829

Bull -0.13405398 0.39621919 -0.75050803 0.18962561

Cattle 0.75905049 -0.01063587 0.16866186 0.03806691

Goats -0.40218231 -0.13068360 0.27368097 0.14936105
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The proportion of variance explained by each component are: 46.50%, 15.98%,
12.05%, 8.80%, 6.71%, 4.07%, 2.67%, 1.91%, and 1.31%. Based on the screeplot
and cumulative proportion of variance plot in Figure 3, we would like to choose the
first five principal components to summarize this dataset. The first five components
explain about 90% of the total variability in the data set and seems a reasonable
number given the screeplot.
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Figure 3: Screeplot (left) and cumulative proportion of variance (right).

(c) All the variables (all crops, all livestock, family) except for distance to road (RistRd)
load about equally on the first component. This component might be called a farm
size component. Millet and sorghum load negative and distance to road and maize
load positively on the second component. Without additional subject matter knowl-
edge, this component is difficult to interpret. The third component is essentially a
distance to the road and goats component. This component might represent sub-
sistence farms. The fourth component appears to be a contrast between distance
to road and millet versus cattle and goats. Again, this component is difficult to
interpret. The fifth component appears to contrast sorghum with millet.

10.2. The (2×1) random vectorsX(1) andX(2) have the joint mean vector and joint covariance
matrix

µ =

(
µ(1)

µ(2)

)
=


−3
2
0
1

 ;

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
=


8 2 3 1
2 5 −1 3
3 −1 6 −2
1 3 −2 7


(a) Calculate the canonical correlations ρ1, ρ2.

(b) Determine the canonical variate pairs (U1, V1) and (U2, V2).

(c) Let U = (U1, U2)
T and V = (V1, V2)

T . From the first principles, evaluate

E

(
U
V

)
and Cov

(
U
V

)
=

(
ΣUU ΣUV

ΣV U ΣV V

)
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Compare your results with the properties in Result 10.1.

Sol. (a) The inverse and square root of the inverse of Σ11 and Σ22 are calculated by R compiled
in the Appendix. We have

Σ−1
11 =

(
0.1389 −0.0556
−0.0556 0.2222

)
, Σ

− 1
2

11 =

(
0.3667 −0.0667
−0.0667 0.4667

)
,

Σ−1
22 =

(
0.1842 0.0526
0.0526 0.1579

)
, Σ

− 1
2

22 =

(
0.4243 0.0645
0.0645 0.3921

)
.

Since ρ2 = (ρ21, ρ
2
2) are the eigenvalues of the matrix Σ

− 1
2

11 Σ12Σ
−1
22 Σ21Σ

− 1
2

11 with cor-
responding (2 × 1) eigenvectors h1,h2. (The quantities ρ2 are also the eigenvalues

of the matrix Σ
− 1

2
22 Σ21Σ

−1
11 Σ12Σ

− 1
2

22 with corresponding (2× 1) eigenvectors f1,f2.)

Σ
− 1

2
11 Σ12Σ

−1
22 Σ21Σ

− 1
2

11 =

(
0.2756 −0.0322
−0.0322 0.2690

)
and

Σ
− 1

2
22 Σ21Σ

−1
11 Σ12Σ

− 1
2

22 =

(
0.2946 −0.0234
−0.0234 0.2500

)
The eigenvalues are (ρ21, ρ

2
2) = (0.3046, 0.2400) with the corresponding eigenvectors

H = (h1,h2) and Q = (f1,f2), respectively. Here

h1 =

(
−0.7422
0.6702

)
, h2 =

(
−0.6702
−0.7422

)
, f1 =

(
−0.9194
0.3936

)
, and f2 =

(
−0.3936
−0.9193

)
.

So the canonical correlations (ρ1, ρ2) = (0.5519, 0.4899).

