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Abstract

We explore extremal properties of a family of skewed distributions extended from the
multivariate normal distribution by introducing a skewing function π. We give suf-
ficient conditions on the skewing function for the pairwise asymptotic independence
to hold. We apply our results to a special case of the bivariate skew-normal distribu-
tion and finally support our conclusions by a simulation study which indicates that
the rate of convergence is quite slow.
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1 Introduction

Understanding stochastic properties of multivariate extremes is essential in
many applied fields. Applications of extreme value theory in the insurance
and banking sectors are discussed, for instance, in Embrechts et al. (1997),
McNeil et al. (2005), Balkema and Embrechts (2007). The Gaussian distribu-
tion lies at the heart of many models in finance and insurance. However, real
data on insurance losses and financial returns often indicate departures from
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normality such as the presence of skewness (see, e.g., Lane (2000)), which
makes mathematical convenience gained by assuming normality unjustified.

Although multivariate extremes have been studied in detail for many stan-
dard distributions, it is in general not known what happens if we relax one or
more of the ‘nice’ properties of such distributions. The goal of this paper is
to explore the extremal behavior of the multivariate generalized skew-normal
distributions (see Section 2 and also Genton (2004) for a more detailed dis-
cussion) obtained from the multivariate normal distribution by relaxing the
property of elliptical symmetry using a so-called skewing function. An impor-
tant role played by skewed distributions in many fields including finance and
insurance, biology, meteorology, astronomy, etc. (cf. Hill and Dixon (1982),
Azzalini and Capitanio (1999), Genton (2004)) motivates our interest in ex-
tremal properties of this class of distributions.

The paper is organized as follows. In Section 2 we give the definition of the
multivariate generalized skew-normal distributions and review the results of
Chang and Genton (2007) on the extremal behavior of such distributions in
the univariate case. In Section 3 we state sufficient conditions for asymptotic
independence in the multivariate set-up along with some examples. Finally, in
Section 4, we investigate the rate of convergence to the extreme value distri-
bution for both univariate and multivariate skew-normal distributions using
simulations. Throughout the paper, we use the following common abbrevi-
ations: cdf for cumulative distribution function, pdf for probability density
function, i.i.d. for independent and identically distributed.

2 Preliminaries

In this section we define the class of generalized skew-normal distributions and
review its extremal properties in the univariate case.

Definition 2.1 A d-dimensional random vector X = (X1, . . . , Xd)
T follows a

generalized skew-normal (GSN) distribution with location parameter ξ, scale
parameter Ω = (ωij) and skewing function π, denoted by X ∼ GSNd(ξ,Ω, π),
if its density function is given by

g(x) = 2φd(x; ξ,Ω)π(x − ξ),

where π : R
d → [0, 1] satisfies π(−x) = 1 − π(x) and φd(x; ξ,Ω) is the pdf

of a d-dimensional normal random vector with mean vector ξ and covariance
matrix Ω.

It is not difficult to check that g is a valid pdf for any skewing function π. One
of the nice properties of this class of distributions is that the marginals also

2



belong to the same class; see Proposition 2.3. The following example gives an
important special case.

Example 2.2 (Multivariate flexible skew-normal distribution) If π(x)
= H(PK(x)), where H is any cdf of a continuous random variable symmetric
around 0 and PK is an odd polynomial of order K defined on R

d, then X is
said to follow a flexible skew-normal distribution, which has the density of the
form g(x) = 2φd(x; ξ,Ω)H(PK(x)); see Fig. 1 for an example. This class of
distributions, introduced by Ma and Genton (2004), can systematically model
light tails, multimodality and skewness. If we take K = 1, H = Φ (the stan-
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Fig. 1. The density and contours of a bivariate flexible skew-normal distribution
with ξ = 0, Ω = I2, H = Φ, K = 3, and PK(x, y) = x + y− 4x2y− 2xy2 +2x3 − y3.

dard normal cdf) and PK(x) = αTx for some α ∈ R
d so that the density has

a form g(x) = 2φd(x; ξ,Ω)Φ(αTx) then this special case is referred to as mul-

tivariate skew-normal distribution with location parameter ξ, scale parameter
Ω and shape parameter α (denoted as X ∼ SNd(ξ,Ω,α)). This distribution,
introduced by Azzalini and Dalla Valle (1996), has the advantage that it is
still mathematically tractable as well as able to model various unimodal but
non-elliptical situations. Clearly, for α = 0 it is simply the d-dimensional
normal distribution, Nd(ξ,Ω).

