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STATIONARY SYMMETRIC α-STABLE DISCRETE

PARAMETER RANDOM FIELDS

By Parthanil Roy and Gennady Samorodnitsky ∗

Cornell University

We establish a connection between the structure of a stationary
symmetric α-stable random field (0 < α < 2) and ergodic theory
of non-singular group actions, elaborating on a previous work by
Rosiński (2000). With the help of this connection, we study the ex-
treme values of the field over increasing boxes. Depending on the
ergodic theoretical and group theoretical structures of the underly-
ing action, we observe different kinds of asymptotic behavior of this
sequence of extreme values.

1. Introduction. In this paper we study the structure of stationary
symmetric α-stable discrete parameter non-Gaussian random fields. A ran-
dom field {Xt}t∈Zd is called a symmetric α-stable (SαS) random field if for

all c1, c2, . . . , ck ∈ R, and, t1, t2, . . . , tk ∈ Z
d,

∑k
j=1 cjXtj follows a symmetric

α-stable distribution. In this paper we will concentrate on the non-Gaussian
case, and hence, we will assume 0 < α < 2, unless mentioned otherwise. For
further reference on SαS distributions and processes the reader is suggested
to read Samorodnitsky and Taqqu (1994). A random field {Xt}t∈Zd is called
stationary if

(1.1) {Xt} d
= {Xt+s} for all s ∈ Z

d .

Stationarity means that the law of the random field is invariant under the
action of the group of shift transformations on the index-parameter t ∈ Z

d.
More generally, if (G,+) is a countable abelian group with identity ele-

ment 0, then a random field {Xt}t∈G is called G-stationary if (1.1) holds for
all s ∈ G. Most of the structure results in this paper have immediate analogs
for G-stationary fields. We will mention these briefly along the way. Even
though our main interest lies with Z

d-indexed random fields, at a certain
point in the paper a more general group structure will become important.
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2 P. ROY AND G. SAMORODNITSKY

Our first task in this paper is to establish a connection between ergodic
theory of nonsingular Z

d-actions (see Section 1.6 of Aaronson (1997)) and
SαS random fields. Using the language of the Hopf decomposition of non-
singular flows a decomposition of stationary SαS processes was established
in Rosiński (1995). For a general d > 1 a similar decomposition of SαS ran-
dom fields into independent components was given in Rosiński (2000). We
show the connection between this decomposition and ergodic theory. This
is done in Section 3, using an approach different from the one-dimensional
case, namely, without referring to the Chacon-Ornstein theorem, which is
unavailable in the case d > 1.

We use the connection with ergodic theory to study the rate of growth
of the partial maxima sequence {Mn} of the random field Xt as t runs over
a d-dimensional hypercube of size with an increasing edge length n. In the
case d = 1 it has been shown in Samorodnitsky (2004) that this rate drops
from n1/α to something smaller as the flow generating the process changes
from dissipative to conservative. One can argue that this phase transition
qualifies as a transition between short and long memory. In this paper we
establish a similar phase transition result for a general d ≥ 1.

In Section 4, we first discuss the asymptotic behavior of a certain deter-
ministic sequence which controls the size of the partial maxima sequence
{Mn}. The treatment here is different from the one-dimensional case due to
unavailability of Maharam extension theorem (see Theorem 2 in Maharam
(1964)) in the case d > 1. In this section, we also calculate the rate of growth
of partial maxima of the random field. We show that the rate of growth of
Mn is equal to nd/α if the group action has a nontrivial dissipative compo-
nent, and is strictly smaller than that otherwise.

We discuss connections with the group theoretical properties of the action
in Section 5. For SαS random fields generated by conservative actions, we
view the underlying action as a group of nonsingular transformations and
study the algebraic structure of this group to get better estimates on the
rate of growth of the partial maxima. Examples illustrating how the maxima
of a random field can grow are discussed in Section 6.

2. Some Ergodic Theory. The details on the notions introduced in
this section can be found, for example, in Aaronson (1997). Unless stated
otherwise, the statements about sets (e.g. equality or disjointness of two
sets) are understood as holding up to a set of measure zero with respect to
the underlying measure.

Suppose (S,S, µ) is a σ-finite standard measure space and (G,+) is a
countable group with identity element 0. A collection of measurable maps
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φt : S → S, t ∈ G is called a group action of G on S if

1. φ0 is the identity map on S, and,
2. φu+v = φu ◦ φv for all u, v ∈ G .

A group action {φt}t∈G of G on S is called nonsingular if µ ◦ φt ∼ µ for all
t ∈ G .

A set W ∈ S is called a wandering set for the action {φt}t∈G if {φt(W ) :
t ∈ G} is a pairwise disjoint collection. The following result (see Proposition
1.6.1 of Aaronson (1997)) gives a decomposition of S into two disjoint and
invariant parts.

Proposition 2.1. Suppose G is a countable group and {φt} is a nonsingular
action of G on S. Then S = C ∪D where C and D are disjoint and invariant
measurable sets such that

1. D =
⋃

t∈G

φt(W∗) for some wandering set W∗ ,

2. C has no wandering subset of positive measure.

D is called the dissipative part, and C the conservative part of the action.
The action {φt} is called conservative if S = C and dissipative if S = D .

An action {φt}t∈G is free if µ
(
{s ∈ S : φt(s) = s}

)
= 0 for all t ∈ G− {0}.

Note that this definition makes sense because (S,S) is a standard Borel
space and hence {s ∈ S : φt(s) = s} ∈ S. The following result is a version
of Halmos’ Recurrence Theorem for a nonsingular action of a countable
group.

Proposition 2.2. Let {φt} be a nonsingular action of a countable group G.
If A ∈ S and A ⊆ C, then

∑

t∈G

IA ◦ φt = ∞ a.e. on A.

Proof. Define,

F := {s ∈ S : ∃ t ∈ G, t 6= 0 such that φt(s) = s} .

