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STATIONARY SYMMETRIC a-STABLE DISCRETE
PARAMETER RANDOM FIELDS

BY PARTHANIL ROY AND GENNADY SAMORODNITSKY H

Cornell University

We establish a connection between the structure of a stationary
symmetric a-stable random field (0 < « < 2) and ergodic theory
of non-singular group actions, elaborating on a previous work by
M) With the help of this connection, we study the ex-
treme values of the field over increasing boxes. Depending on the
ergodic theoretical and group theoretical structures of the underly-
ing action, we observe different kinds of asymptotic behavior of this
sequence of extreme values.

1. Introduction. In this paper we study the structure of stationary
symmetric a-stable discrete parameter non-Gaussian random fields. A ran-
dom field {X;},czq is called a symmetric a-stable (Sa.S) random field if for
allcy,ca, ..., € R, and, t1,to,... 1 € Z%, E?:l c;j Xy, follows a symmetric
a-stable distribution. In this paper we will concentrate on the non-Gaussian
case, and hence, we will assume 0 < a < 2, unless mentioned otherwise. For
further reference on Sa.S distributions and processes the reader is suggested
to read [Samorodnitsky and Taqqu (1994). A random field {Xi}ega is called
stationary if

(1.1) (X} L (X, forallsez,

Stationarity means that the law of the random field is invariant under the
action of the group of shift transformations on the index-parameter ¢ € Z<.
More generally, if (G,+) is a countable abelian group with identity ele-
ment 0, then a random field { X} };c¢ is called G-stationary if (LI]) holds for
all s € G. Most of the structure results in this paper have immediate analogs
for G-stationary fields. We will mention these briefly along the way. Even
though our main interest lies with Z%indexed random fields, at a certain
point in the paper a more general group structure will become important.
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2 P. ROY AND G. SAMORODNITSKY

Our first task in this paper is to establish a connection between ergodic
theory of nonsingular Z%-actions (see Section 1.6 of [Aaronson (|1991|)) and
SaS random fields. Using the language of the Hopf decomposition of non-
singular flows a decomposition of stationary Sa.S processes was established
in (@) For a general d > 1 a similar decomposition of SaS ran-
dom fields into independent components was given in (@) We
show the connection between this decomposition and ergodic theory. This
is done in Section Bl using an approach different from the one-dimensional
case, namely, without referring to the Chacon-Ornstein theorem, which is
unavailable in the case d > 1.

We use the connection with ergodic theory to study the rate of growth
of the partial maxima sequence {M,,} of the random field X; as ¢ runs over
a d-dimensional hypercube of size with an increasing edge length n. In the
case d = 1 it has been shown in Samgrgdnitskﬂ (IM) that this rate drops
from n'/® to something smaller as the flow generating the process changes
from dissipative to conservative. One can argue that this phase transition
qualifies as a transition between short and long memory. In this paper we
establish a similar phase transition result for a general d > 1.

In Section Ml we first discuss the asymptotic behavior of a certain deter-
ministic sequence which controls the size of the partial maxima sequence
{M,,}. The treatment here is different from the one-dimensional case due to
unavailability of Maharam extension theorem (see Theorem 2 in

)) in the case d > 1. In this section, we also calculate the rate of growth
of partial maxima of the random field. We show that the rate of growth of
M,, is equal to n%® if the group action has a nontrivial dissipative compo-
nent, and is strictly smaller than that otherwise.

We discuss connections with the group theoretical properties of the action
in Section Bl For SaS random fields generated by conservative actions, we
view the underlying action as a group of nonsingular transformations and
study the algebraic structure of this group to get better estimates on the
rate of growth of the partial maxima. Examples illustrating how the maxima
of a random field can grow are discussed in Section

2. Some Ergodic Theory. The details on the notions introduced in
this section can be found, for example, in Aaronson (|L9£L’Z|) Unless stated
otherwise, the statements about sets (e.g. equality or disjointness of two
sets) are understood as holding up to a set of measure zero with respect to
the underlying measure.

Suppose (5,8, ) is a o-finite standard measure space and (G,+) is a
countable group with identity element 0. A collection of measurable maps
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¢S — S, t € G is called a group action of G on S if

1. ¢g is the identity map on S, and,
2. Pyt = ¢y 0 @y for all u,v € G.

A group action {¢;}iec of G on S is called nonsingular if p o ¢y ~ p for all
teG.

A set W € S is called a wandering set for the action {¢;}ieq if {p(W) :
t € G} is a pairwise disjoint collection. The following result (see Proposition
1.6.1 of |Aaronsorl (1997)) gives a decomposition of S into two disjoint and
invariant parts.

Proposition 2.1. Suppose G is a countable group and {¢;} is a nonsingular
action of G on S. Then S = CUD where C and D are disjoint and invariant
measurable sets such that

1.D = U & (Wy) for some wandering set W, ,
teG

2. C has no wandering subset of positive measure.

D is called the dissipative part, and C the conservative part of the action.
The action {¢;} is called conservative if S = C and dissipative if S =D.