The following proposition shows that the marginals of the GSN distributions
are also GSN.

Proposition 2.3 Suppose X ∼ GSNd(ξ,Ω, π) and X is partitioned as XT =
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(XT
(1),X

T
(2)) of dimensions h and d− h, respectively; denote by

Ω =







Ω11 Ω12

Ω21 Ω22





 and ξ =







ξ1

ξ2







the corresponding partitions of Ω and ξ, respectively. Then the marginal dis-
tribution of X(1) is GSNh(ξ1,Ω11, π

(1)) with π(1)(y) = E(π(Z − ξ)|Z(1) = y),

where Z ∼ Nd(ξ,Ω) and Z = (Z(1),Z(2)) is the corresponding partition of Z.

Proof Since X ∼ GSNd(ξ,Ω, π), it has density g(x) = 2φd(x; ξ,Ω)π(x − ξ)
with notations in Definition 2.1. Let xT = (yT , zT ) be the corresponding
partition of the variable x. Then the density of X(1) is given by (with the
vectors of variables written as row vectors instead of column vectors)

h(yT ) =
∫

Rd−h
g(yT , zT )dz

= 2
∫

Rd−h
φd(y

T , zT ; ξ,Ω)π
(

(y − ξ(1))
T
, (z − ξ(2))

T
)

dz

= 2φh(y
T ; ξ(1),Ω11)

∫

Rd−h
π

(

(y − ξ(1))
T
, (z − ξ(2))

T
)

ψ(zT )dz

where ψ is the density of Z(2) given Z(1) = y. This proves the result. �

We now turn our attention to the extremal behavior of these distributions
in the univariate case. Without loss of generality it can be assumed that
the location parameter is 0 and the scale parameter is 1. We use the no-
tation X ∼ GSN(π) and X ∼ SN(α) to mean X ∼ GSN1(0, 1, π) and X ∼
SN1(0, 1, α), respectively. The following result summarizes the implications of
Propositions 2.1 and 2.2 in Chang and Genton (2007) for univariate general-
ized skew-normal distributions. For the underlying extreme value theory, see,
for example, Resnick (1987), Embrechts et al. (1997), de Haan and Ferreira
(2006).

Proposition 2.4 (Chang and Genton (2007)) Let F be the cdf of a ran-
dom variable X ∼ GSN(π). Assume that the skewing function π : R → [0, 1]
and the cdf F satisfy the following conditions:

i) π is continuous and there exists a constant M > 0 such that π(x) is
positive and monotone for x > M ;

ii) π has continuous second derivative;
iii) there exists a constant M ∗ > 0 such that F

′′

(x) < 0 for x > M ∗;

iv) either limx→∞ π(x) = η ∈ (0, 1] or limx→∞
(1−F (x))F

′′

(x)

(F ′(x))2
= −1.

Then F ∈ MDA(Λ), where Λ denotes the Gumbel distribution given by
Λ(x) = exp (−e−x) for x ∈ (−∞,∞).
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Here the notation G ∈ MDA(Λ) means G belongs to the maximum do-
main of attraction of Λ (the Gumbel distribution). Using Proposition 2.4,
Chang and Genton (2007) established that the univariate flexible skew-normal
distribution with H = Φ (and hence in particular the univariate skew-normal
distribution) belongs to the maximum domain of attraction of the Gumbel
distribution.

