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Summary

We present a multipoint algorithm to map quantitative trait loci (QTLs) using families from

outbred populations with a variable number of sibs. The algorithm uses information from all

markers on a chromosome simultaneously to extract information of QTL segregation. A previous

multipoint method (Kruglyak & Lander (1995) American Journal of Human Genetics 57, 439–454)

extracts information using a hidden Markov model. However, this method is restricted to small

families (!10 sibs). We present an approximate hidden Markov model approach that can handle

large sibships while retaining similar efficiency to the previous method. Computer simulations

support the notion that data sampled from a small number of large families provide more power

than data obtained from a large number of small families, under the constraint that the total

number of individuals for the two schemes is the same. This is further reflected in simulations with

variable family sizes, where variance in family size improves the statistical power of QTL detection

relative to a constant size control.

1. Introduction

The polymorphism of marker loci largely determines

the efficiency and power of mapping quantitative trait

loci (QTLs). In a line crossing experiment that involves

two inbred parental strains, a (co-dominant) marker

locus has two levels of polymorphism: fully in-

formative and non-informative – partially informative

markers do not exist. This yes-or-no characteristic

warrants that the origins of QTL alleles can be traced

solely with two flanking markers, an approach

commonly referred to as interval mapping (Lander &

Botstein, 1989; Haley & Knott, 1992). If a marker is

not segregating in a given cross, an upstream marker

can be used (Martı!nez & Curnow, 1992), but the

procedure is still called interval mapping.

In less controlled populations, i.e. in the absence of

inbred lines, markers may be partially informative. In

such situations, two flanking markers may not extract

the maximum amount of information about the

segregation of a putative QTL and, because of this,

markers outside the interval can provide additional
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787-4437. e-mail : xu!genetics.ucr.edu.

information. In these situations, a more desirable

procedure than interval mapping is to use all markers

simultaneously, a procedure called multipoint map-

ping (Fulker et al., 1995; Kruglyak & Lander, 1995;

Olsen, 1995).

To map QTLs in outbred populations, variance

component analysis has been used whereby the

segregation variance of a putative QTL is estimated

and tested (Haseman & Elston, 1972; Goldgar, 1990;

Schork, 1993; Fulker & Cardon, 1994; Xu & Atchley

1995). The key to the variance component approach is

to capitalize on the variance in the number of alleles

identical-by-descent (IBD) shared by a pair of relatives

at a particular locus. Kruglyak & Lander (1995)

recently developed a multipoint method for QTL

mapping using a hidden Markov model (HMM)

approach. Their method uses all markers to predict

the conditional distribution of the IBD value of a

putative QTL. Fulker et al. (1995) and Olson (1995)

also espouse a multipoint approach, though they use

the estimated IBD values of all markers to infer the

conditional expectation of the IBD at each putative

QTL. With regard to testing the association of a

chromosome position with a trait of interest, using the

expectation of the IBD value is more flexible and
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convenient than using the distribution, with little

difference in power and efficiency between the two

(Fulker & Cherny, 1996; Gessler & Xu, 1996).

The multipoint mapping of Fulker et al. (1995) is an

extension of the interval mapping of Fulker & Cardon

(1994) where the squared phenotypic difference be-

tween pairs of sibs is regressed on the estimated IBD

value. This sib-pair difference approach is less efficient

than the maximum likelihood (ML) method that

includes the multivariate relationships of sib data (Xu

& Atchley, 1996; Fulker & Cherny, 1996). However,

the idea of multipoint mapping of Fulker et al. (1995)

is fundamentally important because the multipoint

estimation of the IBD can be adapted to the ML

analysis.

The multipoint method developed by Kruglyak &

Lander (1995) considers all possible genotypic con-

figurations of the offspring given all marker genotypes.

Because of this, the computational load scales ex-

ponentially with family size, and for practical purposes

this limits the algorithm to situations with fewer than

20 meioses (equivalent to !10 sibs per family).

Olson’s (1995) multipoint method uses a similar idea

to the hidden Markov model but it estimates the IBD

states of a putative QTL using the probability

distributions of IBDs at marker loci. The multipoint

method of Fulker et al. (1995) takes a multiple

regression approach to estimate the IBD of a putative

QTL from the IBDs of the markers. The latter two

methods can handle an arbitrary number of sibs and

are computationally much faster than the multipoint

method of Kruglyak & Lander (1995), though both

are slightly less efficient.

In this paper, we will refer to Kruglyak & Lander’s

(1995) hidden Markov model as the HMM method,

Fulker et al.’s (1995) method as the regression method,

and the method we propose here as the approximate

HMM method. In referring to Fulker et al.’s (1995)

method as the regression method, we are referring

only to the use of multiple regression in determining

the IBDs; the determination of the QTL variance and

its decomposition is done by maximum likelihood.

In many plants and laboratory or agricultural

animals, family sizes can extend into the tens or

hundreds. The motivation of this paper is to present

an alternative multipoint method that can handle

large families rapidly, while still retaining the com-

parative performance of previous multipoint models.

