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a b s t r a c t

Variance components analysis has been a standard means in family-based genetic data
analysis. The variance components technique treats genetic effects as random, and tests
whether variance components are zero using the likelihood ratio (LR) test. In the literature,
the asymptotic distribution of the LR is claimed to follow amixture chi-square distribution,
where the mixture proportions are calculated based on the binomial coefficients, a special
case in Self and Liang (1987). This threshold calculation, however, often yields conserva-
tive test results as discussed in a number of studies, especially inmulti-trait analyses. In this
work, we show that the LR statistic asymptotically follows a mixture chi-square distribu-
tion where the mixture proportions depend on the estimated Fisher information matrix in
both univariate and multivariate trait analyses. We provide a general approximation form
for the distribution of the LR under the null hypothesis of no genetic effects. We illustrate
our idea with three variance components models in genetic linkage analysis. The perfor-
mance of the new threshold calculation method is demonstrated via simulation studies,
and its application is further illustrated via a real data analysis.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Genes are the functional units responsible for inheriting biological variations in phenotypes from parents. Inheritance of
these characteristics of quantitative traits is attributed to multiple genes working in a coordinated manner. The detectable
regions of the genome that contain or are closely linked to causal genes are defined as quantitative trait loci (QTL). The
association between QTL and closely linked genes contributing to phenotypic variations is termed as genetic linkage. In
human linkage analysis, a variance components (VCs) model is a powerful tool for QTL mapping. In a VC analysis, genetic
effects are often partitioned as additive, dominance and polygene effects whereby each one is treated as random (Amos,
1994; Xu and Atchley, 1995). Consider two alleles (A and a) at a gene locus, the additive genetic effect measures ‘‘the
quantitative change in a trait that is associated with substituting one allele (one genotype) with that of another allele’’
(from Wikipedia) within a population. Specifically, ‘‘the additive effect is half of the difference between the mean of all
cases that are homozygous for one version of the allele (a/a) compared to the mean of all cases that are homozygous for the
other allele (A/A)’’ (from Wikipedia). The dominance effect is a non-linear genetic effect which measures the effect where
one allele masks the contribution of a second allele at the same locus. For example, if the effect of allele A masks the effect
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of allele a, then allele A is called a dominant allele and allele a is called a recessive allele (Lynch and Walsh, 1998). In case
of over-dominance, the effect of heterozygote genotype Aa is larger than the effect of homozygous genotypes AA and aa. In
plants, this is called the hybrid vigor. The polygene accounts for the effect of genes or QTLs not located on the same region
as the tested genes (Lynch and Walsh, 1998). Thus, the polygene effect is treated as the background gene effect. In a VC
linage analysis, the interest is to test whether the variance component of a genetic effect (i.e., additive and/or dominance
effect) is significantly different from zero. Likelihood ratio (LR) test is often applied for such purpose (Amos, 1994). Due to
irregular conditions (i.e., parameter boundary problem), the asymptotic distribution of the LR does not follow a regular chi-
square distribution, rather a mixture χ2 distribution, where the mixture proportions are calculated with standard binomial
coefficients, a special case discussed in Self and Liang (1987).

A number of studies have demonstrated the asymptotic distribution of LR under irregular conditions, see for example,
Chernoff (1954), Self and Liang (1987) and Shapiro (1988). Chernoff (1954) showed that the limiting distribution of the LR
has a mixture chi-square distribution when parameters of interest are on one side of a hyperplane, or in the first quadrant
within an R2 space. Self and Liang (1987) extended the Chernoff’s result to boundary cases. For a multivariate normal
distribution, Kudô (1963) showed the geometric nature of the LR with respect to the slipping means and its mixture chi-
square distribution. Kudô and Choi (1975) later on extended the argument to the inference of a one-sided test. Afterwards,
Self and Liang (1987) and Shapiro (1988) demonstrated that the boundary problem is equivalent to that of a restrictedmean
under amultivariate Gaussian distribution. Shapiro (1985) provided one simple proof of the large sample distribution of the
LR under the boundary condition for any convex cone. The author further developed a unified theory corresponding to the
inequality constrained testing in multivariate normal population for general cases (Shapiro, 1988).