3 Conditions for Asymptotic Independence

Recall that a d-dimensional random vector X = (X1, . . . , Xd)
T with cdf F is

said to be asymptotically independent if F is in the (componentwise) maximum
domain of attraction of a distribution G with independent components (i.e.,
G(x) =

∏d
i=1Gi(xi) where Gi is the ith marginal of G). Since the density g

in Definition 2.1 is strongly connected to the multivariate normal density and
any multivariate normal random vector with pairwise correlations less than 1
is asymptotically independent (see Sibuya (1960)), we expect the asymptotic
independence to hold also for a generalized skew-normal vector as long as the
skewing function π satisfies some mild conditions. As asymptotic independence
is essentially a pairwise concept (see Remark 6.2.5 in de Haan and Ferreira
(2006)), in the next two results we give sufficient conditions for pairwise
asymptotic independence of a generalized skew-normal random vector X in
terms of the skewing functions of the univariate and bivariate marginals, which
can be calculated from the skewing function π using Proposition 2.3.

Theorem 3.1 Consider X ∼ GSNd(ξ,Ω, π). Fix i, j ∈ {1, 2, . . . , d} with i 6=
j and

ωij√
ωiiωjj

< 1. Let πi, πj : R → [0, 1] be the skewing functions of Xi

and Xj, respectively. Assume that the skewing functions satisfy the following
conditions:

i) there exists a constant M1 ∈ R such that either πi(x) ≤ πj(x) or πj(x) ≤
πi(x) for all x ≥M1;

ii) lim inf
u→∞

πi(u) > 0, lim inf
u→∞

πj(u) > 0.

Then Xi and Xj are asymptotically independent.

Proof To prove this theorem we assume without loss of generality that ξk = 0
and ωkk = 1 for all k = 1, . . . , d. Furthermore, for simplicity of notation, we
only consider the case i = 1, j = 2, and π1(x) ≤ π2(x) for x larger than some
constant M1. Define ω := ω12 < 1. By Theorem 6.2.3 in de Haan and Ferreira
(2006), in order to establish asymptotic independence of X1 and X2 we need
to show that

lim
t→∞

P (X1 > U1(t), X2 > U2(t))

P (X1 > U1(t))
= 0, (3.1)
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where Ui(t) := inf{x ∈ R : Fi(x) ≥ 1 − 1/t}, for i = 1, 2. Since we assumed
that π1(x) ≤ π2(x) for large x, it follows that U1(t) ≤ U2(t) for large t. Note
that by condition ii) π1(u) > 0 for large u and therefore U1(t) → ∞ as t→ ∞.
So the limit in (3.1) can be bounded above as follows

lim
t→∞

P (X1 > U1(t), X2 > U2(t))

P (X1 > U1(t))
≤ lim

t→∞

P (X1 > U1(t), X2 > U1(t))

P (X1 > U1(t))

= lim
u→∞

P (X1 > u,X2 > u)

P (X1 > u)
. (3.2)

Hence, it is enough to show that the limit in (3.2) is equal to zero. From
condition ii), there exist constants M2, c0 > 0 such that π1(u) > c0 for all
u > M2. Hence, for all u > M2, the denominator in (3.2) can be bounded
below by

P (X1 > u) =
∫ ∞

u
2φ(x)π1(x)dx ≥ 2c0

∫ ∞

u
φ(x)dx

and the numerator of (3.2) can be bounded above by

P (X1 > u,X2 > u) =
∫ ∞

u

∫ ∞

u
2φ2(x, y;ω)π12(x, y)dxdy

≤ 2
∫ ∞

u

∫ ∞

u
φ2(x, y;ω)dxdy,

where π12 : R
2 → [0, 1] is the bivariate skewing function of (X1, X2).

Suppose (Z1, Z2) ∼ N2(0,Σω) with Σω :=







1 ω

ω 1





. Combining the above

bounds, we get

P (X1 > u,X2 > u)

P (X1 > u)
≤

∫ ∞
u

∫ ∞
u φ2(x, y;ω)dxdy

c0
∫ ∞
u φ(x)dx

=
1

c0

P (Z1 > u,Z2 > u)

P (Z1 > u)
→ 0

as u→ ∞ by Corollary 5.28 in Resnick (1987). This completes the proof. �

The following corollary is an immediate consequence of Proposition 2.4 and
Theorem 3.1.