2. Theory

(i) Linear model and likelihood function

Consider a full-sib family with n siblings, where the

phenotypic value of the jth individual is described by

the following linear model :

y
j
¯µg

j
a

j
e

j
,

where µ is the overall mean, g
j
is the additive effect of

a putative QTL with mean 0 and variance σ#
q
, a

j
is the

polygenic effect (excluding g
j
) with mean 0 and

variance σ#
a
, and e

j
is the residual effect distributed as

N(0,σ#
e
). A dominance effect is assumed absent.

In matrix notation, the phenotypic values of n

siblings can be expressed as

y¯1µgae

where 1 is a column vector of order n. The model has

an expectation and variance-covariance matrix of

E(y)¯1µ

and

Var(y)¯V¯Πσ#
q
Aσ#

a
Iσ#

e
,

respectively, where Π¯²π
ij
´
n×n

is an n¬n matrix with

the element of the ith row and the jth column being

the shared IBD value for sibs i and j at the QTL, A is

an n¬n additive relationship matrix, and I is an

identity matrix of order n.

Under the assumption that y is multivariate normal

and Π is known, the likelihood function is

L(ξ r yΠ)¯ rVr−"/# exp ²®"

#
(y®1µ)Τ V−"(y®1µ)´, (1)

where ξ¯ [µσ#
q
σ#

a
σ#

e
]T are the unknown parameters.

When N independent families are considered, the

overall likelihood function is simply the product of

these family-specific likelihoods. The test statistic is

taken as the log likelihood ratio (Xu & Atchley, 1995).

(ii) Elements of the additi�e relationship matrix A

are the unconditional, expected IBDs for each sib-

pair and, as such, the matrix is determined solely by

the pedigree relationship

In a full-sib family without inbreeding, the diagonal

elements of A are unity and the off-diagonal elements

are "

#
. The diagonal elements of the matrix Π are also

unity, but the off-diagonal elements vary depending

on how many IBD alleles are shared by the two

siblings. Since the genotype of a QTL cannot be seen,

any given element π
ij

is unobservable. Thus the

rationale is to use markers in the same linkage group

to infer the distribution of π
ij
.

(iii) Multipoint estimation of π
ij

The IBD value can be partitioned into two com-

ponents :

π
ij
¯ "

#
(φ

ij
γ

ij
), (2)

where φ
ij

indicates that the sibs share a common

paternal allele and γ
ij

indicates they share a common

maternal allele. The two components, φ
ij

and γ
ij
, may

be referred to as the gametic IBD values. Each

gametic IBD is a Bernoulli variable, i.e. φ
ij
¯1 if the
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sibs share their paternal allele and φ
ij
¯ 0 otherwise.

When both parents are genotyped, φ
ij

and γ
ij

can

be estimated from the markers separately. Let φW
ij
¯

E(φ
ij
r I

M
)¯Pr(φ

ij
¯1 r I

M
) and γW

ij
¯E(γ

ij
r I

M
)¯

Pr(γ
ij
¯1 r I

M
) be the estimated φ

ij
and γ

ij
conditional

on the marker genotypes I
M

; then the estimated IBD

value is

πW
ij
¯ "

#
(φW

ij
γW

ij
) (3)

(see also Wang et al., 1995). We now discuss the

multipoint estimation of the gametic IBD.

For convenience of presentation, we focus our

discussion on one particular sib-pair, and thus replace

the subscripts of φ
ij

by q, meaning the gametic IBD at

the putative QTL (denoted φ
q
). Imagine that there are

M ordered markers on the chromosome of interest

and there is a gametic IBD for each marker locus,

denoted by φ
k

for the kth marker. The multipoint

method essentially uses φ
k

for k¯1,…,M to infer

φW
q
¯E(φ

q
r I

M
)¯Pr(φ

q
¯1 r I

M
).

Assume that the QTL is located between marker k

and k1 where M®1&k&1. In other words, there

are k markers on the left and M®k markers on the

right of the QTL. What we want is to calculate Pr(φ
q

¯1 rφ), the conditional probability that φ
q
¯1 given

φ of the markers. The sequence ²φ
"
…φ

k
φ

q
φ

k+"
…φ

M
´

forms a reversible Markov chain with a transition

matrix between φ
k

and φ
l
of

T
kl

¯ 9(1®θ
kl
)#θ#

kl

2(1®θ
kl
) θ

kl

2θ
kl
(1®θ

kl
)

(1®θ
kl
)#θ#

kl

:
(Guo, 1994), that is

Pr(φ
k
¯1 rφ

l
¯1)¯Pr(φ

k
¯ 0 rφ

l
¯ 0)

¯ (1®θ
kl
)#θ#

kl

and

Pr(φ
k
¯ 0 rφ

l
¯1)¯Pr(φ

k
¯1 rφ

l
¯ 0)

¯ 2(1®θ
kl
) θ

kl
,

where θ
kl

is the recombination fraction between

markers k and l. When this transition matrix is used,

the linkage phase information of the parents is not

required. Our purpose here is to estimate φ
q
from φ¯

[φ
"
φ
#
…φ

M
] using a hidden Markov model approach

(Lander & Green, 1987; Kruglyak & Lander, 1995).