An action {¢;}iec is free if p({s € S: ¢(s) =s}) =0 for all t € G — {0}.
Note that this definition makes sense because (5,S) is a standard Borel
space and hence {s € S : ¢(s) = s} € S. The following result is a version
of Halmos’ Recurrence Theorem for a nonsingular action of a countable

group.
Proposition 2.2. Let {¢;} be a nonsingular action of a countable group G.
If A€ S and A CC, then

ZIAO¢t =00 a.e. on A.

teG

Proof. Define,
F:={se S:3te G,t+#0such that ¢(s) = s}.

Observe that F' is {¢;}-invariant. Restrict {¢;} to S — F. Let C; be the
conservative part of the restriction. It is easy to observe that AN F° C Cy
for all A C C. Since the restricted action is free by Proposition 1.6.2 of
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Aaronson (1997) we have,

ZIAogthZIAnpcogbt:ooa.e. on AN F°.

teG teG
Clearly,
ZIAO¢t =ooa.e on ANF.
teG
This completes the proof. O

Recall that the dual operator of a nonsingular transformation 7" on S is
a linear operator 7' on L'(S, 1) such that

/ Tf.gdp = / f.goTdu forall fe L'(u) and g € L™®(p).
S S

In particular, if T" is invertible, then

.. dpoT!
Tf:%foT_1 for all f € L'(p),

see Section 1.3 in|Aaronson (Iﬁ&ﬂ) The following proposition is an extension
of Theorem 1.6.3 of [Aaronson d19_9j) to not necessarily measure-preserving
transformations, and can be established using an argument parallel to that

of Propositon 1.3.1 in [Aaronson (1997).

Proposition 2.3. If G is a countable group and {¢;} is a nonsingular action
of G on S then for all f € L*(p), f >0,

C={se€S:> f(s) =00}

teG

The following is an immediate corollary, particularly suitable for our pur-
poses.

Corollary 2.4. If G is a countable group and {¢;} is a nonsingular action
of G then

[Zdﬂdogbtfoqbt:oo] =C forall f € L'(p), f > 0.
tec M

Note that, as mentioned earlier, the equalities of sets in Proposition
and Corollary [Z4] above hold up to sets of u-measure zero.
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3. Stationary Symmetric Stable Random Fields. Suppose X =
{Xi}eza is a SaS random field, 0 < o < 2. We know from Theorem 13.1.2
nitsky and T (ILM) that it has an integral representation

of the from

(3.1) x, < /ft(s)M(ds), tez?,
S

where M is a SaS random measure on some standard Borel space (5,S)
with o-finite control measure p and f; € L*(S, ) for all t € Z¢. Note that
fi’s are deterministic functions and hence all the randomness of X is hidden
in the random measure M, and, the inter-dependence of the X;’s is captured
in {f;}. The representation (B.I]) is called an integral representation of {X;}.
Without loss of generality we can also assume that the family {f;} satisfies
the full support assumption

(3.2) Support (ft, te Zd> =9,

because, if that is not the case, we can replace S by Sy = Support( fi, t € Zd)

in (31).

If, further, {X;} is stationary, then the fact that the action of the group Z?
on {X;},eze by translation of indices preserves the law, and certian rigidity
of spaces L%, o < 2 guarantees existence of intergral representations of a
special form. This has been established in m ) for d = 1 and
m ) for a general d. Specifically, there always exists a represen-
tation of the form

dp o ¢y

1/a
0 (s)> fodi(s), tez?,

(33 fls) = ct<s><

where, f € L%(S, 1), {¢t}eza is a nonsingular Z%-action on (S, ) and
{¢t}ieza is a measurable cocycle for {¢;} taking values in {—1,+1} i.e. each
¢ is a measurable map ¢; : S — {—1,+1} such that Vu,v € Z4

Cuto(8) = cu(s)eu(u(s)) for p-aa. s e S.

Conversely, if {f;} is of the form (B3] then {X;} defined by B3I is a sta-
tionary Sa.S random field. In particular, every minimal representation of

the process (see Hardin Jr/ (1982)) turns out to be of the form (33).

We will say that a stationary Sa.S random field {X;},czqa is generated by
a nonsingular Z%action {¢;} on (S, x) if it has a integral representation of
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the form (B3] satisfying |B:2]|;. With this terminology, we have the following

extension of Theorem 4.1 in (IM) to random fields.

Proposition 3.1. Suppose {X;},czq4 is a stationary SoS random field gen-
erated by a nonsingular Z%-action {¢¢} on (S, 1) and {f;} is given by (B3).
Also let, C and D be the conservative and dissipative parts of {¢¢}. Then we
have,

C = {se§: Z |fe(s)|* = o0} mod p, and,
tez
D = {seS: Z |fi(s)|* < o0} mod .
tezd
In particular, if a stationary SoS random field {X;},cza is generated by a
conservative (dissipative, resp.) Z%-action, then in any other integral repre-
sentation of {X;} of the form (33) satisfying (32), the Z%-action must be
conservative (dissipative, resp.). Hence the classes of stationary SaS ran-
dom fields generated by conservative and dissipative actions are disjoint.