Corollary 3.2 Let F be the cdf of a bivariate generalized skew-normal ran-
dom vector X ∼ GSN2(ξ,Ω, π) with ω12√

ω11ω22

< 1. Assume that the skewing

functions π1 and π2 satisfy the following conditions:
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i) there exists a constant M1 ∈ R such that either π1(x) ≤ π2(x) or π2(x) ≤
π1(x) for all x ≥M1;

ii) π1 and π2 are continuous and there exists a constant M2 > 0 such that
both π1(x) and π2(x) are monotone for x > M2;

iii) π1 and π2 have continuous second derivatives;
iv) there exists a constant M ∗ > 0 such that f ′

1(x) < 0 and f ′
2(x) < 0 for

x > M∗, where fi is the pdf of Xi, i = 1, 2;
v) lim

x→∞
min {π1(x), π2(x)} = η ∈ (0, 1].

Then F ∈MDA(G), where

G(x1, x2) = exp(−e−x1 − e−x2). (3.3)

Condition i) on the skewing function in Theorem 3.1 is often satisfied. Since
condition ii) is rather stringent, we relax it slightly by introducing other re-
quirements on the skewing functions in the next result.

Theorem 3.3 Let X ∼ GSNd(ξ,Ω, π) as in Theorem 3.1. Fix i, j ∈ {1, 2, . . . , d}
with

ωij√
ωiiωjj

< 1 and i 6= j. Let πi, πj : R → [0, 1] be the skewing functions of

Xi and Xj respectively, and πij : R
2 → [0, 1] be the bivariate skewing function

of (Xi, Xj). Assume that πi and πj satisfy condition i) of Theorem 3.1 and
additionally

ii) there exists a constant M2 ∈ R such that both πi(x) and πj(x) are mono-
tone for x > M2;

iii) there exists a constant M3 ∈ R such that πij(x, y) is monotone for x, y >
M3 in the sense that either πij(x

′, y′) ≤ πij(x, y) for all x′ ≥ x and y′ ≥ y
or πij(x

′, y′) ≥ πij(x, y) for all x′ ≥ x and y′ ≥ y;
iv) there exist constants b > 1, u0, C > 0 such that πij(u, u) ≤ Cπi(bu) and

πij(u, u) ≤ Cπj(bu) for all u ≥ u0.

Then Xi and Xj are asymptotically independent.

Proof As in the proof of Theorem 3.1, we assume ξk = 0 and ωkk = 1 for all
k = 1, . . . , d, i = 1, j = 2, and π1(x) ≤ π2(x) for x > M1. Once again it is
enough to show that the limit (3.2) is equal to zero. We may also assume that
limu→∞ π1(u) = 0 since otherwise we can use Theorem 3.1. Due to condition
iv), it follows that limu→∞ π12(u, u) = 0. This, combined with condition iii),
implies that both π1 and π12 are eventually decreasing functions. This gives
the following upper bound on the numerator of (3.2) for large enough u:

P (X1 > u,X2 > u) ≤ 2π12(u, u)
∫ ∞

u

∫ ∞

u
φ2(x, y;ω)dxdy

= 2π12(u, u)P (Z1 > u,Z2 > u)

≤ 2π12(u, u)P (Z1 + Z2 > 2u),

7



with (Z1, Z2) ∼ N2(0,Σω) as before. Since π1 is eventually decreasing, for
large u and b > 1, π1(bu) ≤ π1(u) and hence the denominator in (3.2) can be
bounded below by

P (u < X1 < bu) ≥2π1(bu)
∫ bu

u
φ(x)dx = 2π1(bu)P (u < Z1 ≤ bu).

Using the above bounds along with condition iv), we get

lim
u→∞

P (X1 > u,X2 > u)

P (X1 > u)
≤ C lim

u→∞

P (Z1 + Z2 > 2u)

P (u < Z1 ≤ bu)

= C lim
u→∞

1 − Φ(au)

Φ(bu) − Φ(u)

where a :=
√

2
1+ω

> 1. Applying l’Hôpital’s rule, we obtain

lim
u→∞

P (X1 > u,X2 > u)

P (X1 > u)
≤ C lim

u→∞

ae−
a2u2

2

e−
u2

2 − be−
b2u2

2

= 0

since a, b > 1. This completes the proof.