Observe that F is {φt}-invariant. Restrict {φt} to S − F . Let C1 be the
conservative part of the restriction. It is easy to observe that A ∩ F c ⊆ C1

for all A ⊆ C. Since the restricted action is free by Proposition 1.6.2 of
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Aaronson (1997) we have,

∑

t∈G

IA ◦ φt ≥
∑

t∈G

IA∩F c ◦ φt = ∞ a.e. on A ∩ F c.

Clearly, ∑

t∈G

IA ◦ φt = ∞ a.e. on A ∩ F.

This completes the proof.

Recall that the dual operator of a nonsingular transformation T on S is
a linear operator T̂ on L1(S, µ) such that

∫

S
T̂ f.gdµ =

∫

S
f.g ◦ Tdµ for all f ∈ L1(µ) and g ∈ L∞(µ) .

In particular, if T is invertible, then

T̂ f =
dµ ◦ T−1

dµ
f ◦ T−1 for all f ∈ L1(µ) ,

see Section 1.3 in Aaronson (1997). The following proposition is an extension
of Theorem 1.6.3 of Aaronson (1997) to not necessarily measure-preserving
transformations, and can be established using an argument parallel to that
of Propositon 1.3.1 in Aaronson (1997).

Proposition 2.3. If G is a countable group and {φt} is a nonsingular action
of G on S then for all f ∈ L1(µ), f > 0,

C = {s ∈ S :
∑

t∈G

φ̂tf(s) = ∞} .

The following is an immediate corollary, particularly suitable for our pur-
poses.

Corollary 2.4. If G is a countable group and {φt} is a nonsingular action
of G then

[
∑

t∈G

dµ ◦ φt

dµ
f ◦ φt = ∞] = C for all f ∈ L1(µ), f > 0.

Note that, as mentioned earlier, the equalities of sets in Proposition 2.3
and Corollary 2.4 above hold up to sets of µ-measure zero.
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3. Stationary Symmetric Stable Random Fields. Suppose X =
{Xt}t∈Zd is a SαS random field, 0 < α < 2. We know from Theorem 13.1.2
of Samorodnitsky and Taqqu (1994) that it has an integral representation
of the from

Xt
d
=

∫

S
ft(s)M(ds), t ∈ Z

d ,(3.1)

where M is a SαS random measure on some standard Borel space (S,S)
with σ-finite control measure µ and ft ∈ Lα(S, µ) for all t ∈ Z

d. Note that
ft’s are deterministic functions and hence all the randomness of X is hidden
in the random measure M , and, the inter-dependence of the Xt’s is captured
in {ft}. The representation (3.1) is called an integral representation of {Xt}.
Without loss of generality we can also assume that the family {ft} satisfies
the full support assumption

Support
(
ft, t ∈ Z

d
)

= S ,(3.2)

because, if that is not the case, we can replace S by S0 = Support
(
ft, t ∈ Z

d
)

in (3.1).

If, further, {Xt} is stationary, then the fact that the action of the group Z
d

on {Xt}t∈Zd by translation of indices preserves the law, and certian rigidity
of spaces Lα, α < 2 guarantees existence of intergral representations of a
special form. This has been established in Rosiński (1995) for d = 1 and
Rosiński (2000) for a general d. Specifically, there always exists a represen-
tation of the form

ft(s) = ct(s)

(
dµ ◦ φt

dµ
(s)

)1/α

f ◦ φt(s), t ∈ Z
d ,(3.3)

where, f ∈ Lα(S, µ), {φt}t∈Zd is a nonsingular Z
d-action on (S, µ) and

{ct}t∈Zd is a measurable cocycle for {φt} taking values in {−1,+1} i.e. each
ct is a measurable map ct : S → {−1,+1} such that ∀u, v ∈ Z

d

cu+v(s) = cv(s)cu
(
φv(s)

)
for µ-a.a. s ∈ S.

Conversely, if {ft} is of the form (3.3) then {Xt} defined by (3.1) is a sta-
tionary SαS random field. In particular, every minimal representation of
the process (see Hardin Jr. (1982)) turns out to be of the form (3.3).

We will say that a stationary SαS random field {Xt}t∈Zd is generated by
a nonsingular Z

d-action {φt} on (S, µ) if it has a integral representation of
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the form (3.3) satisfying (3.2). With this terminology, we have the following
extension of Theorem 4.1 in Rosiński (1995) to random fields.

Proposition 3.1. Suppose {Xt}t∈Zd is a stationary SαS random field gen-
erated by a nonsingular Z

d-action {φt} on (S, µ) and {ft} is given by (3.3).
Also let, C and D be the conservative and dissipative parts of {φt}. Then we
have,

C = {s ∈ S :
∑

t∈Zd

|ft(s)|α = ∞} mod µ, and,

D = {s ∈ S :
∑

t∈Zd

|ft(s)|α <∞} mod µ .

In particular, if a stationary SαS random field {Xt}t∈Zd is generated by a
conservative (dissipative, resp.) Z

d-action, then in any other integral repre-
sentation of {Xt} of the form (3.3) satisfying (3.2), the Z

d-action must be
conservative (dissipative, resp.). Hence the classes of stationary SαS ran-
dom fields generated by conservative and dissipative actions are disjoint.

Proof. Define g as

g(s) =
∑

u∈Zd

αu
dµ ◦ φu

dµ
(s)|f ◦ φu(s)|α

where αu > 0 for all u ∈ Z
d and

∑
u∈Zd αu = 1. Clearly g ∈ L1 and, by

(3.2), g > 0 a.e. µ. Since

∑

t∈Zd

dµ ◦ φt

dµ
(s)g ◦ φt(s) =

∑

t∈Zd

dµ ◦ φt

dµ
(s)|f ◦ φt(s)|α =

∑

t∈Zd

|ft(s)|α

we can use Corollary 2.4 to establish the first part of the proposition, from
which the second part of the proposition follows by the same argument as
in the one-dimensional case (see Theorem 4.1 in Rosiński (1995)).

As in the one-dimensional case, it follows that the test described in the
previous proposition can be applied to any full support integral representa-
tion of the process, not necessarily that of a specific form.