In a univariate linkage analysis with a variance components model, the boundary problem occurs with variance
components testing. The distribution of LR in case 9 in Self and Liang (1987) has been commonly applied for a threshold
determination (e.g., Amos, 1994 and Hanson et al., 2001). This result is based on the assumption that the unknown
parameters are independent, leading to a diagonal variance–covariancematrix for unknownparameters. In reality, the above
assumption could be easily violated. This matter consequently leads to conservative hypothesis tests (Allison et al., 1999).

In a bivariate linkage analysis, Amos et al. (2001) proposed an approach to approximate the null distribution of the LR.
Again, their derivation assumes a diagonal Fisher informationmatrix. Additionally, they assumed that the genetic correlation
between two traits is perfectly correlated either positively (ρ = 1) or negatively (ρ = −1) in their derivation, which is
unrealistic in reality. Recently Morris et al. (2009) defined a constrained likelihood ratio test (CLRT). They applied Geyer’s
regularity (1994) to show the asymptotic distribution of the CLRT, but with uncertainty onwhether the global M-maximizer
can be attained. Because of this limitation, a simulation-based method was developed. However, the computational burden
limits its applicability.

In this work, we revisit the LR statistic in testing variance components in linkage analysis under three genetic
models (Almasy and Blangero, 2010; Xu and Atchley, 1995; Wang and Zeng, 2009; Nagy et al., 2014), and show that
it follows a mixture chi-square distribution. According to the distribution, we provide a new calculation of the mixture
proportions based on the estimated Fisher information matrix. The simulation results show the improved performance of
the approximation based on the newmixture proportion calculation method. We applied the method to a Genetic Analysis
Workshop (GAW) 18 dataset in which two genetic traits, systolic blood pressure (SBP) and diastolic blood pressure (DBP)
were measured (Almasy et al., 2014). One can analyze each trait separately and estimate genetic (additive and dominance)
effect size. Since the two traits are correlated, we may benefit by a joint analysis of multiple traits using a multi-trait VC
model. The rest of this paper is organized as follows. Section 2 introduces three classical VC models with both univariate
and multivariate trait analysis. The main result is illustrated in Section 3. Section 4 shows the performance of the new
approximation via simulation examples. We demonstrate the utility of the method via a real data analysis in Section 5.

2. Motivating models

The variance components model in a genetic linkage study is typically composed of both fixed and random effects, with
non-genetic effects treated as fixed and genetic effects treated as random (Goldgar, 1990; Amos, 1994). The total genetic
effect is typically decomposed into additive, dominance and polygenic effects and all are treated as random (Amos, 1994).
Below we briefly introduce three VC models and investigate the limiting distribution of the LR statistics under these model
setups.

2.1. Model I

Assuming that K families are collected and the phenotype for the kth family is denoted by yk with nk offsprings. For
example, yk can be a vector of SBP or DBP measures for members in the kth family. Under the variance components model
mapping framework, the total genetic effect is partitioned into several components expressed as

yk = µ1nk + ak + dk + gk + ek (1)

where µ is the overall mean; ak ∼ N(0,5kσ
2
a ) is the random additive effect of the major QTL; dk ∼ N(0,1kσ

2
d ) is the

dominance effect of QTL; gk ∼ N(0,8kσ
2
g ) is the polygenic effect that reflects the effects of unlinked QTLs; ek ∼ N(0, Ikσ 2

e )
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is the residual term;5k is thematrix of proportion of alleles shared identical-by-descent (IBD) in the pedigree, and1k is the
matrix of the probability that pedigree shares both alleles IBD, 8k is a matrix of the expected proportion of alleles shared
IBD, and Ik is an identity matrix (Amos, 1994). When a testing QTL is not on a marker position, the variance–covariance of
the phenotype for a pair of siblings yki and ykj in the kth family can be expressed as

cov(yki, ykj|πij, δij, φij, θ) =


σ 2
a + σ 2

d + σ 2
g + σ 2

e if i = j

bij(θ, πij)σ
2
a + cij(θ, πij, δij)σ

2
d + φijσ

2
g if i ≠ j

where πij is the proportion of marker alleles shared IBD between the ith and jth sibs; δij is the probability that a pair of
sibs share two alleles IBD; φij is the kinship coefficient between two sibs; θ is the recombination fraction, which indicates
linkage between a trait locus and a marker. When a trait locus is not at the marker, θ takes none zero value. The coefficients
of additive and dominance variances between two sibs are expressed as: bij(θ, πij) =