Proof. Define g as

dp o ¢y o
95 = 3 0P )10 6 (s)
u€Zd

where oy, > 0 for all u € Z% and ZuEZd oy = 1. Clearly g € L! and, by
B2), g > 0 a.e. p. Since

> P sgoduls) = Y PG ool = YA

d
tezd H tezd tezd

we can use Corollary 4] to establish the first part of the proposition, from
which the second part of the proposition follows by the same argument as
in the one-dimensional case (see Theorem 4.1 in m (@)) O

As in the one-dimensional case, it follows that the test described in the
previous proposition can be applied to any full support integral representa-
tion of the process, not necessarily that of a specific form.

Corollary 3.2. The stationary Sa.S random field { X;},cza is generated by a
conservative (dissipative, resp.) Z%-action if and only if for any (equivalently,
some) integral representation (31) of {X:} satisfying (32), the sum

> Ifis)
tezd

is infinite (finite, resp) p-a.e. .
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Proposition B] also enables us to extend the connection between the
structure of statlonar stable processes and ergodic theory of nonsingular
actions (given in [Rosiriski (@ to the case of stationary stable random
fields. A decomposmon of a stable random field into three independent
parts is available in (@) A connection with the conservative-
dissipative decomposition is still missing in the case of random fields. Here
we provide the missing link. Recall that a stable random field X is called a
mixed moving average if it can be represented in the form

d

(3.4) X 4 { /szd Flot+ S)M(dv,ds)}tEZd ,

where f € LYW x Z%,v®1), [ is the counting measure on Z%, v is a o-finite
measure on a standard Borel space (W, V), and the control measure ;1 of M
equals v ® [ (see lS_u_ngILJ dﬁ&i and [Rosinski (I_(l)_d The following
result gives two equivalent characterizations of stationary Sa.S random fields
generated by dissipative actions.

Theorem 3.3. Suppose {X;},cza is a stationary SaS random field. Then,
the following are equivalent:

1. {X;} is generated by a dissipative Z%-action.
2. For any integral representation {fi} of {X:} we have,

Z |f1(s)]* < o0 for p-a.a. s.

tezd
3. {X:} is a mized moving average.

Proof. 1 and 2 are equivalent by Corollary B2l and, 2 and 3 are equivalent
by Theorem 2.1 of m)

O

Theorem B3] allows us to describe the decomposition of a stationary Sa.S
random field given in Theorem 3.7 of [Rosinski (Ii@ ) in terms of the ergodic-
theoretical properties of nonsingular Z%actions generating the field. The
statement of the following corollary is an extension of the one-dimensional
decomposition in Theorem 4.3 in m ) to random fields.

Corollary 3.4. A stationary SaS random field X has a unique in law
decomposition

(3.5) X, £ x¢4+xP,
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where X€ and XP are two independent stationary SaS random fields such
that XP is a mized moving average, and X is generated by a conservative
action.

As mentioned before, all of the structure results of this section extend im-
mediately to G-stationary random fields for countable abelian groups G more
general than Z?. The only place where an additional argument is needed is
the equivalence of parts 2 and 3 in Theorem B3] with a G-mixed moving
average defined by

Xi{/ g(v,t+s)M(dv,ds)} ,
WxaG teG

in notation parallel to ([B8.4]). This equivalence needs an extension of Theorem
2.1 in (@) to general countable abelian groups. See @ (@)

for details of this extension which does not require any additional ideas to
what is already in the original proof.

As in the one-dimensional case, it is possible to think of stable random
fields generated by conservative actions as having longer memory than those
generated by dissipative actions, simply because a conservative action “keeps
coming back”, and so the same values of the random measure M contribute
to observations X, far separated in t. From this point of view, the Z%action
{¢¢} is a parameter (though highly infinite-dimensional) of the stationary
SaS random field {X;} that determines, among others, the length of its
memory.

4. Maxima of Stable Random Fields. The length of memory of
stable random fields is manifested, in particular, in the rate of growth of
its extreme values. If X; is generated by a conservative action, the extreme
values tend to grow at a slower rate because longer memory prevents erratic
changes in X; even when t becomes “large”. This has been formalized in

morodnitsk (IM) for d = 1, and it turns out to be the case for stable
random fields as well.

For a stationary SaS random field {X;},czq4, we will study the partial
maxima sequence

(4.1) M, = max |Xy|, n=0,1,2,...

0<t<(n—1)1
where v = (uM,u®, ... u) < v = (M, 0@ ... v@) means u» < v
forall i =1,2,...,dand 1 = (1,1,...,1). As in the one-dimensional case,

the asymptotic behavior of the maximum functional M, is related to the
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deterministic sequence

1/a
(42) b, = (/gogtrgll(ifl)l\ft(s)\ ,u(ds)> , n=0,1,2,... .