The conditional probability is given by

Pr(φ
q
rφ

"
…φ

M
)¯

Pr(φ
"
…φ

k
φ

q
φ

k+"
…φ

M
)

Pr(φ
"
…φ

k
φ

k+"
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M
)

, (4)

where
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M
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"
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k
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q
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q
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k
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M
)
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q
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q
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"
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k
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q
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M
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q
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Pr(φ
q
) is the prior probability with Pr(φ

q
¯1)¯Pr(φ

q

¯ 0)¯ "

#
. Substituting the above joint probabilities

into (4), we have
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Since ²φ
"
…φ

M
´ is a Markov chain, we have
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"
…φ

k
rφ

q
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"
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#
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#
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$
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k
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k
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q
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q
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M
rφ

M−"
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q
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Therefore,
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q
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"
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M
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q
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k
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It is clear that Pr(φ
q
rφ

"
…φ

M
)¯Pr(φ

q
rφ

k
φ

k+"
),

meaning that conditioning on flanking markers is

equivalent to conditioning on all markers.

In reality, elements of φ are not always observed.

We must use the marker information to infer their

distribution. Let Pr(φ
"
r I

M
),…,Pr(φ

M
r I

M
) be the prior

distributions of markers φ given I
M

and write

Pr(I
M

rφ
q
) by

Pr(I
M

rφ
q
)

¯ [Σφ
"

…Σφ
k
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"
r I

M
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k
r I

M
) Pr(φ

"
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k
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q
)]
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…Σφ
M
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M
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M
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M
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q
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Then, from Bayes’ theorem, the hidden Markov

model is written as

Pr(φ
q
r I

M
)¯

Pr(φ
q
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M
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q
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q
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q
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q
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Specifically,
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M
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In matrix notation, we have
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T
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where

D
k
¯ 9Pr(φ

k
¯1 r I

M
)

0

0

Pr(φ
k
¯ 0 r I

M
): ,

D
(")

¯ 91 0

0 0: , D
(!)

¯ 90 0

0 1:, and 1¯ 911: . (5)

Note that when a marker is fully informa-

tive, Pr(φ
q
¯1 r I

M
)¯1 and Pr(φ

q
¯ 0 r I

M
)¯ 0 or

Pr(φ
q
¯1 r I

M
)¯ 0 and Pr(φ

q
¯ 0 r I

M
)¯1. With the

multipoint method one could get the same estimate of

φ
q
at a given position by using the pair of the nearest

informative markers to calculate φW
q
. One can consider

the multipoint method implemented here as providing

an automatic search for the nearest fully informative

flanking markers and using them to estimate φ
q
.

(iv) Computing Pr(φ
k
¯1 r I

M
) from marker

genotypes

Pr(φ
k
¯1 r I

M
) is the probability that the two sibs

share a common paternal allele given the genotypes of

themselves and their parents at marker k. Define p
j"

as

the probability that the paternal (first) allele of the

father has been inherited by sib j, given the observed

genotypes at the marker under consideration. Of

course, the probability that the jth sib has inherited

the maternal (second) allele of the father is then p
j#

¯
1®p

j"
. These probabilities, listed in Table 1, determine

the prior distribution of the gametic IBD at marker k :

Pr(φ
k
¯1 r I

M
)¯p

i"
p
j"
p

i#
p
j#
. (6)

The multipoint estimation of the gametic IBD

through the mother, γW
ij
¯Pr(γ

ij
r I

M
), is similarly

derived. Given φW
ij

and γW
ij
, the multipoint estimation

of the IBD value takes the average of the two

components, as given by (3)

3. Simulation methods

We employ the above theory to map a QTL in a series

of simulated outbred populations. The simulation

techniques are similar to those described in Gessler &

Xu (1996), but we give a brief summary here to note

those differences in map length, number of alleles, and

so forth that are unique to these simulations.

To begin a simulation, we assign constant allele

frequencies to pre-chosen marker and QTL positions

to build a common grandparent population. These

alleles constitute all marker loci and a single specific

QTL that we are interested in mapping. In all cases,

we work with one 50 cM chromosomal segment with

six markers at positions 0, 10, 20, 30, 40 and 50 and

a QTL at position 25 (between markers 3 and 4). Each

marker segregates four, and the QTL segregates six,

equally frequent alleles. From this grandparent popu-

lation we generate four gametes and from these

gametes we construct two parents. Each parent also

receives an additional 12 unlinked loci that simulate

the polygenic contribution to the trait. Each polygenic

allele is drawn from a normal distribution with mean

zero and variance σ#
a
}24. A random pick of one allele

fromeach polygenic locus of each parent is contributed

to each offspring as its polygenic effect. From each set

of parents we generate two or more sibs, each sib

being the product of an independent meiotic event.

