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1. Details of EM Algorithm and its implementation

In this section, we provide details of the EM algorithm for obtaining the maxi-

mum likelihood estimates (MLE) of θ where θ = (α1, β1, α2, β2, e,A)T , where A =

(akk′)k,k′=1,··· ,M are parameters in the transition matrix.

To this end, we introduce the following complete data corresponding the observed

data X,

Y = {Gil, δil,Xil : l = 1, · · · , L} for i = 1, · · · , n.

The likelihood function for the complete data is

L(θ|Y) = f(Y|θ) = f(X|G)f(G|θ) =
n∏
i=1

L∏
l=1

fX(Xil|Gil)
n∏
i=1

L∏
l=2

agi(l−1),gil(θ)πgi1(θ).

∗The authors acknowledge the support from NSF grants DMS-1209112, DMS-1309156, NIFA-

AFRI 2010-65205-20342 and NIFA-AFRI 2011-07015-30338.
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where fX(Xil|Gil, δil) is the conditional density of Xil. It follows that the log-

likelihood function of L(θ|Y) is given by

logL(θ|Y) =
n∑
i=1

L∑
l=1

log fX(Xit|Git) +
n∑
i=1

L∑
l=2

log{agi(l−1),gil(θ)}+
n∑
i=1

log{πgi1(θ)}.

Define Li,k(l) as

Li,k(l) := P (Gil = k|X) =
∑
Gi

P (G|X)I(Gil = k)

=
∑
Gi

P (X, G)

P (X)
I(Gil = k). (1.1)

and

Hi,k,k′(l) = P (Gil = k,Gi(l+1) = k′|X) =
∑
Gi

P (Gi|X)I(Gil = k)I(Gi(l+1) = k′).

The conditional expection of logL(θ|Y) given X evaluated at θ(m−1) is

E{logL(θ|Y)|X,θ(m−1)} =
n∑
i=1

M∑
k=1

Li,k(1) log(πk(θ)) +
n∑
i=1

L∑
l=2

M∑
k=1

M∑
k′=1

Hi,k,k′(l) log(ak,k′(θ))

+
n∑
i=1

L∑
l=1

M∑
k=1

Li,k(l) log fX(Xil|Gil = k,θ)

where we used Eδil|Gil=k{log fX(δil|Gil = k,θ)} = 0.

We then maximize E{logL(θ|Y)|X,θ(m−1)} with respect to θ, say, the maximal

is taken at point θ(m). We updated the parameter θ(m−1) by θ(m). It can be shown,

by a constrained maximization, that a
(m)
kk′ are

a
(m)
kk′ =

∑n
i=1

∑L
l=1Hi,k,k′(l)∑n

i=1

∑L
l=1

∑M
k′=1Hi,k,k′(l)

=

∑n
i=1

∑L
l=1Hi,k,k′(l)∑n

i=1

∑L
l=1 Li,k(l)

(1.2)

and α
(m)
1 , β

(m)
1 , α

(m)
2 , β

(m)
2 , e(m) satisfying

n∑
i=1

L∑
l=1

M∑
k=1

Li,k(l)
∂ log fX(Xil|Gil = k;θ)

∂(α1, β1, α2, β2, e)
= 0. (1.3)
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where the marginal probability mass function of Xil given Gil is

fX(Xil|Gil = g;θ) =



(
nil
Xil

)
(1− e)Xil1( e

3
)Xil2+Xil3+Xil4 for g = 1(

nl
Xil

)
(0.5− e

3
)Xil1+Xil2( e

3
)Xil3+Xil4 for g = 2(

nl
Xil

)
( e

3
)Xil3+Xil4 C0(θ;Xil1,Xil2)

0.5α1+β1−1B(α1,β1)
for g = 3(

nl
Xil

)
( e

3
)Xil3+Xil4 C1(θ;Xil1,Xil2)

0.5α2+β2−1B(α2,β2)
for g = 4(

nt
Xil

)
(1− e)Xil2( e

3
)Xil1+Xil3+Xil4 for g = 5

where
(
nil
Xil

)
= nl!

Xil1!Xil2!Xil3!Xil4!
,

C0(θ;Xil1, Xil2) =

∫ 1

0.5

((1− 4e

3
)δ+

e

3
)Xil1((

4e

3
−1)δ+1−e)Xil2(1−δ)α1−1(δ−0.5)β1−1dδ

and

C1(θ;Xil1, Xil2) =

∫ 0.5

0

((1− 4e

3
)δ +

e

3
)Xil1((

4e

3
− 1)δ + 1− e)Xil2δα1−1(0.5− δ)β1−1dδ.