Note that b,, is completely determined by the process, and does not depend

a particular integral representation (see Corollary 4.4.6 of Bamm@nm&kmndiaqqd
m)) We are interested in the features of this sequence that are related
to the decomposition of a stable random field in Corollary B4l The next
result shows that the sequence b, grows at a slower rate for random fields
generated by a conservative action than for random fields generated by a
dissipative action.

Proposition 4.1. Let {f;} be given by (Z3). Assume that (32) holds.

1. If the action {¢.} is conservative then:
(4.3) n~ Y%, — 0 asn— .

2. If the action {¢y} is dissipative, and the random field is given in the
mized moving average form ([3.7), then:

R /W<g<v>>%<dv>)l/ae(o,oo>,

where

(4.5) g(v) = sup |f(v,s)| forve W.
sezd

Proof. 1. Firstly we observe that without loss of generality we can assume
that p is a probability measure. This is because if v is a probability measure
equivalent to the o-finite measure p then instead of (B.I]) we will use

x, 4 /S he(s)N (ds)

Vo, 1/a
ht<s>=ct<s><d o <s>) hodi(s), t €2

where,

where h = f(zll—’,j)l/a € L*(S,v) and N is a SaS random measure on S with
control measure v.



10 P. ROY AND G. SAMORODNITSKY

Since {b,} is an increasing sequence, it is enough to show (4.3]) along the
odd subsequence. By stationarity of {X;}, we need to check that

ap, = 2n+1 /max\ft )|“p(ds) — 0,

where J, := {(il,ig,...,id) c—n < dy,09,...,0g < n}. Let g = [f|* Then
lgll == [59(s)u(ds) < co, and we have for 0 < e < 1

= G b
1 .
< W( mfa]f [¢t9( )z <¢t9( ) < Eu; ¢Sug(s))},u(ds)
[ b1 (duate) > € 3 dua) uta))
" ueJn
= a,g) + a(2)

Clearly,
(4.6) a) < 2n+1 — Z /qﬁug (ds) = el|gll ,
and
(4.7) al?) < 2n+1 — Z/(btg s) L, . (s)p(ds) ,

where Ay, = {s: ngﬁtg(s) > €D e, qug(s)}, n>1,t € J,. Notice that for
alln > 1, and, for all t € J, ,

@8 [ ) utds) = [ o)y, 6Inds).
The following is the most important step of this proof: if we define

Up = {(t1,t2, ..., ta) : —n+ [Vn] < t1,ta, ..., tg <n—[V/n]}

then we have,

(4.9) lim max u(¢; (Arn)) =0

n—oo telU,
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To prove ([A9]) observe that for all t € U,

¢t_1(At,n)
:{¢_t(s):go¢_t()duo¢t >eZgo¢ duo¢u()}

ueJy

= {s cg(s) >e€ Z go ¢u+t(3)w27jjuﬂ(s)}

ueJy

clsrgle) >c Y gos(9 Pl ().

d
T€ﬁ¢m H

The last inclusion holds because J, ;) € t + J,,. Hence, for any M > 0

max u(¢; ! (Arpn)) < pfs: g(s) >eM} ‘1‘#( Z go¢tdﬂ #(ﬁt < M>

teUn
tediym

%Jﬁi( > ’ft’aSM)'

tedm

IN

Now ([d.9) follows by first using Proposition B.I] with a fixed M and then
letting M — oo.

From (L8]) and (49) it follows that

(4.10) 2n+1 — Z/ pu(ds) — 0.

If we define V,, = J,, — U,,, then

2n+1dz/¢t9 Ma, ., (s (d3§2+1d2/¢t9

teVn teVy,

Then using (£7) and (@I0) we see that at? — 0 as n — oo. Therefore we
get,
limsup a,, < limsup a{!) + limsup a® < e||g|,

and, since € > 0 is arbitrary, the result follows.
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2. The argument here is similar to that used in the one-dimensional case

in Theorem 3.1 of lSammm:lml;&kyI (1291)_4]) One uses a direct computation to

check the claim in the case where f has compact support, that is

f (0, 8) Iy x [=m1,m1)e (v, ) = 0 for some m = 1,2, ...

where [u,v] := {t € Z¢% : u < t < v}. The proof in the general case fol-
lows then by approximating a general kernel f by a kernel with a compact
support.

O

Remark 4.2. The statement of the first part of the proposition clearly
extends to G-stationary random fields for any free abelian group G of rank d,
since the same is true for Proposition 3] See the discussion after Corollary

B.4

We are now ready to investigate the rate of growth of the sequence { M, }
of partial maxima of a stationary symmetric a-stable random field, 0 < a <
2. We will see that if such a random field has a nonzero component X7 in
(B3] generated by a dissipative action, then the partial maxima grow at the
rate n®®, while if the random field is generated by a conservative action,
then the partial maxima grow at a slower rate. As we will see in the sequel,
the actual rate of growth of the sequence {M,} in the conservative case,
depends on a number of factors. The dependence on the group theoretical
properties of the action is very prominent. We start with the following result,

which extends Theorem 4.1 of Samorodnitsky (2004) to d > 1. Tt is based on

Proposition ] and the argument is parallel to the one-dimensional case.