How we determine the actual number of sibs per

family is described below. We repeat this for a total of

N families, with parents for each family being picked

anew from the invariant, infinite-size grandparent

population. The number of families (N ) is determined

such that N¬(the mean number of sibs}family)

is approximately 500.

Using the mean and variance of the QTL effect in

the grandparent population, we transform the QTL

effect in each sib so that its genetic contribution is

distributed with mean zero and variance σ#
q
¯12±5.

The phenotypic value for each sib is the sum of this

effect, its polygenic contribution, and an environ-

mental effect. Each polygenic allele has a variance of

12±5}24, so that the total polygenic variance (contri-

buted by 24 alleles) is σ#
a
¯12±5. The environmental

effect is a normal variate with mean zero and variance

σ#
e
¯ 25. The QTL therefore has a heritability of h#

q
¯

σ#
q
}σ#¯ 0±25; the remaining 75% of the variance is

divided between the polygenic h#
a
¯σ#

a
}σ#¯ 0±25 and

environmental terms σ#
e
}σ#¯ 0±50.

For each sib-pair, an estimate of π
q

is obtained as

described in the previous section. These π
q
values are

then used in a maximum likelihood algorithm to infer

the variance components σ#
q
, σ#

a
and σ#

e
. This is

repeated every 2 cM along the chromosomal segment,

and a likelihood ratio, LR¯®2(L
!
®L

"
), is com-

puted. L
!

and L
"

are the values of the log-likelihood

functions under the null (σ#
q
¯ 0) and alternative

(σ#
q
" 0) hypotheses respectively.

We call the above the ‘standard’ setup, and examine

variants on it by modifying the number of sibs per

family, variance in the number of sibs per family, the

number of alleles at marker loci, the QTL heritability,

and the method of IBD estimation. For each variant,

all parameters are identical to the standard setup

except for the change under inspection. To vary the

number of sibs per family, we examine two, eight and

50 sibs per family for 250, 62}63 and 10 families

respectively. The ‘62}63’ reflects that for 8 sibs per

family half the runs are with 62 families and half are

with 63 families ; we combine the results to estimate

62±5¬8¯ 500 individuals. To add variance to the

number of sibs per family, family size is distributed as

P(X¯x)¯Poisson (µ
n
®2;x)2 where µ

n
is the

expected number of sibs per family. For example, for

µ
n
¯ 4, each run has exactly 125 families, so while any

given run may deviate slightly in its total number of
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Table 1. Probabilities of inheritance used to compute

gametic IBDs of equation (6) in the text

Mating type
(parent¬other parent) Progeny type p

j"

I : M
i
M

i
¬— — "

#
II : M

i
M

j
¬M

i
M

i
M

i
M

i
1

M
i
M

j
0

III : M
i
M

j
¬M

j
M

j
M

i
M

j
1

M
j
M

j
0

IV: M
i
M

j
¬M

k
M

k
M

i
M

k
1

M
j
M

k
0

V: M
i
M

j
¬M

i
M

j
M

i
M

i
1

M
i
M

j
"

#

a

M
j
M

j
0

VI: M
i
M

j
¬M

i
M

k
M

i
M

i
1

M
i
M

k
1

M
i
M

j
0

M
j
M

k
0

VII: M
i
M

j
¬M

j
M

k
M

i
M

j
1

M
i
M

k
1

M
j
M

j
0

M
j
M

k
0

VIII : M
i
M

j
¬M

k
M

l
M

i
M

k
1

M
i
M

l
1

M
j
M

k
0

M
j
M

l
0

p
j"

is the probability that individual j has inherited the
paternal (first) allele of the parent in consideration at a
marker locus, given the genotypes of both parents and the
progeny. Alleles within the parent are arranged as paternal
followed by maternal. Dashes indicate any genotype.
a Under mating type V (M

"
M

#
¬M

"
M

#
), if the sib-pair

genotypic configuration is M
"
M

#
–M

"
M

"
or M

"
M

#
–M

#
M

#
then we know with certainty that the sibs share "

#
of their

alleles. This, though, differs from the "

#
of mating type I,

where "

#
is the expectation, and thus represents our ignorance

of the actual number of alleles shared. This distinction
requires a special treatment for mating type V. In (5) in the
text, instead of using

D
k
¯ 9Pr(φ

k
¯1 r I

M

0

0

Pr(φ
k
¯ 0 r I

M
):

to compute Pr(φ
q
r I

M
), we should break the chain into two

chains. One is computed using D
k
¯ 91 0

0 0: and the result is

denoted by Pr (φ
q
r I

M
)
"
. The other is computed using D

k
¯90 0

0 1: and the result is denoted by Pr(φ
q
r I

M
)
!
. The final

result is then obtained by

Pr(φ
q
r I

M
)¯Pr(φ

k
¯1 r I

M
) Pr(φ

q
r I

M
)
"Pr(φ
k
¯ 0 r I

M
) Pr(φ

q
r I

M
)
!
.