Corollary 3.2. The stationary SαS random field {Xt}t∈Zd is generated by a
conservative (dissipative, resp.) Z

d-action if and only if for any (equivalently,
some) integral representation (3.1) of {Xt} satisfying (3.2), the sum

∑

t∈Zd

|ft(s)|α

is infinite (finite, resp) µ-a.e. .
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Proposition 3.1 also enables us to extend the connection between the
structure of stationary stable processes and ergodic theory of nonsingular
actions (given in Rosiński (1995)) to the case of stationary stable random
fields. A decomposition of a stable random field into three independent
parts is available in Rosiński (2000). A connection with the conservative-
dissipative decomposition is still missing in the case of random fields. Here
we provide the missing link. Recall that a stable random field X is called a
mixed moving average if it can be represented in the form

X
d
=

{∫

W×Zd

f(v, t+ s)M(dv, ds)

}

t∈Zd

,(3.4)

where f ∈ Lα(W ×Z
d, ν⊗ l), l is the counting measure on Z

d, ν is a σ-finite
measure on a standard Borel space (W,W), and the control measure µ of M
equals ν ⊗ l (see Surgailis et al. (1993) and Rosiński (2000)). The following
result gives two equivalent characterizations of stationary SαS random fields
generated by dissipative actions.

Theorem 3.3. Suppose {Xt}t∈Zd is a stationary SαS random field. Then,
the following are equivalent:

1. {Xt} is generated by a dissipative Z
d-action.

2. For any integral representation {ft} of {Xt} we have,

∑

t∈Zd

|ft(s)|α <∞ for µ-a.a. s.

3. {Xt} is a mixed moving average.

Proof. 1 and 2 are equivalent by Corollary 3.2, and, 2 and 3 are equivalent
by Theorem 2.1 of Rosiński (2000).

Theorem 3.3 allows us to describe the decomposition of a stationary SαS
random field given in Theorem 3.7 of Rosiński (2000) in terms of the ergodic-
theoretical properties of nonsingular Z

d-actions generating the field. The
statement of the following corollary is an extension of the one-dimensional
decomposition in Theorem 4.3 in Rosiński (1995) to random fields.

Corollary 3.4. A stationary SαS random field X has a unique in law
decomposition

Xt
d
= XC

t +XD
t ,(3.5)
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where XC and XD are two independent stationary SαS random fields such
that XD is a mixed moving average, and XC is generated by a conservative
action.

As mentioned before, all of the structure results of this section extend im-
mediately toG-stationary random fields for countable abelian groupsGmore
general than Z

d. The only place where an additional argument is needed is
the equivalence of parts 2 and 3 in Theorem 3.3, with a G-mixed moving
average defined by

X
d
=

{∫

W×G
g(v, t + s)M(dv, ds)

}

t∈G

,

in notation parallel to (3.4). This equivalence needs an extension of Theorem
2.1 in Rosiński (2000) to general countable abelian groups. See Roy (2007)
for details of this extension which does not require any additional ideas to
what is already in the original proof.

As in the one-dimensional case, it is possible to think of stable random
fields generated by conservative actions as having longer memory than those
generated by dissipative actions, simply because a conservative action “keeps
coming back”, and so the same values of the random measure M contribute
to observations Xt far separated in t. From this point of view, the Z

d-action
{φt} is a parameter (though highly infinite-dimensional) of the stationary
SαS random field {Xt} that determines, among others, the length of its
memory.

4. Maxima of Stable Random Fields. The length of memory of
stable random fields is manifested, in particular, in the rate of growth of
its extreme values. If Xt is generated by a conservative action, the extreme
values tend to grow at a slower rate because longer memory prevents erratic
changes in Xt even when t becomes “large”. This has been formalized in
Samorodnitsky (2004) for d = 1, and it turns out to be the case for stable
random fields as well.

For a stationary SαS random field {Xt}t∈Zd , we will study the partial
maxima sequence

Mn := max
0≤t≤(n−1)1

|Xt|, n = 0, 1, 2, . . .(4.1)

where u = (u(1), u(2), . . . , u(d)) ≤ v = (v(1), v(2), . . . , v(d)) means u(i) ≤ v(i)

for all i = 1, 2, . . . , d and 1 = (1, 1, . . . , 1). As in the one-dimensional case,
the asymptotic behavior of the maximum functional Mn is related to the
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deterministic sequence

bn :=

(∫

S
max

0≤t≤(n−1)1
|ft(s)|αµ(ds)

)1/α

, n = 0, 1, 2, . . . .(4.2)

Note that bn is completely determined by the process, and does not depend
on a particular integral representation (see Corollary 4.4.6 of Samorodnitsky and Taqqu
(1994)). We are interested in the features of this sequence that are related
to the decomposition of a stable random field in Corollary 3.4. The next
result shows that the sequence bn grows at a slower rate for random fields
generated by a conservative action than for random fields generated by a
dissipative action.

Proposition 4.1. Let {ft} be given by (3.3). Assume that (3.2) holds.

1. If the action {φt} is conservative then:

n−d/αbn → 0 as n→ ∞.(4.3)

2. If the action {φt} is dissipative, and the random field is given in the
mixed moving average form (3.4), then:

lim
n→∞

n−d/αbn =

(∫

W
(g(v))αν(dv)

)1/α

∈ (0,∞),(4.4)

where

g(v) = sup
s∈Zd

|f(v, s)| for v ∈W.(4.5)

Proof. 1. Firstly we observe that without loss of generality we can assume
that µ is a probability measure. This is because if ν is a probability measure
equivalent to the σ-finite measure µ then instead of (3.1) we will use

Xt
d
=

∫

S
ht(s)N(ds)

where,

ht(s) = ct(s)

(
dν ◦ φt

dν
(s)