Theorem 4.3. Let X = {X,},cz4 be a stationary SaS random field, with
0 < a < 2, integral representation (1)), and functions {f;} given by (33).

1. Suppose that X is not generated by a conservative action (i.e. the com-
ponent XP in (3H) generated by the dissipative part is nonzero). Then

(4.11) —M, = CYKxZ,

nd/a

o= ([ (Q(U)de))l/a

and g is given by -3 for any representation of X D in the mized moving av-

erage form (34), Co is the stable tail constant (see (1.2.9) in\Samorodnitsky and_Taqql

as n — 0o, where
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(@)) and Zg 1is the standard Frechet-type extreme value random variable
with the distribution

P(Zy<z)=e¢*", 2>0.
2. Suppose that X is generated by a conservative Z%-action. Then
1
nd/a

as n — oo. Furthermore, with b, given by [{-2),

(4.12) M, 250

1
(4.13) {— Mn} is mot tight for any positive sequence ¢, = o(by),

Cn,
while
1, if 0<a<l,
Mn} is tight, where (, = < L, if a=1,
(logn)/, if l<a<?2,

1

(4.14) {%

where L, := max(1,loglogn), and for o > 1, o' is such that 1/a+1/a’ = 1.

If, for some 8 >0 and ¢ > 0,
(4.15) b, > en? for allm >1,
then ([4.14) holds with (, =1 for all 0 < a < 2.

Finally, forn=1,2,..., let n, be a probability measure on (S,S) with

dny, -« a
(4.16) @(3) = b, oo B [fe(s)|, s €S,

and let U](n), j = 1,2 be independent S-valued random wvariables with com-
mon law ny,. Suppose that (4.13) holds and for any € > 0,

P(for some t € [0, (n — 1)1],

1 (U)]

maxp<y<(n—1)1 \fu(U;n))’

(4.17) > j= 1,2) -0

as n — 0o. Then
1

(4.18) My = clegz,
n

as n — oQ.
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Remark 4.4. An easily verifiable sufficient condition for (£I7)) is

. bn,
(4.19) =
Alternatively, ([@I7) holds if we assume that p is a finite measure, {¢;}
is measure preserving, the sequence {b,® maxo<i<(n_1y1 | f1(s)|*}, t € Z% is
uniformly integrable with respect to p and, for every € > 0

(4.20) lim n®?u{s e S: |f(s)| > eby} =0.

The arguments are the same as in the case d = 1.

5. Connections with Group Theory. When the underlying action is
not conservative Theorem 3] yields the exact rate of growth of M,,. For con-
servative actions, however, the actual rate of growth of the partial maxima
depends on further properties of the action. In this section we investigate
the effect of the group theoretic structure of the action on the rate of growth
of the partial maximum. We start with introducing the appropriate notation.

Consider A := {¢; : t € Z} as a subgroup of the group of invertible
nonsingular transformations on (S, 1) and define a group homomorphism
d:.7%— A
by ®(t) = ¢; for all t € Z%. Let K := Ker(®) = {t € Z? : ¢; = 15}, where
1g denote the identity map on S. Then K is a free abelian group and by first
isomorphism theorem of groups (see, for example, (@)) we have,
A~74K .
Hence by Theorem 8.5 in Chapter I of (@) we get,
A=Fa&N

where F is a free abelian group and N is a finite group. Assume rank(F) =
p > 1 and |N| = [. Since F' is free, there exists an injective group homomor-
phism

U:F—74
such that ® o U = 1. Let F' = W(F). Then F is a free subgroup of Z% of
rank p.

The rank p is the effective dimension of the random field, giving more
precise information on the rate of growth of the partial maximum than the
nominal dimension d. We start with showing that this is true for the sequence

(b} in @)
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Proposition 5.1. Let {f;} be given by (3.3). Assume that (32) holds. Then
we have the following:

1. If {¢1}ier is conservative then

(5.1) n"P/%, —0.
2. If {¢¢ }er is dissipative then

(5.2) n"P/%, —a

for some a € (0,00).

Proof. 1. It is easy to check that ' K = {0} and hence the sum F + K is
direct. Suppose G = F ® K. Using group isomorphism theorems we have,

78)G ~ (24)K)/(F ® K/K) ~ AJF ~ N .

Assume that z1 + G, o+ G, ... ,x; + G are all the cosets of G in Z¢. Let
rank(K) = ¢. Choose a basis {u1,us, ..., u,} of F'and a basis {v1,va,...,v4}
of K. We need the following

Lemma 5.2. There are positive integers ¢, d, and, N such that for every
n>N

! !
(5.3) U l‘k + G[n/d] —nl, nl U l‘k + Gcn
k=1 k=1

where for m > 1

P q

Gy, = {Z a;u; + Zﬁjvj ¢ ogl, |B5] < mfor all 4, 5} .

i=1 j=1

Proof. Let r = p + q. For ease of notation we define

Tl prl<i<r.