1
2 + (1 − 2θ)2(πij −

1
2 ) and

cij(θ, πij, δij) = 4θ2(1 − θ)2 + (1 − 2θ)2πij + (1 − 2θ)4δij (Amos et al., 2001). In matrix notation, the phenotypic
variance–covariance matrix among individuals in family k can be expressed as

6k = 5kσ
2
a + 1kσ

2
d + 8kσ

2
g + Ikσ 2

e .

The QTL effect is assessed via testing the following hypotheses,
H0 : σ 2

a = σ 2
d = 0

H1 : σ 2
a > 0 or σ 2

d > 0.
(2)

Define θ1 = σ 2
a , θ2 = σ 2

d , θ3 = σ 2
g , θ4 = σ 2

e and θ5 = µ. Let θ = (θ1, θ2, θ3, θ4, θ5)
T

∈ Ω = [0,∞) × [0,∞) ×

(0,∞) × (0,∞) × R be the true parameter space. Under the null of hypothesis (2), the parameter space is reduced to
θ0 = (θ10, θ20, θ30, θ40, θ50)

T
= (0, 0, σ 2

g , σ
2
e , µ)

T
∈ Ω0 = {0} × {0} × (0,∞)× (0,∞)× R. Thus two parameters under

the null are on the boundary of the true parameter space (Ω). In current applications, the LR statistic for the above test has
been commonly claimed to be amixture chi-square distribution, i.e., LR∼

1
4χ

2
2 :

1
2χ

2
1 :

1
4χ

2
0 , a special case (case 9) discussed

in Self and Liang (1987). We will illustrate by simulation that this approximation produces conservative results and derive
a new mixture proportion calculation method.

2.2. Model II

When a QTL has a pleiotropic effect on bivariate traits or when several QTLs are closely linked, a multivariate model
considering two traits would be more powerful than a single trait analysis (Jiang and Zeng, 1995; Evans, 2002). To illustrate
the idea, we consider a bivariate trait model assuming only additive effect. The VC model for family k can be expressed as

(yk1 , yk2) = (µ11nk , µ21nk)+ (ak1 , ak2)+ (gk1 , gk2)+ (ek1 , ek2), k = 1, . . . , K (3)

where ykh is the hth (h = 1, 2) phenotypic vector for the kth family, for example, SBP and DBP traits in the GAW 18 dataset;
µh (h = 1, 2) is the overall mean for the hth phenotypic trait, (ak1 , ak2) contains the random QTL additive effects for two
phenotypic traits; gkh and ekh are the random polygene effect and residual for the hth phenotypic trait, respectively. All the
random terms are assumed to be normally distributed with mean 0. The phenotypic variance–covariance matrix for family
k can be expressed as

Cov

yk1
yk2


=


σ 2
a1 σa12
σa12 σ 2

a2


⊗ 5k +


σ 2
g1 σg12
σg12 σ 2

g2


⊗ 8k +


σ 2
e1 σe12
σe12 σ 2

e2


⊗ Ik

where ⊗ is the Kronecker product; σa12 , σg12 , and σe12 are the covariances of the additive, polygene and residual terms
between two traits, respectively. All the other terms are defined similarly as in Model I.

The hypothesis test to detect a QTL under the bivariate model is formulated as
H0 : σ 2

a1 = σ 2
a2 = σa12 = 0

H1 : σ 2
a1 > 0 or σ 2

a2 > 0.
(4)

Under the alternative, when either one of the variance terms is zero, the covariance term σa12 is set to zero. Amos et al. (2001)
proposed a mixture chi-square approximation to the LR statistics. Again, it gives conservative result as will be revealed in
our simulation study.