The details of the implementation of above EM algorithm can be done by a forward

and backward method. The following forward-backward algorithm implements the

EM algorithm in three steps:

1. Compute αi,k (forward probabilities), βi,k (backward probabilities) and PXi
.

αi,k(1) = πkfX(Xi1|Gil = k;α, β, e) for all 1 ≤ k ≤M and 1 ≤ i ≤ n;

αi,k(l) = fX(Xil|Gil = k;α, β, e)
M∑
k′=1

αi,k′(l − 1)ak′,g for 1 < l ≤ L and 1 ≤ i ≤ n;

βi,k(M) = 1 for all 1 ≤ k ≤M and 1 ≤ i ≤ n;

βi,k(l) =
M∑
k′=1

ag,k′fX(Xi(l+1)|Gi,(l+1) = k′;α, β, e)βi,k′(l + 1)

for 1 ≤ l < L, 1 ≤ k ≤M and 1 ≤ i ≤ n;

and PXi
=
∑M

k=1 αi,k(1)βi,k(1).
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2. Compute Li,k(l) and Hi,k,k′(l) using αi,k(l) and βi,k(l).

Li,k(l) =
αi,k(l)βi,k(l)

PXi

Hi,k,k′(l) = αi,k(l)akk′fX(Xi(l+1)|Gi(l+1) = k′;α, β, e)βi,k′(l + 1).

3. Update parameters θ = (ak,l, α1, β1, α2, β2, e)
T by

n∑
i=1

L∑
l=1

M∑
k=1

Li,k(l)
∂ log fX(Xil|Gil = k;α, β, e)

∂θ
= 0. (1.4)

4. Repeat Step 1-3 until all the parameters θ converge.

Since there is no closed form integration C0(θ;Xil1, Xil2) and C1(θ;Xil1, Xil2), we

compute them using a numerical integration. To update parameters α, β, e in (1.4),

we define ê(m) as the solution of

0 =
n∑
i=1

L∑
l=1

{
Li,1(l)(−

Xil1

1− e
+
nil −Xil1

e
) + Li,2(l)(−

Xil1 +Xil2

1.5− e
+
Xil3 +Xil4

e
)

+Li,3(l)
{Xil3 +Xil4

e
+
∂C0(α̂

(m−1)
1 , β̂

(m−1)
1 , e;Xil1, Xil2)/∂e

C0(α̂
(m−1)
1 , β̂

(m−1)
1 , e;Xil1, Xil2)

}
+Li,4(l)

{Xil3 +Xil4

e
+
∂C1(α̂

(m−1)
2 , β̂

(m−1)
2 , e;Xil1, Xil2)/∂e

C1(α̂
(m−1)
2 , β̂

(m−1)
2 , e;Xil1, Xil2)

}
+Li,5(l)(−

Xil2

1− e
+
nil −Xil2

e
)
}

and α̂
(m)
s , β̂

(m)
s (s = 1, 2) as the solutions to the following two equations:

0 =
n∑
i=1

L∑
l=1

Li,2+s(l)(− log 2−B−1(αs, β̂
(m−1)
s )

∂B(αs, β̂
(m−1)
s )

∂αs

+C−1
s−1(αs, β̂

(m−1)
s , ê(m−1);Xil1, Xil2)

∂Cs−1(αs, β̂
(m−1)
s , ê(k−1);Xil1, Xil2)

∂αs
)

0 =
n∑
i=1

L∑
l=1

Li,2+s(l)(− log 2−B−1(α̂(m−1)
s , βs)

∂B(α̂
(m−1)
s , βs)

∂βs

+C−1
s−1(α̂

(m−1)
s , βs, ê

(m−1);Xil1, Xl2)
∂Cs−1(α̂

(m−1)
s , βs, ê

(m−1);Xl1 , Xl2)

∂βs
).
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2. Transition Probabilities Depending on Distances Among SNPs

In this section, we discuss a generalized version of HMM-ASE, with transition prob-

ability taking into consideration of distances among SNPs. The idea is, if the two

SNPs are close to each other, it is less likely that the genotype state changes from

one SNP to another. While if the two SNPs are far apart, it is more likely that there

exists a change on genotype status between the two SNPs. Similar idea was been

applied in copy number variation detection by Wang et al. (2013).

If distances among SNPs affect the transition probability, then the transition ma-

trix Al = (akk′(l)) depending on the location of a SNP, which is a function of the

SNP location l, where

akk′(l) = P (Gi,l+1 = k′|Gi,l = k)

=

a
∗
kk′(1− e−ρdl) k 6= k′

1− (
∑

k 6=k′ a
∗
kk′)(1− e−ρdl) k = k′

, (1.5)

for k, k′ = 1, . . . , 5 and l = 2, . . . , L. Here dl represents the genomic distance between

the locations of SNP l and SNP l + 1. The parameter ρ determines the effect of

the distance on the transition probabilities (ρ > 0). The parameter a∗kk′ affects the

transition probabilities from state k to state k′, besides the effect of distances. Also,

there is a constraint that a∗kk′ ∈ (0, 1) and
∑

l 6=k a
∗
kk′ < 1 for each k. The expectation
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of the log-likelihood function is now changed to