Then {wy,ws, ..., w,} is a basis for G. The first inclusion in (5.3]) is obvious.
To establish the second inclusion we first prove

Step 1. There is an integer ¢’ > 1 such that

[-n1,n1]NG C Gwy, foralln>1.
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Proof of Step 1. Take y € [-n1,n1]NG. Then, y = nwi +nowa+- - -+ 0w,
for some n1,m2,...,n € Z. We have to show |n;| < dn forall 1 <i <r
for some ¢ > 1 that does not depend on n. Let 77 := (n1,12,...,1n,) € Z".
Then,

(5.4) y=Wwq

where, W is the d x r matrix with w; as the i*" column. The columns of W
are linearly independent over Z and hence over R. Hence there is a r x d
matrix Z such that

W =1

where [ is the identity matrix of order r. Hence from (5.4]) we have,
n=2y.
For all 1 <17 < r we get,
mil < 7l < 1ZIlyll < 1 Z]nvd < ¢n

where, ¢’ = [||Z||V/d] + 1. This proves Step 1.

Step 2. Let
M = max |7kl + 1
1<k<I
where || - ||oo denotes the sup-norm on R and ¢ = ¢ M. Then for all n > 1
we have,

l
[—n1,n1] € | (zx + Gen) -
k=1

Proof of Step 2. Take y € [-n1,n1]. Then y € x4, + G for some 1 < kg < L.
Clearly, v ==y — a2, € [-(n+ M — 1)1,(n + M — 1)1] N G. By Step 1,
Y € Gumem—1) € Gen, and hence, y € a3y + Gen C U2:1($k + Gepn),
proving Step 2 and the lemma.

O
For k=1,...,1 let

d o - 1/&



STABLE RANDOM FIELDS 17

Then for t = 2y, + Y77 cju; + 1, Bjv; we have

d/,L o (ﬁzg):l it (S)> 1/a

(5.5) |fi(s)] = lgx o ¢zg_1aiui(8)!< i

By stationarity, Lemma [5.2] and (5.5 we have, for all n > N,

(0% < (0% — «
by < boup S_n?"‘g%?m'ft(s)' p(ds)
dNO¢Z? oy
< « i=1 "t
<, oax, max <!gk 0 P5P (5] B (8)>u(d8)
! dp o ps-p
«a Do i
< g max | |gr 0 5P o4 (8)| ——F—— S> ds

= o(nP).

The last step follows from Proposition 1] and Remark

2. Proof of this part is similar to the proof of Theorem 3.1 in lS_&IIJQermIﬁk;zI
). We start this proof with the following combinatorial fact:

Lemma 5.3. Forn>1and k=1,2,...,1, let
Fryn = {u € xp+ F: there exists v € K such that u+ v € [—nl,nl]} .

Then there is a positive real number V' such that for all k =1,2,...,1,

F
(5.6) lim [Pl )

n—oo NP
Here |A| stands for the cardinality of a set A.
Proof. One of F}, ,, is the set

F, ={y € F: there exists v € K such that y +v € [-n1,n1]}.

Firstly, we will show

(5.7) lim L2l )

n—oo NP

for some V > 0. To show this let W be the matrix used in the proof of
Lemma 521 We can partition W into two submatrices as follows:

W=[U|V]
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where, U is the d x p matrix whose " column is u; and, V is the d X ¢ matrix
whose j* column is v;. Since the columns of U are linearly independent over
Z, we have,

|F| = [{a € ZP : there exists § € Z7 such that |[Ua + V§]e < n}.

Let P:= {2z € R" : [Wz| o < 1} and 7 : R” — RP denote the projection
map on the first p coordinates:
m(z1,x2,...,2) = (1, 22,...,Tp) .

Then we have,
|[Fn|  |7(Z" nnP)|

np np

ap, -
Let
b . ’Zp ”T(] )’
mn - np .

Clearly, a,, < b,. Since P is a rational polytope (i.e. a polytope whose ver-

tices have rational coordinates) so is w(P). Hence, by Theorem 1 of
), it follows that

(5.8) limsupa, < lim b, =V

n—00 n—0oo
where V = Volume(w(P)), the p-dimensional volume of 7(P). This volume
is positive since the latter set, obviously, contains a small ball centered at
the origin. For the other inequality we let

Py = {a; ER: [ Waflw < 1— M}
m

IIKVﬁ‘Iloo
Z||oo
Hence for all m > ||W||so, Pn is a rational polytope of dimension r. Also,

P,, T P. Now fix m > |[|[WW||s. Observe that

where [|[W oo := sup,g € Z since W is a matrix with integer entries.
. 1
YER :ly—2l|lew< — ¢ C P foralxeP,.
m
Hence, it follows that for all n > m,

1 1
w (32 nP) 212 (R,
n n

which, along with Theorem 1 of De Loera dZM)ﬂ), implies

p
(5.9) liminf a,, > lim 122 O nm ()| =V

n— oo n—oo npb
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where V,,, = Volume(w(P,,)) is, once again, the p-dimensional volume. Since
P,, T P, it follows that V,, T V. Hence (5.7)) follows from (5.8) and (5.9).