Example 3.4 (The Bivariate Skew-Normal Case) We now apply Theo-
rem 3.1 and Theorem 3.3 to a bivariate skew-normal random vector. We use the
notation X = (X1, X2)

T ∼ SN2(α1, α2;ω) to mean X ∼ SN2

(

0,Ω, (α1, α2)
T
)

with Ω =







1 ω

ω 1





. In this case, using Proposition 2 in Azzalini and Capitanio

(1999), it follows that Xi ∼ SN1(0, 1, ᾱi), i = 1, 2, where

ᾱ1 =
α1 + ωα2

√

1 + (1 − ω2)α2
2

and ᾱ2 =
α2 + ωα1

√

1 + (1 − ω2)α2
1

;

i.e., πi(x) = Φ(ᾱix), i = 1, 2, and π12(x1, x2) = Φ(α1x1 + α2x2). Unfortu-
nately, Theorems 3.1 and 3.3 do not establish asymptotic independence of
X1 and X2 for all parameters α1, α2 ∈ R and ω ∈ (−1, 1). Table 1 shows
the range of parameter values for which asymptotic independence follows
directly from these theorems, although we conjecture that it is true for all
possible parameter values. By the definition of asymptotic independence it
follows that the bivariate skew-normal distribution is in the maximum do-
main of attraction of (3.3) as long as α1 and α2 are as in Table 1. For ω 6= 0
the asymptotic independence follows trivially from Theorems 3.1 and 3.3. If
ω = 0 we have α1 = ᾱ1 and α2 = ᾱ2. Hence, for α1, α2 < 0 we can use
Theorem 3.3. It is then enough to consider the case α2 ≥ 0. Taking i.i.d.
N(0, 1) random variables Z1, Z2 we get, following the proof of Theorem 3.1,
that P (X1 > U1(t), X2 > U2(t)) ≤ 2P (Z1 > U1(t))P (Z2 > U2(t)). Also
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ω α1 α2

ω = 0 α1 ∈ R α2 ∈ R

ω > 0 α1 ≥ 0 α2 ≥ −ωα1

α1 ≤ 0 α2 ≥ − 1
ω
α1

α1 < 0 α2 < 0

ω < 0 α1 ≥ 0 −ωα1 ≤ α2 ≤ − 1
ω
α1

α1 < 0 α2 < 0

Table 1
Parameters α1, α2 and ω for which asymptotic independence holds for
SN2(α1, α2;ω).

P (X2 > U2(t)) ≥ P (Z2 > U2(t)) since α2 ≥ 0. Hence, it follows that the limit
in (3.1) is equal to 0 establishing the asymptotic independence in the ω = 0
case.

4 Simulations

The relevance of the results of Section 3 is determined by how many ob-
servations one has to have in order to make the asymptotic approximations
acceptable. We first look at the rate of marginal convergence and then com-
ment on the asymptotic independence using simulated skew-normal random
vectors 2 .

One may expect a rather slow rate of convergence of the normalized maxima
for the GSN distribution as is the case for the normal distribution which has
a rate of O( 1

log n
) (cf. Hall (1979)), although computing the rate is still an

open problem in the GSN case. Fig. 2a and 2b compare QQ-plots for 1, 000
normalized maxima M̃n := (Mn − bn)/an with the block sizes n = 103 and
n = 106, where Mn := max1≤i≤nXi, Xi’s are i.i.d. from SN(α) distribution
and an and bn are the normalizing constants from the extreme value theory.
As can be seen from Fig. 2a, a random sample of size 103 from a skew-normal
distribution might not be sufficient to justify the use of the extreme value
theory results. More convincing QQ-plots in Fig. 2b with n = 106 confirm the
statement of Proposition 2.4.