)1/α

h ◦ φt(s), t ∈ Z
d

where h = f
(dµ

dν

)1/α ∈ Lα(S, ν) and N is a SαS random measure on S with
control measure ν.
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Since {bn} is an increasing sequence, it is enough to show (4.3) along the
odd subsequence. By stationarity of {Xt}, we need to check that

an :=
1

(2n+ 1)d

∫

S
max
t∈Jn

|ft(s)|αµ(ds) → 0 ,

where Jn := {(i1, i2, . . . , id) : −n ≤ i1, i2, . . . , id ≤ n}. Let g = |f |α. Then
‖g‖ :=

∫
S g(s)µ(ds) <∞, and we have for 0 < ǫ < 1

an =
1

(2n+ 1)d

∫

S
max
t∈Jn

φ̂tg(s)µ(ds)

≤ 1

(2n+ 1)d

(∫

S
max
t∈Jn

[
φ̂tg(s)I

(
φ̂tg(s) ≤ ǫ

∑

u∈Jn

φ̂ug(s)
)]
µ(ds)

+

∫

S
max
t∈Jn

[
φ̂tg(s)I

(
φ̂tg(s) > ǫ

∑

u∈Jn

φ̂ug(s)
)]
µ(ds)

)

= a(1)
n + a(2)

n .

Clearly,

(4.6) a(1)
n ≤ ǫ

(2n + 1)d

∑

u∈Jn

∫

S
φ̂ug(s)µ(ds) = ǫ‖g‖ ,

and

(4.7) a(2)
n ≤ 1

(2n + 1)d

∑

t∈Jn

∫

S
φ̂tg(s)IAt,n(s)µ(ds) ,

where At,n = {s : φ̂tg(s) > ǫ
∑

u∈Jn
φ̂ug(s)} , n ≥ 1, t ∈ Jn . Notice that for

all n ≥ 1, and, for all t ∈ Jn ,

(4.8)

∫

S
φ̂tg(s)IAt,n(s)µ(ds) =

∫

S
g(s)Iφ−1

t (At,n)(s)µ(ds) .

The following is the most important step of this proof: if we define

Un := {(t1, t2, . . . , td) : −n+ [
√
n] ≤ t1, t2, . . . , td ≤ n− [

√
n]}

then we have,

(4.9) lim
n→∞

max
t∈Un

µ(φ−1
t (At,n)) = 0 .
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To prove (4.9) observe that for all t ∈ Un

φ−1
t (At,n)

=
{
φ−t(s) : g ◦ φ−t(s)

dµ ◦ φ−t

dµ
(s) > ǫ

∑

u∈Jn

g ◦ φ−u(s)
dµ ◦ φ−u

dµ
(s)

}

=
{
s : g(s) > ǫ

∑

u∈Jn

g ◦ φu+t(s)
dµ ◦ φu+t

dµ
(s)

}

⊆
{
s : g(s) > ǫ

∑

τ∈J[
√

n]

g ◦ φτ (s)
dµ ◦ φτ

dµ
(s)

}
.

The last inclusion holds because J[
√

n] ⊆ t+ Jn. Hence, for any M > 0

max
t∈Un

µ(φ−1
t (At,n)) ≤ µ{s : g(s) > ǫM} + µ

( ∑

t∈J[
√

n]

g ◦ φt
dµ ◦ φt

dµ
≤M

)

≤ ‖g‖
ǫM

+ µ
( ∑

t∈J[
√

n]

|ft|α ≤M
)
.

Now (4.9) follows by first using Proposition 3.1 with a fixed M and then
letting M → ∞.

From (4.8) and (4.9) it follows that

1

(2n+ 1)d

∑

t∈Un

∫

S
φ̂tg(s)IAt,n(s)µ(ds)

=
1

(2n+ 1)d

∑

t∈Un

∫

φ−1
t (At,n)

g(s)µ(ds) → 0 .(4.10)

If we define Vn = Jn − Un, then

1

(2n + 1)d

∑

t∈Vn

∫

S
φ̂tg(s)IAt,n(s)µ(ds) ≤ 1

(2n + 1)d

∑

t∈Vn

∫

S
φ̂tg(s)µ(ds) → 0 .

Then using (4.7) and (4.10) we see that a
(2)
n → 0 as n → ∞. Therefore we

get,
lim sup an ≤ lim sup a(1)

n + lim sup a(2)
n ≤ ǫ‖g‖ ,

and, since ǫ > 0 is arbitrary, the result follows.
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2. The argument here is similar to that used in the one-dimensional case
in Theorem 3.1 of Samorodnitsky (2004). One uses a direct computation to
check the claim in the case where f has compact support, that is

f(v, s)IW×[−m1,m1]c(v, s) ≡ 0 for some m = 1, 2, . . .

where [u, v] := {t ∈ Z
d : u ≤ t ≤ v}. The proof in the general case fol-

lows then by approximating a general kernel f by a kernel with a compact
support.

Remark 4.2. The statement of the first part of the proposition clearly
extends to G-stationary random fields for any free abelian group G of rank d,
since the same is true for Proposition 3.1. See the discussion after Corollary
3.4.

We are now ready to investigate the rate of growth of the sequence {Mn}
of partial maxima of a stationary symmetric α-stable random field, 0 < α <
2. We will see that if such a random field has a nonzero component XD in
(3.5) generated by a dissipative action, then the partial maxima grow at the
rate nd/α, while if the random field is generated by a conservative action,
then the partial maxima grow at a slower rate. As we will see in the sequel,
the actual rate of growth of the sequence {Mn} in the conservative case,
depends on a number of factors. The dependence on the group theoretical
properties of the action is very prominent. We start with the following result,
which extends Theorem 4.1 of Samorodnitsky (2004) to d > 1. It is based on
Proposition 4.1, and the argument is parallel to the one-dimensional case.

Theorem 4.3. Let X = {Xt}t∈Zd be a stationary SαS random field, with
0 < α < 2, integral representation (3.1), and functions {ft} given by (3.3).