As pointed out by a reviewer, the probability of this event
is (3s

i="
q#
i
)#®3s

i="
q%
i

where q
i
is the frequency of allele M

i

for i¯1,…, s. For alleles with equal frequencies (q¯q
"
¯

q
#
¯…¯ q

s
) this expression becomes q#®q$. Therefore, for

two alleles this probability is 0±125, for three alleles it is
0±074 and for four alleles it is 0±047. If more than one marker
has mating type V, then the above is repeated recursively for
all possible combinations.
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Standard
(four sibs)
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Position

Fig. 1. Likelihood ratios across 50 putative QTL
positions for families with two, four, eight and 50 sibs.
Continuous line is the approximate HMM method,
dashed line is the HMM method. Lines are obtained by
averaging the likelihood ratio at each position over all
runs and then connecting successive values. The true QTL
position is at position 25.

individuals, across runs, the average total number of

individuals is kept at approximately 500. To vary

marker informativeness, we examine cases with two or

eight alleles per maker. For heritability, we look at

h#
q
¯ 0±125 and h#

q
¯ 0±4. In both cases we maintain a

broad-sense heritability of 0±5. Lastly, we compare

our method with the HMM and regression methods.

For the HMM method, we first generate the

simulated data as described above, and then input this

into } (Kruglyak & Lander, 1995). We

have } calculate the π
ij

values and then

read these π
ij

values back into our program for use by

our maximum likelihood algorithm. This eliminates

potential differences between the search engines, and

focuses the comparisons on the core problem:

generating accurate π
ij

values.

For the regression method, we coded the algorithm

directly. The algorithm is strictly only applicable to

sib-pairs, so for families with four, eight and 50 sibs

per family we treated each sib-pair within a family as

an independent family. This ad hoc adjustment strictly

invalidates the statistical justification of the method,

so for comparison we imposed the same sib-pair

treatment on our approximate HMM method even

though it does not require it.

We report the result of 250 independent simulations

for the standard and each variant, with the exception

of only 25 runs for eight sibs under }.

This is because of the high computational expense for

eight sibs under this method. For select cases, we

estimate the strength of a false positive signal by
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running an additional 1000 simulations with no QTL

segregating. For these simulations, we set σ#
a
¯ 25 to

maintain an overall heritability of 50%. From each

simulation we choose the maximum observed like-

lihood ratio found across the chromosome segment,

and then choose the 50th greatest value from the list

of 1000 maximums as an estimate of the segment-wise

Table 2. Obser�ed 95th percentile likelihood ratios

when no QTL is segregating

Simulation
Test
statistic

Standard 4±97
Two sibs per family 5±96
Eight sibs per family :

Without sib-pairing 5±09
With sib-pairing 6±24
Regression method 6±10

Fifty sibs per family :
Without sib-pairing 4±27
With sib-pairing 7±53

Two alleles at marker loci 5±65
Eight alleles at marker loci 5±04

All values are for the approximate HMM method unless
otherwise noted. ‘Sib-pairing’ refers to treating each sib-
pair within a family as an independent family when the
likelihood ratio is calculated.
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Fig. 2. Similar to Fig. 1, except that the dashed line is the
regression method. For all lines, the maximum likelihood
procedure decomposes families into multiple families of
sib-pairs. The fact that the signal for the regression
method for eight sibs exceeds the approximate HMM
method across all positions means that correlations
amongst positions artificially inflate the signal, even
though this is not reflected by a higher critical test
statistic in Table 2.

critical value (with 95% confidence) when no QTL is

segregating.

4. Results

Fig. 1 shows the large increase in signal when effort is

partitioned into fewer families of larger size, rather

than more families of smaller size. In the cases
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Fig. 3. Effect of varying the number of alleles at marker
loci. Continuous line is the approximate HMM method,
dashed line is the HMM method. Jaggedness is due to the
combined effect of a relatively low signal and testing for
putative position every 2 cM.
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Table 3. The approximate HMM method

Position

Total
phenotypic
variance h#

q
h#
a

Standard 24±70 49±69 0±25 0±25
(12±12) (3±75) (0±1149) (0±1494)

No. of sibs per family
2 24±52 50±30 0±31 0±19

(13±94) (3±11) (0±1549) (0±1756)
8 25±22 49±80 0±26 0±23

(7±97) (3±81) (0±0800) (0±1401)
50 25±34 49±17 0±23 0±24

(4±68) (6±33) (0±0660) (0±1979)
No. of alleles at marker loci

2 24±39 49±56 0±28 0±21

(12±12) (3±53) (0±1295) (0±1698)
8 23±77 49±64 0±25 0±24

(11±10) (3±51) (0±1089) (0±1640)
QTL heritability

0±125 21±43 49±65 016 0±33
(14±61) (3±75) (0±1019) (0±1553)