2.3. Model III

Bivariate variance components linkage analysis model assuming both additive and dominance effects has been applied
in real applications (e.g., Nagy et al., 2014). In this model (Model III), a bivariate trait VC model assuming both additive and
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dominance effects is defined as

(yk1 , yk2) = (µ11nk , µ21nk)+ (ak1 , ak2)+ (dk1 , dk2)+ (gk1 , gk2)+ (ek1 , ek2), k = 1, . . . , K (5)

where (dk1 , dk2) represents the random dominance effects of major gene at the QTL for two phenotypic traits. The
variance–covariance matrix between two traits in the kth family is given as,

Cov

yk1
yk2


=


σ 2
a1 σa12
σa12 σ 2

a2


⊗ 5k +


σ 2
d1 σd12
σd12 σ 2

d2


⊗ 1k +


σ 2
g1 σg12
σg12 σ 2

g2


⊗ 8k +


σ 2
e1 σe12
σe12 σ 2

e2


⊗ Ik.

The hypotheses to test major gene effect under this model are formulated as
H0 : σ 2

a1 = σ 2
a2 = σa12 = σ 2

d1 = σ 2
d2 = σd12 = 0

H1 : σ 2
a1 > 0 or σ 2

a2 > 0 or σ 2
d1 > 0 or σ 2

d2 > 0.
(6)

Similarly, under the alternative, when either one of the variance terms (additive or dominance) is zero, the corresponding
covariance term is set to zero. In this case, the null distribution of LR and the mixture probabilities corresponding to the χ2

components are not straightforward to calculate. To explore the geometric properties of the LR in the VC models described
above, we propose a general approximation approach in next section.

3. Main results

For a random sample X1, X2, . . . , Xn of size nwith a common density function f (x, θ), let θ = (θ1, θ2, . . . , θm)
T

∈ Ω be the
parameter vector of interest, and θ0 be the corresponding population version. Let ℓ(θ) =


log f (x, θ) be the log-likelihood

function.

Condition 1. Following Chernoff (1954), the following conditions are assumed:

I. For every θ ∈ G where G is a closure neighborhood centered at θ0, the first three derivatives of ℓ(θ)with respect to θ exist for
almost all x;

II. For every θ ∈ G, |
∂ℓ(θ)
∂θi

| and |
∂2ℓ(θ)
∂θi∂θj

| are bounded by a finite integrable function K(x), and |
∂3ℓ(θ)
∂θi∂θj∂θl

| < K (x) where
E[K(x)] < ∞, (i, j, l = 1, . . . ,m);

III. The information matrix M(Mij = −
1
nE(

∂ℓ(θ)
∂θi

∂ℓ(θ)
∂θj
)) is nonsingular for θ ∈ G, and ∥M∥ < ∞ (i, j = 1, . . . , m).

Proposition 1. Under Condition 1, there exists a vector θ̂ς inΩ , such that θ̂ς −→ θ0 in probability, and (θ̂ς − θ0) = Op(n−
1
2 ).

Denote a local maximum estimator of θ0 by θ̃ς . In addition to the regularity conditions on the parameter set defined in
Chernoff (1954), additional conditions are required to achieve the asymptotic equivalence of a local estimator.

Condition 2. Consider the following conditions:

IV. θ̂ς and θ̃ς are
√
n-consistent optimizers;

V. The parameter set Ω is a nearly convex set at θ0;
VI. Condition vi in Theorem 3.2 in Shapiro (2000) is met.

Proposition 2. If Conditions 1 and 2 stated above are satisfied, θ̂ς -θ̃ς = op(n−
1
2 ).

It is well known that a cone contains several desirable properties that may simplify the optimization problem. According
to the arguments of Chernoff (1954) and Self and Liang (1987), a cone is defined as follows.

Definition 1. The setΩ ⊂ Rm is approximated by a cone CΩ at θ0, if

inf
s∈CΩ

∥s − t∥ = o(∥t − θ0∥) for all t ∈ Ω; inf
t∈Ω

∥s − t∥ = o(∥s − θ0∥) for all s ∈ CΩ .

Note that the cone CΩ is positively homogeneous if s ∈ CΩ , c(s− θ0)+ θ0 ∈ CΩ when c ≥ 0. Moreover, CΩ − θ0 with vertex
at the origin is acquired by translating the cone CΩ with vertex at θ0. Thus,Ω can be approximated by a closed convex cone
CΩ with vertex at θ0.