Now fix k =1,2,...,l and let M = ||z|. Observe that for all n > M,

Hence (5.0) follows from (5.1)).
U

We now return to the proof of the second part of the proposition. We give
a group structure to

l
(5.10) H:=|J(zr+F)
k=1

as follows. For all uj,us € H, there exists unique v € H such that (uj +
uz) —u € K. We define this u to be u; @ ug. It is not hard to check that
(H,®) is a countable abelian group. In fact, H ~ Z?/K. We can define a
nonsingular group action {t,} of H on S as

Yy = ¢ forallue H.

Notice that if h € L'(S, 1), h > 0, then, since (5.10) is a disjoint union,

dpr o Yy, dp o ¢y ~
(5.11) PRI o ’”‘dﬁho@,

d
ueH H tel

where,
l

7 dﬂ ° ¢xk
h=>Y" Th 0 Py -
k=1
Clearly h € L'(S, ) and h > 0. Hence using Corollary 24 and the dissi-
pativity of {¢;}icr, we see that the second sum in (BIT)) is finite almost
everywhere. Another appeal to Corollary [Z4] shows that {1y }yem is a dissi-
pative group action.
Define a random field {Y, },eqm as

(5.12) Y, = /Sfu(s)M(ds), u € H,

where,

o 1/a
fu:fowu<du %) u e H.
dp
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Clearly {Y,}uen is an H-stationary SaS random field generated by the
dissipative action {1y }ycp. Hence there is a standard Borel space (W, W)
with a o-finite measure v on it such that
Yui/ g(w,u ® s) N(dw,ds) u € H,

WxH

for some g € L*(W x H,v ® ), where 7 is the counting measure on H, and,
N is a SaS random measure on W x H with control measure v ® 7 (see the
discussion following Corollary [3.4])

Let, for all w € W,

(5.13) g*(w) := sup |g(w, u)|.
ueH

Then, clearly, ¢g* € L*(W,v). We will show that (5.2)) holds with

(5.14) (% /W<g*<w>>adu<w>)l/a € (0,00).

Since b, is an increasing sequence, it is enough to show

(5.15) lim _ b
n—oo (271 + 1)1’/0‘

Let H, := \_, Fin- Then by stationarity of {X;},cza we have, for all
n>1,

« _ «@
il = S_nlflg%’énl‘ft( s)|* u(ds)

= [ max|fu(s)|"u(ds)

Su
(5.16) = max |[g(w, s & u)|*v(dw) .

The last equality follows from Corollary 4.4.6 of lSammMnm&kLandiaqqd

(@) We define a map N : H — {0,1,...} as,
N(u) := min{||u + v||eo : v € K}.
Clearly, for all u € H,

(5.17) N(u™') = N(u),
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where, u ! is the inverse of u in H. Also, N(-) satisfies the following “triangle
inequality”: for all uy,us € H,

(5.18) N(u1 @ ug) < N(up) +N(u2).

Observe that H, = {u € H : N(u) < n}. From Lemma [5.2] we have H,,’s
are finite and Lemma [5.3] yields

(5.19) \H,,| ~ Vin®.

Also, clearly, H,, T H. As in the proof of Theorem 3.1 of Samgrgdnitskﬂ
(@), we first assume g has compact support, i.e. g(w,uw) Iy xme, (w,u) =0
for some m > 1. Then using (BI7) and (B.I8]), the expression in (G.10)
becomes

Vot = D [ max|g(w,su)w(dw)
SEHp+m W uEHn

= Z max |g(w, s & u)|*v(dw)
SEH,—m w uSHn

+ E max |g(w, s & u)|“v(dw) =: A, + By,
. W ueHy,
SEHn+mﬂHc

for all n > m. Using (B.17) and (5I8]) once again, we have, for all s € H,,_,,,

max |g(w,s ® u)| = g*(w).

ueHy,

Hence, using (5:19]), we get,
Ay =[] [ (@) wldw) ~ a*(20 -+ 1),
w

while
Bu < (Hyim| — | Homl) /W<g*<w>>%<dw> — o(n?).

Hence, (5.15) follows for g having compact support. The proof in the general
case follows by approximating a general kernel g by a kernel with a compact
support as done in the proof of Theorem 3.1 in lS.ammMnﬁ&kyI (IZDDA]) This
completes the proof of the proposition. O

The following result sharpens the the description of the asymptotic be-
haviour of the partial maxima of a random field given in Theorem It
reduces to the latter result if K = 0.
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Theorem 5.4. Let X = {X;},cza be a stationary SaS random field, with
0 < a < 2, integral representation (31), and functions {f:} given by (33).
Then, in the terminology introduced in this section, we have the following:

1. If {¢1 }ier is not conservative then

1

for some c € (0,00), and Z, as in [{.11)). In fact,

o= (Y% [ (i)
( 20 Jw

where V is given by ([(5.0), while g* is given by (513) applied to the dissipa-
tive part of the random field (12)), and Cy is as in (£.11).