1. Suppose that X is not generated by a conservative action (i.e. the com-
ponent XD in (3.5) generated by the dissipative part is nonzero). Then

1

nd/α
Mn ⇒ C 1/α

α KXZα(4.11)

as n→ ∞, where

KX =

(∫

W
(g(v))αν(dv)

)1/α

and g is given by (4.5) for any representation of XD in the mixed moving av-
erage form (3.4), Cα is the stable tail constant (see (1.2.9) in Samorodnitsky and Taqqu
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(1994)) and Zα is the standard Frechet-type extreme value random variable
with the distribution

P (Zα ≤ z) = e−z−α
, z > 0.

2. Suppose that X is generated by a conservative Z
d-action. Then

1

nd/α
Mn

p−→ 0(4.12)

as n→ ∞. Furthermore, with bn given by (4.2),
{

1

cn
Mn

}
is not tight for any positive sequence cn = o(bn),(4.13)

while

{
1

bnζn
Mn

}
is tight, where ζn =





1, if 0 < α < 1,
Ln, if α = 1,

(log n)1/α′
, if 1 < α < 2 ,

(4.14)

where Ln := max(1, log log n), and for α > 1, α′ is such that 1/α+1/α′ = 1.

If, for some θ > 0 and c > 0,

bn ≥ cnθ for all n ≥ 1,(4.15)

then (4.14) holds with ζn ≡ 1 for all 0 < α < 2.

Finally, for n = 1, 2, . . ., let ηn be a probability measure on (S,S) with

dηn

dµ
(s) = b−α

n max
0≤t≤(n−1)1

|ft(s)|α, s ∈ S,(4.16)

and let U
(n)
j , j = 1, 2 be independent S-valued random variables with com-

mon law ηn. Suppose that (4.15) holds and for any ǫ > 0,

P

(
for some t ∈ [0, (n − 1)1],

|ft(U
(n)
j )|

max0≤u≤(n−1)1 |fu(U
(n)
j )|

> ǫ, j = 1, 2

)
→ 0(4.17)

as n→ ∞. Then

1

bn
Mn ⇒ C 1/α

α Zα(4.18)

as n→ ∞.
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Remark 4.4. An easily verifiable sufficient condition for (4.17) is

lim
n→∞

bn

nd/2α
= ∞.(4.19)

Alternatively, (4.17) holds if we assume that µ is a finite measure, {φt}
is measure preserving, the sequence {b−α

n max0≤t≤(n−1)1 |ft(s)|α}, t ∈ Z
d is

uniformly integrable with respect to µ and, for every ǫ > 0

(4.20) lim
n→∞

nd/2µ{s ∈ S : |f(s)| > ǫbn} = 0 .

The arguments are the same as in the case d = 1.

5. Connections with Group Theory. When the underlying action is
not conservative Theorem 4.3 yields the exact rate of growth of Mn. For con-
servative actions, however, the actual rate of growth of the partial maxima
depends on further properties of the action. In this section we investigate
the effect of the group theoretic structure of the action on the rate of growth
of the partial maximum. We start with introducing the appropriate notation.

Consider A := {φt : t ∈ Z
d} as a subgroup of the group of invertible

nonsingular transformations on (S, µ) and define a group homomorphism

Φ : Z
d → A

by Φ(t) = φt for all t ∈ Z
d. Let K := Ker(Φ) = {t ∈ Z

d : φt = 1S}, where
1S denote the identity map on S. Then K is a free abelian group and by first
isomorphism theorem of groups (see, for example, Lang (2002)) we have,

A ≃ Z
d/K .

Hence by Theorem 8.5 in Chapter I of Lang (2002) we get,

A = F̄ ⊕ N̄

where F̄ is a free abelian group and N̄ is a finite group. Assume rank(F̄ ) =
p ≥ 1 and |N̄ | = l. Since F̄ is free, there exists an injective group homomor-
phism

Ψ : F̄ → Z
d

such that Φ ◦ Ψ = 1F̄ . Let F = Ψ(F̄ ). Then F is a free subgroup of Z
d of

rank p.

The rank p is the effective dimension of the random field, giving more
precise information on the rate of growth of the partial maximum than the
nominal dimension d. We start with showing that this is true for the sequence
{bn} in (4.2).
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Proposition 5.1. Let {ft} be given by (3.3). Assume that (3.2) holds. Then
we have the following:

1. If {φt}t∈F is conservative then

(5.1) n−p/αbn → 0 .

2. If {φt}t∈F is dissipative then

(5.2) n−p/αbn → a

for some a ∈ (0,∞).

Proof. 1. It is easy to check that F ∩K = {0} and hence the sum F +K is
direct. Suppose G = F ⊕K. Using group isomorphism theorems we have,

Z
d/G ≃ (Zd/K)/(F ⊕K/K) ≃ A/F̄ ≃ N̄ .

Assume that x1 +G, x2 +G, . . . , xl +G are all the cosets of G in Z
d. Let

rank(K) = q. Choose a basis {u1, u2, . . . , up} of F and a basis {v1, v2, . . . , vq}
of K. We need the following

Lemma 5.2. There are positive integers c, d, and, N such that for every
n ≥ N

(5.3)

l⋃

k=1

(xk +G[n/d]) ⊆ [−n1, n1] ⊆
l⋃

k=1

(xk +Gcn)

where for m ≥ 1

Gm := {
p∑

i=1

αiui +

q∑

j=1

βjvj : |αi|, |βj | ≤ m for all i, j} .

Proof. Let r = p+ q. For ease of notation we define

wi =

{
ui 1 ≤ i ≤ p ,
vi−p p+ 1 ≤ i ≤ r .