E{logL(θ|Y)|X,θ(k−1)}

=
n∑
i=1

M∑
k=1

Li,k(1) log(πk) +
n∑
i=1

L∑
l=2

M∑
k=1

Hi,k,k(l) log

(
1−

(∑
k′ 6=k

a∗kk′
)(

1− e−ρdl
))

+
n∑
i=1

L∑
l=2

M∑
k 6=k′

Hi,k,k′(l) log

(
a∗kk

(
1− e−ρdl

))

+
n∑
i=1

L∑
l=1

M∑
k=1

Li,k(l) log fX(Xit|Git = k,θ)

:= R1(πk) +R2(a, ρ) +R3(a, ρ) +R4(θ)

where a∗ = (a∗12, . . . , a
∗
M,M−1).

We modify the forward-backward algorithm in the last section to accommodate

the new model (1.5) on the transition matrix. The changes are summarized in the

following (1) change the transition probabilities ak′,g in step 1 into ak′,g(l) and ak,k′ in

step 2 into ak,k′(l); (2) in additional to the update for parameters α1, β1, α2, β2, e in

step 3, we also need to update the parameters a∗k,k′ , ρ, which can be done by using the

following method. Equating to zero the derivative of E{logL(θ|Y)|X,θ(k−1)} with

respect to a∗kk′ yields

∂R2(a
∗, ρ)

∂a∗kk′
+
∂R3(a

∗, ρ)

∂a∗kk′
, 0 (k, k′ = 1, . . . ,M ; k 6= k′)

⇒
n∑
i=1

L∑
l=2

(1− e−ρdl)Hi,k,k(l)

1− (1− e−ρdl)
∑

l 6=k a
∗
kl

=
n∑
i=1

L∑
l=2

Hi,k,k′(w)

a∗kk′
(k, k′ = 1, . . . ,M ; k 6= k′)

⇒
n∑
i=1

L∑
l=2

Hi,k,1(l)

a∗k1
= . . . =

n∑
i=1

L∑
l=2

Hi,k,M(l)

a∗kM
=

n∑
i=1

L∑
l=2

(1− e−ρdk)Hi,k,k(l)

1− (1− e−ρdl)
∑

k′ 6=k a
∗
kk′

for k, k′ = 1, . . . ,M and k′ 6= k.

For each k (k = 1, . . . ,M), let
∑n

i=1

∑L
l=2

Hi,k,k′ (l)

a∗
kk′

= hk, k
′ = 1, . . . ,M , and we
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find the value of hk that maximizes

n∑
i=1

L∑
l=2

M∑
k=1

Hi,k,k(l) log

(
1−

(∑
k′ 6=k

∑n
i=1

∑L
l=2Hi,k,k′(l)

hk

)(
1− e−ρdl

))

+
n∑
i=1

L∑
l=2

M∑
k 6=k′

Hi,k,k′(l) log

(∑n
i=1

∑L
l=2Hi,k,k(l)

hk

(
1− e−ρdl

))

for each k with ρ initially fixed at its value from the previous EM iteration (ρ(m)).

Then a new value of a∗ can be obtained by akk′ =
Pn
i=1

PL
l=2Hi,k,k′ (l)

hk
, k, k′ = 1 . . . ,M ,

k′ 6= k. Now, an updated value of ρ can be obtained by directly maximizing

R2(a
∗, ρ) +R3(a

∗, ρ) with respect to ρ, using the new a∗ value.

3. Additional Results in Real Data Analysis

In this section, we present some additional results from the real data analysis. The

following contigency table Table S.1 reports the performance of the HMM-NASE DD

and the HMM-ASE DD method, which are, respectively, HMM-NASE and HMM-

ASE methods with transition probability matrix depending on distance among adja-

cent SNPs.

Comparing the results in the following Table S.1 with the results reported in Table

5 in the paper, we found that HMM-NASE DD method produced exactly the same

results as the HMM-NASE method. And the HMM-ASE DD method had a higher

empirical false positive rate than HMM-ASE method, which might be due to the

over parameterization in the HMM-ASE DD model. This indicates that, there is

no advantage of using distance dependent transition matrix for SNPs in a small

neighborhood.
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Table S.1: Contingency tables of genotype calling with two methods (columns),

HMM-NASE Distance Dependent and HMM-ASE DD, versus actual genotypes

(rows). Values in bold represent counts of correct calls. The other values are in-

correct calls or Non-called (NC).

HMM-NASE DD HMM-ASE DD

Actual Genotype,Reads>0 Genotype,Reads>0

genotype He Ho NC He Ho NC

He 570 1 20 571 0 20

Ho 2 921 46 34 889 46
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