2. If {¢t}ier is conservative then

(5.21) np/aM 2.0,
Proof. 1. Let r,, be the left hand side of (£IT). Then we have,
(T

r, < P<f0rsomeu€Hn, >e,j:1,2>

maxe, |fo(UL")
2
(5:22) < || (e—ab;a / If(s)lau(ds)> .

The inequality (5.22) follows using the argument given in Remark 4.2 of

Samorodnitsky 4291)_4] Since {¢¢}ier is not conservative, Proposition B

yields that b, satisfies (B.2]). Hence by (GEI9) we get that (£I7]) holds in

this case. Since b, satisfies (5.2 with a given by [GI4]), we get ([B.20) by
Theorem [A.3]

2. As in the proof of (4.3) in Samorodnitskyl (2004) we can get a stationary

SaS random field Y generated by a conservative Z?-action such that b)Y
satisfies (.I5]) as well as (G.1) (this is possible, for instance, by Example [6.1]
below). Therefore, (5.21)) follows using the exact same argument as in the

proof of (4.3) in Samorodnitsky (2004). O

Remark 5.5. The previous discussion asssumes that p > 1. When p = 0
(i.e. when Z?/K is a finite group) the random field takes only finitely many
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different values. Therefore, the sequence M, remains constant after some
stage and so converges to the maximum of finitely many X;’s, not an extreme
value random variable.

6. Examples. In this section we consider several examples of station-
ary SaS random fields associated with conservative flows. As in the one-

dimensional case considered in Samgrgdnitskﬂ (IM), the idea is to exhibit

a variety of possible in this case behaviour.

The first example is parallel to examples 5.1 and 5.4 in lS.am&rmim.tskyI

Example 6.1. Let the random field have an integral representation of the
form

(6.1) Xti/ g dM, tez?
Rz4

where M is a SaS random measure on RZ" whose control measure WS
a probability measure under which the projections (g;, t € Z%) are i.i.d.
random variables, with a finite absolute ath moment.

If (g;, t € Z%) are i.i.d. standard normal random variables under s, then,
as in the one-dimensional case, one sees that

be ~ (2dlogn)*/?,

the assumption ([IH) in Theorem A3 fails, and b, ' M,, converges to a nonex-
treme value limit. See also Remark above.

On the other hand, if, under p, (g;, t € Z%) are i.i.d. positive Pareto
random variables with

w(go>z) =270 forz>1

for some 6 > «, then as in the one-dimensional case we see that

b, thlx/g‘nd/g as n — oo,
for some finite positive constant c,, Theorem @3] applies, and n=49\r,
converges to an extreme value distribution and hence this example also shows
that the rate of growth of M, can be nY for any v € (0,d/a). Note that
existence of such a process was needed in the proof of (52I]) in Theorem

64

Next is an example of an application of Theorem [5.41
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Example 6.2. Suppose d = 3, and define the Z>-action {#Gjm} on S =
R x {-1,1} as
Gligb) (2,y) = (2 +1+2j, (-1)*y).
An action-invariant measure p on S is defined as the product of the Lebesgue
measure on R and the counting measure on {—1,1}.
Take any f € L%(S) and define a stationary SaS random field {X(; ;) }
as follows

X(ijk) = / (D@ (@,y) dM (z,y)
Rx{-1,1}

where M is a SaS random measure on R x {—1, 1} with control measure px.
Note that the above representation of { X; ; 1} is of the form ([B.3]) generated
by a measure preserving conservative action with Clijk) = 1.

In the notation of Section [}l we have

K ={(i,j,k) € Z*: i+2j = 0and k is even},

and so
A~73/K ~ 7 x L/27,

and
F =1{(i,0,0) : i € Z}.

In particular p = 1 and {¢; }ep is dissipative. Hence Theorem [5.4] applies
and says that #Mn converges to an extreme value distribution.

In all the examples we have seen so far, the action has a conservative
direction i.e there is u € Z? — {0} such that {¢n,}nez is a conservative
Z-action. The following example of a Z2-action, suggested to us by M.G.
Nadkarni, lacks such a conservative direction. In a sense, this example is
“less one-dimensional” than the previous examples.

Example 6.3. Suppose that d = 2, and define the action {¢; ;) }i jez of 7>
on S =R with u = Leb by

Clearly, this action is measure preserving and it does not have any conser-
vative direction. It is, however, well known that this action does not admit
a wandering set of positive Lebesgue measure, and hence is conservative. In

fact, if we take the kernel f = Ijo ) and define {X; ;} by (B.1]) and [B.3)
with, say, c¢(; j) = 1, then we have, for all n > 2,

b — u( U dn (0. 11)) = (0.1 4+ (n— 1)(1 4 VE)).

0<i,j<(n—1)
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So, by ~ (1 +v2)Y*n/ and, a simple calculation shows that left hand
side of ([fIT) is bounded from above by b, ?*(u ® p)(B,) where

By={(z,y) eR?: —(n—1)(1+V2) <2,y <1, |z —y| <1}.

Since (u ® p)(By) = O(n), (EIT) holds and hence

LM, = (1 4v2)0) 2,

nl/a
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