To explore the rate at which components of the bivariate skew-normal random
vectors approach independence, we first produced the so-called Chi-plots and
K-plots to detect dependence in the simulated data; see Fig. 3. For details on

2 The simulations were carried out with the statistical package R (2007) using li-
brary sn.
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(a) n = 103
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(b) n = 106

Fig. 2. The QQ-plots for M̃n, where X follows a skew-normal distribution with
α = −10,−2, 0, 2, 10.

how to construct these plots and justifications, see Genest and Favre (2007).
In the Chi-plot of pairs (λi, χi), the values of χi away from zero indicate de-
partures from the hypothesis of independence. The horizontal dashed bounds
are drawn at the levels ±cp/

√
k with cp = 2.18 so that approximately 99%

of the pairs (λi, χi) lie within these bounds (cf. Genest and Favre (2007)).
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(c) Chi-plot for M103
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(d) K-plot for M103
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(e) Chi-plot for M106
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Fig. 3. Chi-plots and K-plots for simulated random samples of size 100 for
X ∼ SN2(α1, α2;ω) (a)-(b) and the corresponding coordinatewise maxima Mn with
block sizes n = 103 (c)-(d) and n = 106 (e)-(f). The parameter values are α1 = 2,
α2 = 3 and ω = 0.6.
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ω = 0.6

α1 = 2, α2 = 3 α1 = 2, α2 = −3 α1 = −2, α2 = 3

n pρ pτ pρ pτ pρ pτ

106
1 1 0.78 0.78 0.98 0.98

104
0.97 0.96 0.54 0.55 0.98 0.98

103
0.97 0.97 0.18 0.18 0.89 0.89

102
0.87 0.86 0.18 0.18 0.50 0.48

ω = 0.1

106
1 0.99 1 0.99 0.99 0.99

104
1 1 1 1 0.99 0.99

103
1 1 0.96 0.97 0.99 0.99

102
1 1 0.79 0.76 0.99 0.99

ω = 0

106
0.99 0.98 1 1 1 1

104 1 1 1 1 0.98 0.98

103
0.99 0.99 1 1 0.99 0.99

102
0.99 0.98 1 1 0.99 0.99

ω = −0.1

106 1 1 0.98 0.98 1 1

104 1 1 0.96 0.96 0.97 0.98

103 0.99 1 0.99 0.99 0.98 0.98

102 1 1 0.99 0.99 0.99 0.99

ω = −0.6

106 0.98 0.98 1 1 1 1

104 1 1 0.97 0.97 1 1

103 0.99 0.99 1 1 0.99 0.99

102 1 1 1 1 0.99 0.99

Table 2
Proportions of the tests based on Spearman’s rho (pρ) and Kendall’s tau (pτ ) for
which there was not enough evidence to reject the null hypothesis of independence
of the coordinatewise maxima at level α = 1%. Simulated data: 100 block maxima
Mn from SN2(α1, α2;ω) distribution; each test was repeated 100 times.
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The 45◦-line on the K-plot corresponds to the case of independence, and the
superimposed curve corresponds to the case of perfect positive dependence.
As can be seen from Fig. 3a and 3b, the components of the SN2(2, 3; 0.6) ran-
dom vector exhibit positive dependence, which eventually disappears for the
maxima as the block size n becomes large; see Fig. 3c - 3f.

Using Spearman’s rho and Kendall’s tau, we test the hypothesis of indepen-
dence of coordinatewise maxima from an SN2(α1, α2;ω) distribution. Again
the reader is referred to Genest and Favre (2007) and Genest and Verret (2005)
for details on rank-based tests of independence. The tests are based on 100
blocks of coordinatewise maxima with block size n, and each test is repeated
100 times. In Table 2 we report proportions of the tests which could not reject
the null hypothesis of independence at approximately level α = 1%; pρ and
pτ denote the proportion of the tests based on Spearman’s rho and Kendall’s
tau, respectively, with the P-values exceeding 0.01. The values highlighted
in bold correspond to the choice of parameters within the range specified in
Table 1 for which we have an analytical proof of asymptotic independence.
These results indicate that even relatively small block sizes such as n = 100
and n = 1000 are sufficient for the convergence of the maximal components to
being independent. The rest of the values support our conjecture that in fact
asymptotic independence holds for all possible parameter values. Low propor-
tions of insignificant tests corresponding to α1 = 2, α2 = −3, ω = 0.6 might
be due to slower rates of convergence. A further analytical investigation of the
asymptotic independence property is required.
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