Then {w1, w2, . . . , wr} is a basis for G. The first inclusion in (5.3) is obvious.
To establish the second inclusion we first prove

Step 1. There is an integer c′ ≥ 1 such that

[−n1, n1] ∩G ⊆ Gc′n for all n ≥ 1 .
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Proof of Step 1. Take y ∈ [−n1, n1]∩G. Then, y = η1w1 +η2w2 + · · ·+ηrwr

for some η1, η2, . . . , ηr ∈ Z . We have to show |ηi| ≤ c′n for all 1 ≤ i ≤ r
for some c′ ≥ 1 that does not depend on n. Let η̃T := (η1, η2, . . . , ηr) ∈ Z

r.
Then,

(5.4) y = Wη̃

where, W is the d× r matrix with wi as the ith column. The columns of W
are linearly independent over Z and hence over R. Hence there is a r × d
matrix Z such that

ZW = I

where I is the identity matrix of order r. Hence from (5.4) we have,

η̃ = Zy .

For all 1 ≤ i ≤ r we get,

|ηi| ≤ ‖η̃‖ ≤ ‖Z‖‖y‖ ≤ ‖Z‖n
√
d ≤ c′n

where, c′ =
[
‖Z‖

√
d
]
+ 1. This proves Step 1.

Step 2. Let
M = max

1≤k≤l
‖xk‖∞ + 1

where ‖ · ‖∞ denotes the sup-norm on Rd, and c = c′M . Then for all n ≥ 1
we have,

[−n1, n1] ⊆
l⋃

k=1

(xk +Gcn) .

Proof of Step 2. Take y ∈ [−n1, n1]. Then y ∈ xk0 +G for some 1 ≤ k0 ≤ l.
Clearly, y′ := y − xko ∈ [−(n + M − 1)1, (n + M − 1)1] ∩ G. By Step 1,
y′ ∈ Gc′(n+M−1) ⊆ Gcn, and hence, y ∈ xk0 + Gcn ⊆

⋃l
k=1(xk + Gcn),

proving Step 2 and the lemma.

For k = 1, . . . , l let

gk = f ◦ φxk

(
dµ ◦ φxk

dµ

)1/α

.
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Then for t = xk +
∑p

i=1 αiui +
∑q

j=1 βjvj we have

(5.5) |ft(s)| = |gk ◦ φPp
i=1 αiui

(s)|
(
dµ ◦ φPp

i=1 αiui

dµ
(s)

)1/α

.

By stationarity, Lemma 5.2 and (5.5) we have, for all n ≥ N ,

bαn ≤ bα2n+1 =

∫

S
max

−n1≤t≤n1

|ft(s)|αµ(ds)

≤
∫

S
max
1≤k≤l

max
|αi|≤cn

(
|gk ◦ φPp

i=1 αiui
(s)|α

dµ ◦ φPp
i=1 αiui

dµ
(s)

)
µ(ds)

≤
l∑

k=1

∫

S
max

|αi|≤cn

(
|gk ◦ φPp

i=1 αiui
(s)|α

dµ ◦ φPp
i=1 αiui

dµ
(s)

)
µ(ds)

= o(np) .

The last step follows from Proposition 4.1 and Remark 4.2.

2. Proof of this part is similar to the proof of Theorem 3.1 in Samorodnitsky
(2004). We start this proof with the following combinatorial fact:

Lemma 5.3. For n ≥ 1 and k = 1, 2, . . . , l, let

Fk,n =
{
u ∈ xk + F : there exists v ∈ K such that u+ v ∈ [−n1, n1]

}
.

Then there is a positive real number V such that for all k = 1, 2, . . . , l,

(5.6) lim
n→∞

|Fk,n|
np

= V .

Here |A| stands for the cardinality of a set A.

Proof. One of Fk,n is the set

Fn =
{
y ∈ F : there exists v ∈ K such that y + v ∈ [−n1, n1]

}
.

Firstly, we will show

(5.7) lim
n→∞

|Fn|
np

= V

for some V > 0. To show this let W be the matrix used in the proof of
Lemma 5.2. We can partition W into two submatrices as follows:

W = [U |V ]
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where, U is the d×p matrix whose ith column is ui and, V is the d×q matrix
whose jth column is vj. Since the columns of U are linearly independent over
Z, we have,

|Fn| = |{α ∈ Z
p : there exists β ∈ Z

q such that ‖Uα+ V β‖∞ ≤ n}| .

Let P := {x ∈ R
r : ‖Wx‖∞ ≤ 1} and π : R

r → R
p denote the projection

map on the first p coordinates:

π(x1, x2, . . . , xr) = (x1, x2, . . . , xp) .

Then we have,
|Fn|
np

=
|π(Zr ∩ nP )|

np
=: an .

Let

bn :=
|Zp ∩ nπ(P )|

np
.

Clearly, an ≤ bn. Since P is a rational polytope (i.e. a polytope whose ver-
tices have rational coordinates) so is π(P ). Hence, by Theorem 1 of De Loera
(2005), it follows that

(5.8) lim sup
n→∞

an ≤ lim
n→∞

bn = V

where V = V olume(π(P )), the p-dimensional volume of π(P ). This volume
is positive since the latter set, obviously, contains a small ball centered at
the origin. For the other inequality we let

Pm :=

{
x ∈ R

r : ‖Wx‖∞ ≤ 1 − ‖W‖∞
m

}

where ‖W‖∞ := supx 6=0
‖Wx‖∞
‖x‖∞ ∈ Z since W is a matrix with integer entries.

Hence for all m > ‖W‖∞, Pm is a rational polytope of dimension r. Also,
Pm ↑ P . Now fix m > ‖W‖∞. Observe that

{
y ∈ R

r : ‖y − x‖∞ ≤ 1

m

}
⊆ P for all x ∈ Pm .

Hence, it follows that for all n > m,

π

(
1

n
Z

r ∩ P
)

⊇ 1

n
Z

p ∩ π(Pm) ,

which, along with Theorem 1 of De Loera (2005), implies

(5.9) lim inf
n→∞

an ≥ lim
n→∞

|Zp ∩ nπ(Pm)|
np

= Vm
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where Vm = V olume(π(Pm)) is, once again, the p-dimensional volume. Since
Pm ↑ P , it follows that Vm ↑ V. Hence (5.7) follows from (5.8) and (5.9).

Now fix k = 1, 2, . . . , l and let M = ‖xk‖. Observe that for all n > M ,

|Fn−M | ≤ |Fk,n| ≤ |Fn+M | .