(b) The canonical variate pairs:

U1 = hT1 Σ
− 1

2
11 X

(1) = −0.3168X
(1)
1 + 0.3622X

(1)
2

V1 = fT1 Σ
− 1

2
22 X

(2) = −0.3647X
(2)
1 + 0.0951X

(2)
2

U2 = hT2 Σ
− 1

2
11 X

(1) = −0.1962X
(1)
1 − 0.3017X

(1)
2

V2 = fT1 Σ
− 1

2
22 X

(2) = −0.2263X
(2)
1 − 0.3858X

(2)
2

(c) Since U =

(
U1

U2

)
= HTΣ

− 1
2

11 X
(1) and V =

(
V1
V2

)
= QTΣ

− 1
2

22 X
(2)

E

(
U
V

)
=

(
HTΣ

− 1
2

11 µ
(1)

QTΣ
− 1

2
22 µ

(2)

)
=


1.6749
−0.0146
0.0951
−0.3858



Cov

(
U
V

)
= Cov

(
HTΣ

− 1
2

11 X
(1)

QTΣ
− 1

2
22 X

(2)

)

=

(
HTΣ

− 1
2

11 Σ11Σ
− 1

2
11 H HTΣ

− 1
2

11 Σ12Σ
− 1

2
22 Q

QTΣ
− 1

2
22 Σ21Σ

− 1
2

11 H QTΣ
− 1

2
22 Σ22Σ

− 1
2

22 Q

)

=


1 0 0.5519 0
0 1 0 0.4899

0.5519 0 1 0
0 0.4899 0 1
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The above result shows that Corr(Uk, Vk) = ρk and

V ar(Uk) = V ar(Vk) = 1

Cov(Uk, Ul) = Corr(Uk, Ul) = 0 k 6= l

Cov(Vk, Vl) = Corr(Vk, Vl) = 0 k 6= l

Cov(Uk, Vl) = Corr(Uk, Vl) = 0 k 6= l

for k, l = 1, 2. This result coincide with the properties in Result 10.1.

10.10. In a study of poverty, crime, and deterrence, Parker and Smith [10] report certain
summary crime statistics in various states for the years 1970 and 1973. A portion of their
sample correlation matrix is

R =

(
R11 R12

R21 R22

)
=


1.000 0.615 −0.111 −0.266
0.615 1.000 −0.195 −0.085
−0.111 −0.195 1.000 −0.269
−0.266 −0.085 −0.269 1.000


The variables are

X
(1)
1 = 1973 nonprimary homicides

X
(1)
2 = 1973 primary homicides (homicides involving family or acquaintances)

X
(2)
1 = 1970 severity of punishment (median months served)

X
(2)
2 = 1970 certainty of punishment (number of admissions to prison divided by

number of homicides)

(a) Find the sample canonical correlations.

(b) Determine the first canonical pair Û1, V̂1 and interpret these quantities.

Sol. (a) The inverse and square root of the inverse of R11 and R22 are calculated by R
compiled in the Appendix. We have

R−1
11 =

(
1.6083 −0.9891
−0.9891 1.6083

)
, R

− 1
2

11 =

(
1.1993 −0.4124
−0.4124 1.1993

)

R−1
22 =

(
1.0780 0.2900
0.2900 1.0780

)
, R

− 1
2

22 =

(
1.0287 0.1410
0.1410 1.0287

)
R

− 1
2

11 R12R
−1
22R21R

− 1
2

11 =

(
0.0986 0.0237
0.0237 0.0374

)
and

R
− 1

2
22 R21R

−1
11R12R

− 1
2

22 =

(
0.0459 0.0318
0.0318 0.0900

)
The eigenvalues are (ρ21, ρ

2
2) = (0.1067, 0.0293) with the corresponding eigenvectors

H = (h1,h2) and Q = (f1,f2), respectively. Here

h1 =

(
−0.9463
−0.3232

)
, h2 =

(
0.3232
−0.9463

)
, f1 =

(
0.4634
0.8861

)
, and f2 =

(
−0.8861
0.4634

)
.