0±4 24±50 49±89 0±39 0±11

(6±73) (3±44) (0±0977) (0±1222)
Variable no. of sibs per family

mean 4 24±85 49±81 0±27 0±22
(11±03) (3±38) (0±1085) (0±1521)

mean 8 25±12 49±87 0±26 0±23
(8±53) (3±85) (0±0864) (0±1466)

Estimates of the QTL position, total phenotypic variance, and the QTL and
polygenic heritabilities. True values are 25, 50, 0±25 and 0±25 respectively unless
otherwise noted. Estimates are obtained by selecting the position with the largest
likelihood ratio from each run and then averaging over these values. Reported are
the averages and (standard deviations) over 250 runs. Total number of individuals
in all cases is 500. ‘‘Standard’ refers to the standard setup as referred to in the text :
four sibs per family, four alleles per marker locus, and h#

q
¯ 0±25.

examined, a signal that is barely significant with four

sibs per family is unequivocally significant under a

change in experimental design (critical test statistics

are reported in Table 2). For the smaller family sizes

there is virtually no difference between the approxi-

mate and the full HMM method.

Fig. 2 shows analogous results, but this time relative

to the regression method. Two trends are evident from

the figure. First, there is again virtually no difference

between the regression and the approximate HMM

methods. Second, there is a large gain in the likelihood

ratio relative to Fig. 1. This is due to the breaking of

each family into multiple families of sib-pairs. We

address this in Section 5.

The similarity between the HMM methods is

reiterated in Figs. 3 and 4, which show an expected

increase in the signal as marker informativeness and

heritability increase. Both signals for two alleles (Fig.

3) are below the critical test statistic (Table 2), so these

lines and their differences give only suggestive evidence

of a QTL.

Fig. 5 shows an increase in signal when one uses a

variable number of sibs. The result is robust over



S. Xu and D. D. G. Gessler 80

Table 4. Similar to Table 3 but for the HMM method

Position

Total
phenotypic
variance h#

q
h#
a

Standard 24±04 49±68 0±25 0±25
(12±19) (3±75) (0±1136) (0±1522)

No. of sibs per family
2 24±48 50±31 0±31 0±19

(14±01) (3±12) (0±1551) (0±1740)
8 23±28 49±12 0±26 0±19

(7±53) (4±74) (0±0745) (0±0908)
No. of alleles at marker loci

2 25±42 49±56 0±27 0±21

(12±50) (3±53) (0±1180) (0±1616)
8 23±62 49±63 0±25 0±24

(10±61) (3±51) (0±1087) (0±1615)
QTL heritability

0±125 22±41 49±65 0±16 0±33
(14±62) (3±76) (0±1038) (0±1535)

0±4 24±65 49±88 0±39 0±12
(6±67) (3±44) (0±1036) (0±1260)

Table 5. Similar to Tables 3 and 4, but when the likelihood ratio is

calculated, each family is treated as multiple families of sib-pairs

Position

Total
phenotypic
variance h#

q
h#
a

Approximate HMM method
No. of sibs per family

2 25±18 49±96 0±28 0±24
(13±44) (3±10) (0±1644) (0±1909)

4 25±44 49±67 0±27 0±22
(11±73) (3±42) (0±1102) (0±1418)

8 24±94 49±72 0±24 0±25
(8±84) (3±80) (0±1063) (0±1572)

50 25±49 49±03 0±24 0±22
(5±16) (6±05) (0±0740) (0±1872)

Regression method
No. of sibs per family

2 24±71 49±98 0±29 0±23
(13±79) (3±07) (0±1717) (0±1986)

4 24±47 49±64 0±28 0±21

(12±11) (3±39) (0±1221) (0±1474)
8 24±73 49±70 0±27 0±22

(9±48) (3±82) (0±0955) (0±1457)
50 25±38 49±02 0±25 0±21

(6±28) (6±03) (0±0759) (0±1864)

other family sizes not shown, with a relative gain

increasing with family size.

Finally, we report specific statistics from all simu-

lations in Tables 3–5. All methods are similar in their

ability to locate the QTL and estimate the total

phenotypic variance. All methods also conserve the

sum h#
q
h#

a
(showing that there is no confounding

between the genetic and environmental sources of

variation) and partition the total genetic variance into

its two components. The success of the partition is

qualitative, with some bias observed when the heri-

tability is low or there are only two sibs per family.

5. Discussion

We present a method that aims at achieving the

performance of the HMM method while extending its

applicability to large families. We do this by using the



Multipoint QTL Mapping 81

conditional expectation of the IBD value instead of

the conditional distribution, and this greatly simplifies

the method. There is a link between this resultant

method and the regression method of Fulker et al.

(1995).