Hence (5.6) follows from (5.7).

We now return to the proof of the second part of the proposition. We give
a group structure to

(5.10) H :=

l⋃

k=1

(xk + F )

as follows. For all u1, u2 ∈ H, there exists unique u ∈ H such that (u1 +
u2) − u ∈ K. We define this u to be u1 ⊕ u2. It is not hard to check that
(H,⊕) is a countable abelian group. In fact, H ≃ Z

d/K. We can define a
nonsingular group action {ψu} of H on S as

ψu = φu for all u ∈ H .

Notice that if h ∈ L1(S, µ), h > 0, then, since (5.10) is a disjoint union,

(5.11)
∑

u∈H

dµ ◦ ψu

dµ
h ◦ ψu =

∑

t∈F

dµ ◦ φt

dµ
h̃ ◦ φt ,

where,

h̃ =

l∑

k=1

dµ ◦ φxk

dµ
h ◦ φxk

.

Clearly h̃ ∈ L1(S, µ) and h̃ > 0. Hence using Corollary 2.4 and the dissi-
pativity of {φt}t∈F , we see that the second sum in (5.11) is finite almost
everywhere. Another appeal to Corollary 2.4 shows that {ψu}u∈H is a dissi-
pative group action.

Define a random field {Yu}u∈H as

(5.12) Yu =

∫

S
f̃u(s)M(ds), u ∈ H,

where,

f̃u = f ◦ ψu

(
dµ ◦ ψu

dµ

)1/α

u ∈ H.
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Clearly {Yu}u∈H is an H-stationary SαS random field generated by the
dissipative action {ψu}u∈H . Hence there is a standard Borel space (W,W)
with a σ-finite measure ν on it such that

Yu
d
=

∫

W×H
g(w, u ⊕ s)N(dw, ds) u ∈ H,

for some g ∈ Lα(W ×H, ν⊗ τ), where τ is the counting measure on H, and,
N is a SαS random measure on W ×H with control measure ν⊗ τ (see the
discussion following Corollary 3.4.)

Let, for all w ∈W ,

(5.13) g∗(w) := sup
u∈H

|g(w, u)| .

Then, clearly, g∗ ∈ Lα(W,ν). We will show that (5.2) holds with

(5.14) a :=

(Vl
2p

∫

W
(g∗(w))αdν(w)

)1/α

∈ (0,∞) .

Since bn is an increasing sequence, it is enough to show

(5.15) lim
n→∞

b2n+1

(2n + 1)p/α
= a .

Let Hn :=
⋃l

k=1 Fk,n. Then by stationarity of {Xt}t∈Zd we have, for all
n ≥ 1,

bα2n+1 =

∫

S
max

−n1≤t≤n1

|ft(s)|αµ(ds)

=

∫

S
max
u∈Hn

|f̃u(s)|αµ(ds)

=
∑

s∈H

∫

W
max
u∈Hn

|g(w, s ⊕ u)|αν(dw) .(5.16)

The last equality follows from Corollary 4.4.6 of Samorodnitsky and Taqqu
(1994). We define a map N : H → {0, 1, . . .} as,

N(u) := min{‖u+ v‖∞ : v ∈ K} .

Clearly, for all u ∈ H,

(5.17) N(u−1) = N(u) ,
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where, u−1 is the inverse of u inH. Also, N(·) satisfies the following “triangle
inequality”: for all u1, u2 ∈ H,

(5.18) N(u1 ⊕ u2) ≤ N(u1) +N(u2) .

Observe that Hn = {u ∈ H : N(u) ≤ n}. From Lemma 5.2 we have Hn’s
are finite and Lemma 5.3 yields

(5.19) |Hn| ∼ Vlnp .

Also, clearly, Hn ↑ H. As in the proof of Theorem 3.1 of Samorodnitsky
(2004), we first assume g has compact support, i.e. g(w, u)IW×Hc

m
(w, u) = 0

for some m ≥ 1. Then using (5.17) and (5.18), the expression in (5.16)
becomes

bα2n+1 =
∑

s∈Hn+m

∫

W
max
u∈Hn

|g(w, s ⊕ u)|αν(dw)

=
∑

s∈Hn−m

∫

W
max
u∈Hn

|g(w, s ⊕ u)|αν(dw)

+
∑

s∈Hn+m∩Hc
n−m

∫

W
max
u∈Hn

|g(w, s ⊕ u)|αν(dw) =: An +Bn

for all n > m. Using (5.17) and (5.18) once again, we have, for all s ∈ Hn−m,

max
u∈Hn

|g(w, s ⊕ u)| = g∗(w) .

Hence, using (5.19), we get,

An = |Hn−m|
∫

W
(g∗(w))αν(dw) ∼ aα(2n + 1)p ,

while

Bn ≤
(
|Hn+m| − |Hn−m|

) ∫

W
(g∗(w))αν(dw) = o(np) .

Hence, (5.15) follows for g having compact support. The proof in the general
case follows by approximating a general kernel g by a kernel with a compact
support as done in the proof of Theorem 3.1 in Samorodnitsky (2004). This
completes the proof of the proposition.

The following result sharpens the the description of the asymptotic be-
haviour of the partial maxima of a random field given in Theorem 4.3. It
reduces to the latter result if K = 0.
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Theorem 5.4. Let X = {Xt}t∈Zd be a stationary SαS random field, with
0 < α < 2, integral representation (3.1), and functions {ft} given by (3.3).
Then, in the terminology introduced in this section, we have the following:

1. If {φt}t∈F is not conservative then

(5.20)
1

np/α
Mn ⇒ cZα

for some c ∈ (0,∞), and Zα as in (4.11). In fact,

c =

(VlCα

2p

∫

W
(g∗(w))αdν(w)

)1/α

,

where V is given by (5.6), while g∗ is given by (5.13) applied to the dissipa-
tive part of the random field (5.12), and Cα is as in (4.11).