So the canonical correlations (ρ1, ρ2) = (0.3266, 0.1711).
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(b) The first canonical variate pairs:

Û1 = hT1 Σ
− 1

2
11 Z

(1) = −1.0016Z
(1)
1 + 0.0026Z

(1)
2 ≈ −Z

(1)
1

V̂1 = fT1 Σ
− 1

2
22 Z

(2) = 0.6016Z
(2)
1 + 0.9769Z

(2)
2 ≈

3

5
Z

(2)
1 + Z

(2)
2

Since Û1 approximately equals −Z(1)
1 , we can interpret the canonical variate Û1

as the standardized X
(1)
1 = 1973 nonprimary homicides. On the other hand, V̂1

approximately equals 3
5
Z

(2)
1 + Z

(2)
2 , we can interpret the canonical variate V̂1 as a

punishment index. Punishment appears to be correlated with nonprimary homicides
but not primary homicides.

10.13. Waugh [12] provides information about n = 138 samples of Canadian hard red spring
wheat and the flour made from the samples. The p = 5 wheat measurements (in stan-
dardized form) were

z
(1)
1 = kernel texture

z
(1)
2 = test weight

z
(1)
3 = damaged kernels

z
(1)
4 = foreign material

z
(1)
5 = crude protein in the wheat

The q = 4 (standardized) flour measurements were

z
(2)
1 = wheat per barrel of flour

z
(2)
2 = ash in flour

z
(2)
3 = crude protein in flour

z
(2)
4 = gluten quality index

The sample correlation matrix was

R =

(
R11 R12

R21 R22

)

=



1.000
0.754 1.000
−0.690 −0.712 1.000
−0.446 −0.515 0.323 1.000

0.692 0.412 −0.444 −0.334 1.000
−0.605 −0.772 0.737 0.527 −0.383 1.000
−0.479 −0.419 0.361 0.461 −0.505 0.251 1.000

0.780 0.542 −0.546 −0.393 0.737 −0.490 −0.434 1.000
−0.152 −0.102 0.172 −0.019 −0.148 0.250 −0.079 −0.163 1.000


(a) Find the sample canonical variates corresponding to significant (at the α = 0.01

level) canonical correlations.

(b) Interpret the first sample canonical variates Û1, V̂1. Do they in some sense represent
the overall quality of the wheat and flour, respectively?
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(c) What proportion of the total sample variance of the first set Z(1) is explained by the
canonical variate Û1? What proportion of the total sample variance of the Z(2) set
is explained by the canonical variate V̂1? Discuss your answers.

Sol. (a) We calculate the canonical correlation by R compiled in Appendix. The canonical
correlations are: (ρ̂1, ρ̂2, ρ̂3, ρ̂4) = (0.9158, 0.6706, 0.2544, 0.0940). We then run the
hypothesis testing and summarize the results in the following table:

Null hypothesis Test Statisitc Df χ2-value Conclusion
H0 : Σ12 = ρ12 = 0 329.6947 20 37.5662 Reject H0

H0 :
ρ1 6= 0,
ρ2 = ρ3 = ρ4 = 0

88.8550 12 26.2170 Reject H0

H0 :
ρ1 6= 0, ρ2 6= 0,
ρ3 = ρ4 = 0

10.0012 6 16.8119 Do not reject H0

Û1 = −0.1176z
(1)
1 − 0.3004z

(1)
2 + 0.3160z

(1)
3 + 0.2509z

(1)
4 − 0.2937z

(1)
5

V̂1 = 0.5930z
(2)
1 + 0.2856z

(2)
2 − 0.4017z

(2)
3 − 0.0366z

(2)
4

Û2 = −1.0204z
(1)
1 + 0.7809z

(1)
2 − 0.5102z

(1)
3 − 0.2463z

(1)
4 − 0.5000z

(1)
5

V̂2 = 0.9809z
(2)
1 − 0.0020z

(2)
2 + 0.9956z

(2)
3 − 0.1821z

(2)
4

(b) Û1 appears to measure quality of wheat as a contrast between negative aspects z
(1)
1 ,

z
(1)
2 , and z

(1)
5 and positive aspects z

(1)
3 and z

(1)
4 . V̂1 appears to measure the quality

of the flour as represented by z
(2)
1 , z

(2)
2 , and z

(2)
3 .

(c) We find that the proportion of the total sample variance of the first set Z(1) explained

by the canonical variate Û1 is ρ
(1)
1 = 1

p
(a

(1)
z )Ta

(1)
z = 0.6297 and the proportion of

the total sample variance of the Z(2) set explained by the canonical variate V̂1 is
ρ
(2)
1 = 1

q
(b

(1)
z )Tb

(1)
z = 0.4453.