Proposition 3. When θ = 0, F is the distribution of the MLE θ̂ς based on one realization Y with the population distribution
N(θ,M−1) where θ ∈ CΩ − θ0. If all previous conditions hold, n

1
2 (θ̂ς − θ0) converges weakly to F , a multivariate normal

distribution with mean 0 and covariance matrix M−1.

See the proof of Theorem 2 in Self and Liang (1987) for a proof.
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Condition 3. Further assume the following condition:
VII. Let CΩ0 and CΩ1 be two closed convex cones with vertex at θ0 to approximateΩ0 andΩ1. Then CΩ0 −θ0 with vertex at origin

is also a closed convex cone by translating CΩ0 at θ0.

Theorem 3.1. If Conditions 1–3 stated above hold and when θ = θ0, the large sample distribution of the LR statistic is the same
as that of testing θ ∈ CΩ0 against θ ∈ CΩ1 based on one realization Y generated from a population distribution N(θ,M−1).
Moreover, the LR statistics is distributed as a mixture chi-square distribution with the tail probability given as

Pr(LR > c) =

l(q)
i′=1

Pr(Y ∈ ψ i′
ν|Y ) Pr(χ

2
rank(T

ν∗0 |ψ i′
ν∗|Z )

> c)

where c is a positive constant; Pr(Y ∈ ψ i′
ν|Y ) is the mixing proportion corresponding to the chi-square component where ψ i′

ν|Y

is a set of all faces of Y ; l(q) is the total number of sets of Y ;
l(q)

i′=1 Pr(Y ∈ ψ i′
ν|Y ) = 1; rank(Tν∗0 |ψ

i′
ν∗|Z ) denotes the degrees

of freedom of the corresponding chi-square distribution; and Z follows a multivariate normal distribution with mean zero and
identity covariance.

The proof is given in the Appendix. Following Theorem 3.1, we now evaluate the distribution of the LR statistic for the
three models described in Section 2. For Model I, the distribution of the LR statistic is approximated as,

Pr(LR > c) =
π − cos−1 ρ12

2π
P(χ2

2 > c)+
1
2
P(χ2

1 > c) (7)

where ρ12 is the correlation between the estimates of additive and dominance effects.
For Model II, the tail probability of LR is calculated as

Pr(LR > c) =
π − cos−1 ρ12

2π
P(χ2

3 > c)+
1
2
P(χ2

1 > c) (8)

where ρ12 is the correlation of additive effects between two traits.
For Model III, the tail probability of LR can be expressed as

Pr(LR > c) = w0P(χ2
6 > c)+ w1P(χ2

4 > c)+ w1
2P(χ

2
3 > c)+ w2

2P(χ
2
2 > c)+ w3P(χ2

1 > c) (9)

wherew0,w1,w1
2 ,w

2
2 , andw3 are the weights. The detailed derivation of these results is rendered in the Appendix section.

4. Simulation

We designed simulations to evaluate the limiting distribution of the LR. The results of the new approximation in
univariate and multivariate analysis were compared with those commonly applied as described in Self and Liang (1987)
and Amos and Andrade (2001). In brief, Self and Liang (1987) method was primarily derived from the univariate model, and
we directly extended it to the multivariate cases without considering the covariance terms. The method adopted by Amos
and Andrade (2001) was developed from Self and Liang’s approach plus considering covariance terms in the multivariate
trait models. However, both approaches assumed that the unknown parameters were independent.

In accordance with the genetic models described in Section 2, the genotype and phenotype data were simulated from
outbred populations. In an outbred population, four different alleles could segregate in a family. Themarker genotypes were
generated from these four basic alleles with equal frequency. The number of families was assumed to be 20 and 40with each
having 5 offspring. Phenotypes ofmultiple traits were assumed to follow amultivariate normal distribution. The parameters
of Models I, II, III were given in Table 1. The limiting distributions of our method for the three motivating models were given
in earlier sections. For the method in Self and Liang (1987), it is given as 1

4χ
2
2 :

1
2χ

2
1 :

1
4χ

2
0 for Model I, 1

4χ
2
2 :

1
2χ

2
1 :