2. If {φt}t∈F is conservative then

(5.21)
1

np/α
Mn

p−→ 0 .

Proof. 1. Let rn be the left hand side of (4.17). Then we have,

rn ≤ P

(
for some u ∈ Hn,

|fu(U
(n)
j )|

maxs∈Hn |fs(U
(n)
j )|

> ǫ, j = 1, 2

)

≤ |Hn|
(
ǫ−αb−α

n

∫

S
|f(s)|αµ(ds)

)2

.(5.22)

The inequality (5.22) follows using the argument given in Remark 4.2 of
Samorodnitsky (2004). Since {φt}t∈F is not conservative, Proposition 5.1
yields that bn satisfies (5.2). Hence by (5.19) we get that (4.17) holds in
this case. Since bn satisfies (5.2) with a given by (5.14), we get (5.20) by
Theorem 4.3.

2. As in the proof of (4.3) in Samorodnitsky (2004) we can get a stationary
SαS random field Y generated by a conservative Z

d-action such that bYn
satisfies (4.15) as well as (5.1) (this is possible, for instance, by Example 6.1
below). Therefore, (5.21) follows using the exact same argument as in the
proof of (4.3) in Samorodnitsky (2004).

Remark 5.5. The previous discussion asssumes that p ≥ 1. When p = 0
(i.e. when Z

d/K is a finite group) the random field takes only finitely many
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different values. Therefore, the sequence Mn remains constant after some
stage and so converges to the maximum of finitely manyXt’s, not an extreme
value random variable.

6. Examples. In this section we consider several examples of station-
ary SαS random fields associated with conservative flows. As in the one-
dimensional case considered in Samorodnitsky (2004), the idea is to exhibit
a variety of possible in this case behaviour.

The first example is parallel to examples 5.1 and 5.4 in Samorodnitsky
(2004).

Example 6.1. Let the random field have an integral representation of the
form

(6.1) Xt
d
=

∫

RZd
gt dM, t ∈ Z

d

where M is a SαS random measure on R
Z

d
whose control measure µ is

a probability measure under which the projections (gt, t ∈ Z
d) are i.i.d.

random variables, with a finite absolute αth moment.
If (gt, t ∈ Z

d) are i.i.d. standard normal random variables under µ, then,
as in the one-dimensional case, one sees that

bαn ∼ (2d log n)α/2 ,

the assumption (4.15) in Theorem 4.3 fails, and b−1
n Mn converges to a nonex-

treme value limit. See also Remark 5.5 above.
On the other hand, if, under µ, (gt, t ∈ Z

d) are i.i.d. positive Pareto
random variables with

µ(g0 > x) = x−θ for x ≥ 1

for some θ > α, then as in the one-dimensional case we see that

bn ∼ c
1/α
α,θ n

d/θ as n→ ∞ ,

for some finite positive constant cp,θ, Theorem 4.3 applies, and n−d/θMn

converges to an extreme value distribution and hence this example also shows
that the rate of growth of Mn can be nγ for any γ ∈ (0, d/α). Note that
existence of such a process was needed in the proof of (5.21) in Theorem
5.4.

Next is an example of an application of Theorem 5.4.
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Example 6.2. Suppose d = 3, and define the Z
3-action {φ(i,j,k)} on S =

R × {−1, 1} as
φ(i,j,k)(x, y) = (x+ i+ 2j, (−1)ky) .

An action-invariant measure µ on S is defined as the product of the Lebesgue
measure on R and the counting measure on {−1, 1}.

Take any f ∈ Lα(S) and define a stationary SαS random field {X(i,j,k)}
as follows

X(i,j,k) =

∫

R×{−1,1}
f
(
φ(i,j,k)(x, y)

)
dM(x, y) ,

where M is a SαS random measure on R×{−1, 1} with control measure µ.
Note that the above representation of {X(i,j,k)} is of the form (3.3) generated
by a measure preserving conservative action with c(i,j,k) ≡ 1.

In the notation of Section 5 we have

K = {(i, j, k) ∈ Z
3 : i+ 2j = 0 and k is even} ,

and so
A ≃ Z

3/K ≃ Z × Z/2Z ,

and
F = {(i, 0, 0) : i ∈ Z} .

In particular p = 1 and {φt}t∈F is dissipative. Hence Theorem 5.4 applies
and says that 1

n1/αMn converges to an extreme value distribution.

In all the examples we have seen so far, the action has a conservative
direction i.e there is u ∈ Z

d − {0} such that {φnu}n∈Z is a conservative
Z-action. The following example of a Z

2-action, suggested to us by M.G.
Nadkarni, lacks such a conservative direction. In a sense, this example is
“less one-dimensional” than the previous examples.

Example 6.3. Suppose that d = 2, and define the action {φ(i,j)}i,j∈Z of Z
2

on S = R with µ = Leb by

φ(i,j)(x) = x+ i+ j
√

2, ∀x ∈ R .

Clearly, this action is measure preserving and it does not have any conser-
vative direction. It is, however, well known that this action does not admit
a wandering set of positive Lebesgue measure, and hence is conservative. In
fact, if we take the kernel f = I[0,1] and define {X(i,j)} by (3.1) and (3.3)
with, say, c(i,j) ≡ 1, then we have, for all n ≥ 2,

bαn = µ

( ⋃

0≤i,j≤(n−1)

φ(i,j)

(
[0, 1]

))
= µ

(
[0, 1 + (n− 1)(1 +

√
2)]

)
.
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So, bn ∼ (1 +
√

2)1/αn1/α and, a simple calculation shows that left hand
side of (4.17) is bounded from above by b−2α

n (µ⊗ µ)(Bn) where

Bn =
{
(x, y) ∈ R

2 : −(n− 1)(1 +
√

2) ≤ x, y ≤ 1, |x− y| ≤ 1
}
.

Since (µ⊗ µ)(Bn) = O(n), (4.17) holds and hence

1

n1/α
Mn ⇒

(
(1 +

√
2)Cα

)1/α
Zα .
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