Essentially what Fulker et al. (1995) do is to solve

the equation β¯VN −"C, where VN is the M¬M

variance–covariance matrix of marker IBD values

and C is the 1¬M covariance vector of IBD values of

the putative QTL position and each of the M markers.

The resultant elements β
m

of β are the regression

coefficients used to predict the IBD value of the

putative QTL (πW
q
) from the estimated IBD values of

the markers :

πW
q
¯β

!
 3

M

m="

β
m

πW
m
,

where πW
m

is the estimated IBD value of the mth

marker (Fulker et al., 1995). The single vector β

(derived from all families) is used repeatedly for each

family’s π
q
. In this sense, β is the best-fit set of

regression coefficients over all families : we will call it

the Global β method. Of course, families differ in the

information content of their sibs, so, as recognized by

Fulker et al. (1995), this Global β method is only an

approximation to a method where a separate β is

computed for each individual family. We call this the

Indi�idual β method. This Individual β method cannot

be worse than the Global β method, and indeed, by

tailoring β to each family, it should be better whenever

there is enough ambiguity such that different markers

are partially informative in different families but not

so much ambiguity as to render all methods powerless.

We have coded the Individual β method. In

extensive simulations, including duplicates of the

simulations we report here, the Individual β method is

computationally identical to the fourth decimal place

in virtually all respects with a variant of the

approximate HMM method of this paper. Recall that

(2) decomposes the IBD value π
ij

into the paternal

and maternal gametic IBD values φ
ij

and γ
ij
.

Alternatively – although with the loss of some in-

formation – one could estimate the average gametic

IBD value of the two parents in one routine: a routine

that does not distinguish between the paternal and

maternal lines. This single chain approach is

computationally identical (as defined above) to the

Individual β method.

There is, then, a progression of statistical improve-

ments from the Global β method to the Individual β

method to the approximate HMM to the HMM. Each

method presents certain advantages as regards its

computability versus its viable parameter space. Part

of what we demonstrate in this paper is how closely

these methods can converge, despite theoretical

reasons for believing one to be superior to another.

Our decision to use the approximate HMM method is

based largely on the fact that it does not require the

inversion of VN and can be directly extended to large

sibships (though note the special treatment required in

Table 1). This increase in power is sufficient, under the

parameter space we examine, to render the method

virtually identical to the more exacting HMM method

of Kruglyak & Lander (1995).

One may rationalize that if information content is

low, it is imperative to use the most efficient method.

We did not find this in our simulations. When

information content was low (e.g. two alleles or h#
q
¯

0±125) differences between methods were at best

marginal. Strictly, although we do expect the re-

gression method, the approximate HMM method and

the HMM method to demonstrate a succession of

increasing power, we found only two factors that

produced notable increases in the test statistic :

increasing the number of sibs per family and treating

families as independent families of sib-pairs. Note

that the latter is applied only when computing the

likelihood function, not when estimating Π.

Decomposing families into sib-pairs when estimating

Π can cause a significant loss in power.

Increasing power by using more than two sibs per

family has been previously demonstrated in both fixed

and random models (Blackwelder & Elston, 1982;

Go$ tz & Ollivier, 1992; Amos et al., 1996). The reason

for the increase in power is primarily an increase in the

total number of sib-pairs. Recall that the phenotypic

covariance between sibs is

Cov(FS)¯π
q
σ#

q
"

#
σ#

a
.

The power to detect a QTL depends on deviations of

π
q

from "

#
, thereby allowing a separation of the

variance components. For two sibs per family there is

only one sib-pair, and thus one π
q

per family. In

general, for N families each with n sibs, the total

number of individuals is Nn and the total number of

sib-pairs is N[n(n®1)]}2. As n increases while Nn is

held constant, the number of sib-pairs increases faster

than N decreases ; consequently, so does the number

of π
q

values and the number of (non-independent)

sources of information. For a total population size of

500, increasing the family size from two to 50 sibs per

family increases the number of sib-pairs 49-fold: from

250 families¬1 sib-pair per family¯ 250 sib-pairs to

10¬1225¯12250.

A similar analysis can be extended to variable

family sizes (see Go$ tz & Ollivier, 1992). For variable

family sizes, let n be a Poisson random variable with

mean and variance λ. Then the expected total number

of sib-pairs is

NE 9n(n®1)

2 :¯ "

#
N [E(n#)®E(n)]

¯ "

#
N [Var(n)E#(n)®E(n)]¯ "

#
Nλ#.
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In our simulations under the standard settings, n¯
2x, where x is Poisson variate of mean λ¯ 2. Thus

"

#
N [Var(n)E#(n)®E(n)]

¯ "

#
¬125¬(216®4)¯ 875.

This exceeds the number of sib-pairs available under

a constant family size of four ["
#
¬125¬(016®4)¯

750].