1
4χ

2
0

for Model II and 1
16χ

2
4 :

4
16χ

2
3 :

6
16χ

2
2 :

4
16χ

2
1 :

1
16χ

2
0 for Model III. We denoted this method as SL in later presentation. For

the one described in Amos and Andrade (2001), it is given as 1
4χ

2
2 :

1
2χ

2
1 :

1
4χ

2
0 for Model I, 1

4χ
2
3 :

1
2χ

2
1 :

1
4χ

2
0 for Model II

and 1
16χ

2
6 :

4
16χ

2
4 :

2
16χ

2
3 :

4
16χ

2
2 :

4
16χ

2
1 :

1
16χ

2
0 for Model III. We referred to this method as Amos in later presentation. Two

different simulation designs were considered with one considering 20 families and 5 offspring in each family (denoted as
20× 5 design), and another one considering 40 families with 5 offspring in each family (denoted as 40× 5 design). For each
case, the result of 1000 simulation replications was recorded.

A quantile plot of the empirical error rates vs the nominal levels is given in Fig. 1. Under Model I, the proposed method
gives error rates quite close to the nominal levels, while SL underestimates the error rates. Since the threshold determination
for SL and Amos was the same, the result for using Amos method was omitted. Under Model II, the new method gives
quite accurate approximation compared to the other twomethods which largely overestimate the error rates. Under Model
III, SL overestimates the error rates and Amos tends to underestimate the error rates. Although our new approximation
underestimates the error rates under the 20 × 5 design, the approximation improves when the number of family increases
to 40. Overall, the 40 × 5 design gives better approximation than the 20 × 5 design does, which is consistent with the
large sample property. In summary, the new approximation method shows improved approximation compared to other
two methods under the three analytical models.
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Table 1
Parameter setting under the null hypothesis.

Model Parameters
σ 2
a1 σ 2

a2 σa12 σ 2
d1

σ 2
d2

σd12 σ 2
g1 σ 2

g2 σg12 σ 2
e1 σ 2

e2 σe12 µ1 µ2

Model I 0 – – 0 – – 2 – – 2.5 – – 3 –
Model II 0 0 0 0 0 0 2 2 1.8 2.5 2.5 2.2 4 2
Model III 0 0 0 0 0 0 2 2 1.8 2.5 2.5 2.2 4 2

Table 2
Information of selected families in GAW 18 dataset.

Families
f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17

Number of offspring 10 5 5 5 5 8 4 2 4 8 4 5 4 4 1 8 7

Fig. 1. The quantile plot of the empirical error rates under different models for the three methods. SL refers to the method proposed in Self and Liang
(1987). Amos refers to the method described in Amos and Andrade (2001).

5. Real data application

We applied the proposed method to a dataset offered by the Genetic Analysis Workshop (GAW) 18 (Almasy et al., 2014).
The data contain whole-genome single nucleoid polymorphism (SNP) data sequenced from 20 large pedigrees with blood
pressuremeasurements.We selected 17 independent families with various number of offspringswithin each family. Table 2
lists these 17 independent families and the number of offspring in each family. The number of offspring in a family varies
from 1 to 10, and the average number of offspring per family is around 5. Two quantitative traits, systolic blood pressure
(SBP) and diastolic blood pressure (DBP), were measured. The goal is to identify SNP variants that are associated with SBP
or DBP, or both. We applied the univariate trait analysis to SBP and DBP separately, and to SBP and DBP jointly for the
multi-trait analysis. Individual blood pressure was measured over several time points and we picked time 1 in this analysis.
Details about the data generating process can be found at Almasy et al. (2014). We selected a genetic region between 60cM
and 100cMon chromosome 3which contains 21 SNPmarkers. The aforementioned three variance componentsmodelswere
applied to this data. We compared the results with two other methods, namely SL and Amos, described in the simulation
section.