Appendix

R code for Problem 8.10.

> stocks <- read.table(’./T8-4.DAT’, col.names = c("JPMorgan", "CitiBank",

+ "WellsFargo", "RoyDutShell", "ExxonMobil"))

>

> # (a)

> S <- cov(stocks)

> pca <- prcomp(stocks)

>

> # (b)

> lambda <- pca$sdev^2

> cumsum(lambda/sum(lambda))

>

> # (c)

> n <- nrow(stocks)

> alpha <- 0.1

> m <- 3

> CI.LB <- lambda[1:m]/(1+qnorm(1-alpha/(2*m))*sqrt(2/n))

> CI.UB <- lambda[1:m]/(1-qnorm(1-alpha/(2*m))*sqrt(2/n))
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R code for Problem 8.28.

> farm <- read.table(’./T8-7.DAT’, col.names = c("Family", "DistRD", "Cotton",

+ "Maize", "Sorg", "Millet", "Bull", "Cattle", "Goats"))

>

> # (a) scatterplots of Family versus DistRd

> plot(farm$Family,farm$DistRD, xlab="Family", ylab="DistRD")

> plot(farm$DistRD,farm$Cattle, xlab="DistRD", ylab="Cattle")

>

> farm1 <- farm[-c(25,34,69,72),]

> plot(farm1$Family,farm1$DistRD, xlab="Family", ylab="DistRD")

> plot(farm1$DistRD,farm1$Cattle, xlab="DistRD", ylab="Cattle")

>

> # (b) PCA on correlation matrix R

> pca <- prcomp(farm1, center = TRUE, scale = TRUE)

> # screeplot

> plot(1:length(pca$sdev), pca$sdev^2, type="b",

+ xlab="Number of PCs", ylab="Variance explained")

>

> # porportion of variance explained

> plot(1:length(pca$sdev), cumsum(pca$sdev^2)/sum(pca$sdev^2), type="b",

+ xlab="number of PCs", ylab="Cumulative proportion")

>

> # proportion of variance explained by each component

> pca$sdev^2/sum(pca$sdev^2)*100

R code for Problem 10.2.

> mu1 <- c(-3,2)

> mu2 <- c(0,1)

> S11 <- matrix(c(8,2,2,5), nrow=2, ncol=2)

> S12 <- matrix(c(3,-1,1,3), nrow=2, ncol=2)

> S21 <- t(S12)

> S22 <- matrix(c(6,-2,-2,7), nrow=2, ncol=2)

>

> eig11 <- eigen(S11)

> S11inv <- solve(S11)

> S11invsq <- eig11$vectors %*% diag(sqrt(eig11$values)^(-1)) %*% t(eig11$vectors)

>

> eig22 <- eigen(S22)

> S22inv <- solve(S22)

> S22invsq <- eig22$vectors %*% diag(sqrt(eig22$values)^(-1)) %*% t(eig22$vectors)

>

> # (a)

> rho <- sqrt(eigen(S11invsq %*% S12 %*% S22inv %*% S21 %*% S11invsq)$values)

>

> # (b)

> H <- eigen(S11invsq %*% S12 %*% S22inv %*% S21 %*% S11invsq)$vectors

> Q <- eigen(S22invsq %*% S21 %*% S11inv %*% S12 %*% S22invsq)$vectors

>

> t(H) %*% S11invsq

> t(Q) %*% S22invsq
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>

> # (c)

> EU <- t(H)%*%S11invsq%*%mu1

> EV <- t(Q)%*%S22invsq%*%mu2

>

> SUU <- t(H)%*% S11invsq %*% S11 %*% S11invsq %*% H

> SUV <- t(H)%*% S11invsq %*% S12 %*% S22invsq %*% Q

> SVU <- t(Q)%*% S22invsq %*% S21 %*% S11invsq %*% H

> SVV <- t(Q)%*% S22invsq %*% S22 %*% S22invsq %*% Q

R code for Problem 10.10.