The conclusion that large families and variance in

family sizes can increase the power in QTL mapping

is somewhat mitigated by a limit beyond which the

power may actually decrease (Muranty, 1996). This is

the point where the number of families is reduced such

that the resultant group of parents fails to capture an

adequate sample of segregating marker and QTL

alleles. At this point, the benefit due to increasing

family size can be offset by a loss of information in the

parental populations; i.e. sampling alone may yield a

QTL strictly monomorphic in the studied population,

and thus hidden from mapping. This, though, should

be more of a problem in traditional line-crossing

techniques than in the outbred techniques discussed

here.

DNA heterozygosity studies (Nei, 1987) show that

the majority of extant variation is captured with a

relatively small number of individuals, though rare

alleles are likely to be missed without considerable

sampling effort. In allele-sharing QTL mapping

algorithms such as the ones investigated here, allelic

diversity per se is important only to the degree that

one can use it to infer the meiotic history of a locus.

This is reasonably attained with six to ten segregating

alleles, though we have found weak dependencies up

through as many as 50 alleles. Multipoint methods

automatically skip non-informative and missing

markers as they assess each marker’s contribution.

This, combined with the fact that once a fully

informative marker is found all loci upstream con-

tribute no new information, should make multipoint

mapping relatively robust to all but severe reductions

in the number of families.

In applying sib-pair algorithms to multiple sibs,

previous studies treated each sib-pair in a large family

as an independent family (Blackwelder & Elston,

1982; Go$ tz & Ollivier, 1992; Amos et al., 1996). To

date there has been no explicit measure of the cost of

this simplification �is-a[ -�is a multivariate analysis ; to

our surprise, we found that contrary to any net cost in

signal strength, it actually increases the ability to

detect the QTL by a considerable amount (compare

the approximate HMM method in Figs. 1 and 2).

Statistically, such an ad hoc procedure violates the

independence assumptions of the maximum likelihood

model. Blackwelder & Elston (1982) showed that the

cost in terms of false positives is minor for sib-trios,

and this holds true for 50 sibs as well (Table 2). We did

find, though, that our search engine was more likely to

get caught in spurious maxima when there was sib-

pairing. This computational cost is somewhat offset

by the fact that decomposing families into sib-pairs

replaces the n¬n matrix of n sibs in the n-dimensional

normal distribution, (1), by a series of bivariate

normals. This circumvents the requirement of taking

the inverse of the n¬n variance–covariance matrix,

and consequently reduces the computational burden

to O(n#).

The sib-pair simplification means that each n-sib

family likelihood is now the sum of [n(n®1)]}2 sib-

pair likelihoods. Blackwelder & Elston (1982) discuss

why an increase in family size increases the power

relative to a comparable number of two-sib families,

but why is this not also captured by the n-variate

analysis? In an n-variate analysis, n sibs inflate the LR

linearly with n. This is because the scalar returned by

(1) increases with the dimension of V. As seen above,

though, sib-pairs increase the LR proportional to

O(n#), and thus return a higher signal. Thus not only

is the sib-pair simplification more computationally

efficient, it is also powerful.

Wang et al. (1995) presented a method of QTL

evaluation in general pedigrees using a single marker.

Grignola et al. (1996a, b) extended the method of

Wang et al. (1995) into flanking markers. Because

some parents may be homozygous at the markers

closest to the QTL, different flanking markers were

used in different families. In other words, the flanking

interval of the QTL varied so that the flanking

markers were always fully informative. This method is

similar to the multipoint algorithm proposed in this

study. However, the former requires knowledge of the

parental linkage phases of the markers whereas the

method presented here does not. It would be useful to

compare the efficiencies of the two methods in terms

of statistical accuracy and computational convenience.

We end with a final caveat on the three procedures.

There are parameter spaces that support the theor-

etical expectations of the three procedures: the HMM

exceeding the approximate HMM, in turn exceeding

the regression method (Fig. 6). These conditions tend

to be under increased marker density and higher

heritability, with average gains of each method of

approximately 10–15%. Transitively, then, differences

between the HMM method and the regression method

can be considerable. However, for even moderate

family sizes this comes at an exponentially high

computational cost : for eight sibs, the HMM method

runs two orders of magnitude slower than the

approximate HMM method, and for 50 sibs, the

HMM method is untenable.

Fulker et al.’s (1995) method is attractive for its

ease of presentation and conceptual clarity. Kruglyak

& Lander’s (1995) HMM method is attractive for its

thorough use of available information. The approxi-

mate HMM method is a medial design: it is
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Fig. 6. Differences between the three methods. Top line is
the HMM method, middle line is the approximate HMM
method, bottom line is the regression method. Two sibs
per family, 500 families, h#

q
¯ 0±5, six biallelic markers

with alleles at equal frequencies and markers every 5 cM.
Putative positions are tested every centimorgan. QTL is at
position 12.

comparably as fast as Fulker et al.’s (1995) method,

while it brings much of the power of Kruglyak &

Lander’s (1995) method to moderate and large

sibships. The greatest improvements, though, come

not in the choice of methods, but in the experimental

design.
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