> R11 <- matrix(c(1,0.615,0.615,1), nrow=2, ncol=2)

> R12 <- matrix(c(-0.111,-0.195,-0.266,-0.085), nrow=2, ncol=2)

> R21 <- t(R12)

> R22 <- matrix(c(1,-0.269,-0.269,1), nrow=2, ncol=2)

>

> # (a)

> eig11 <- eigen(R11)

> R11inv <- solve(R11)

> R11invsq <- eig11$vectors %*% diag(sqrt(eig11$values)^(-1)) %*% t(eig11$vectors)

>

> eig22 <- eigen(R22)

> R22inv <- solve(R22)

> R22invsq <- eig22$vectors %*% diag(sqrt(eig22$values)^(-1)) %*% t(eig22$vectors)

>

> rho <- sqrt(eigen(R11invsq %*% R12 %*% R22inv %*% R21 %*% R11invsq)$values)

>

> # (b)

> H <- eigen(R11invsq %*% R12 %*% R22inv %*% R21 %*% R11invsq)$vectors

> Q <- eigen(R22invsq %*% R21 %*% R11inv %*% R12 %*% R22invsq)$vectors

>

> t(H[,1]) %*% R11invsq

> t(Q[,1]) %*% R22invsq

R code for Problem 10.13.

> R11 <- matrix(c(1.000, 0.754,-0.690,-0.446, 0.692,

+ 0.754, 1.000,-0.712,-0.515, 0.412,

+ -0.690,-0.712, 1.000, 0.323,-0.444,

+ -0.446,-0.515, 0.323, 1.000,-0.334,

+ 0.692, 0.412,-0.444,-0.334, 1.000), nrow=5, ncol=5, byrow=TRUE)

> R21 <- matrix(c(-0.605,-0.772, 0.737, 0.527,-0.383,

+ -0.479,-0.419, 0.361, 0.461,-0.505,

+ 0.780, 0.542,-0.546,-0.393, 0.737,

+ -0.152,-0.102, 0.172,-0.019,-0.148), nrow=4, ncol=5, byrow=TRUE)

> R12 <- t(R21)

> R22 <- matrix(c(1.000, 0.251,-0.490, 0.250,

+ 0.251, 1.000,-0.434,-0.079,

+ -0.490,-0.434, 1.000,-0.163,

+ 0.250,-0.079,-0.163, 1.000), nrow=4, ncol=4, byrow=TRUE)

>
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> n <- 138

> p <- 5

> q <- 4

> d <- min(p,q)

> alpha <- 0.01

>

> eig11 <- eigen(R11)

> R11inv <- solve(R11)

> R11invsq <- eig11$vectors %*% diag(sqrt(eig11$values)^(-1)) %*% t(eig11$vectors)

>

> eig22 <- eigen(R22)

> R22inv <- solve(R22)

> R22invsq <- eig22$vectors %*% diag(sqrt(eig22$values)^(-1)) %*% t(eig22$vectors)

>

> rho2 <- eigen(R11invsq %*% R12 %*% R22inv %*% R21 %*% R11invsq)$values

> rho2[p] <- 0

> rho <- sqrt(rho2)

>

> H <- eigen(R11invsq %*% R12 %*% R22inv %*% R21 %*% R11invsq)$vectors

> Q <- eigen(R22invsq %*% R21 %*% R11inv %*% R12 %*% R22invsq)$vectors

>

> # (a) Sequential test

> for ( i in 1:d){

+ TS <- -(n-1-1/2*(p+q+1))*log(prod(1-rho2[i:d]))

+ dfs <- (p-(i-1))*(q-(i-1))

+ pval <- qchisq(1-alpha,df=dfs)

+ print(c(TS, dfs, pval))

+ }

>

> U <- t(H[,1:2]) %*% R11invsq

> V <- t(Q[,1:2]) %*% R22invsq

>

> # (c)

> Azinv <- solve(t(H) %*% R11invsq)

> Bzinv <- solve(t(Q) %*% R22invsq)

>

> rho1exp <- crossprod(Azinv[,1])/p

> rho2exp <- crossprod(Bzinv[,1])/q
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