Fig. 2 displays the plot of −log10 (p-values) against the 21 SNPs in the analyzed region (60–100cM), with the horizontal
axis representing the actual position of the SNPs (cM) analyzed with the three models. The two figures on the top row show
the results analyzed with Model I where each blood pressure trait is analyzed separately. The bottom left and right plots
show the results analyzed with Models II and III respectively. Recall that Models II and III are bivariate trait analysis where
SBP and DBP are jointly analyzed. For the univariate analysis fitted with Model I, we observed consistently smaller p-values
with our method compared to the SL method. This is consistent with the simulation result in which SL underestimates the
error rate (see the left two plots in Fig. 1). For the bivariate trait analysis fitted with Model II, the p-values calculated with
our method are larger than the other two. This pattern is consistent with the simulation results in which both SL and Amos
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Fig. 2. The plot of −log10 (p-value) under the three models. New refers to the proposed method; SL refers to the method proposed in Self and Liang
(1987); and Amos refers to the method described in Amos and Andrade (2001). The two plots on the top row show the univariate results analyzed with
Model I. The two plots at the bottom show the multi-trait results analyzed with Models II and III respectively.

Table 3
List of p-values for SNP rs704530 (located at 76.49cM) calculated with
different methods under Models I, II and III.

P-value Model I Model II Model III
SBP DBP {SBP, DBP} {SBP, DBP}

SL 1.7E−04 0.1909 1.2E−04 2.2E−05
Amos – – 3.2E−04 1.01E−04
New 1.2E−04 0.1486 4.4E−04 9.5E−05

overestimate the error rate (see themiddle two plots in Fig. 1), hence tend to give larger false positives. ForModel III (bottom
right plot in Fig. 2), the p-values obtainedwith ourmethod are between the ones calculatedwith SL andAmosmethod. Again,
this result is consistent with the simulation results shown in the right two plots in Fig. 1 in which SL overestimates the error
rate and Amos underestimates the error rate. Although the p-values obtained with the three methods do not show large
difference, the results do confirm the benefit of applying the newly proposed threshold determination method.

The univariate analysis results indicate that there is one significance SNP marker at 76.49cM (rs704530) which shows
significant association with SBP, but not with DBP. The p-value for this SNP marker is 1.2E−04 with our method and is
1.7E−04with SL. Table 3 lists the p-values for this SNP under the three models. It is worthmentioning that our newmethod
gives very consistent p-values for this SNP, which makes biological sense since we may not get benefit by the joint analysis
as this SNP is not associated with the DBP trait at all. However, SL method gives smaller p-values in Model III compared to
the p-values obtained with Models I and II. This is due to the nature of the method itself which overestimates the error rate
as shown in the simulation study (Fig. 1).

6. Discussion

In a family-based genetic analysis, it has been proven that the variance components model is an efficient and powerful
tool for QTLmapping. In addition, many studies have shown thatmultiple trait analysis provides higher power andmapping
precision in QTL detection compared to a univariate trait analysis, especially when traits are highly correlated (Jiang and
Zeng, 1995; Evans, 2002). Although likelihood ratio test has been broadly applied in assessing the significance of different
variance components, there is a lack of rigorous investigation on the limiting distribution of the LR statistic under the three
motivating genetic models (Amos and Andrade, 2001). As shown by the simulation studies, inappropriate application of
threshold determination could result in poor estimation of error rates. This is further confirmed by a real data analysis.
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In this paper, we focused on three VC genetic models covering univariate and multivariate trait analysis. Likelihood
ratio test for variance components models has been investigated extensively in the literature (e.g., Chernoff, 1954; Self and
Liang, 1987; Shapiro, 1985, 1988). Because the parameters of interests under the null lie on the boundary of the parameter
space, the regular chi-square approximation fails due to the violation of the regularity conditions. We reevaluated the
asymptotic distribution of the LR statistic under the three model setups and investigated the geometric nature of the null
distribution of the LR statistic. We further proposed an analytical method to calculate the tail probability of the LR statistic.
The new threshold determination method provides better approximation to the distribution of the LR statistic under the
three evaluated models compared to their counterparts.

Although association analysis has been broadly applied to identify genetic variants associatedwith a disease trait, the role
of linkage analysis cannot be undermined (Ott et al., 2015). Our simulation study indicates that SL method underestimates
the error rate in the univariate analysis considering both additive and dominance effects. This is primarily due to the fact that
SL ignores the correlation between the additive and dominance effects while determining the threshold. The new method
involving the correlation calculates themixing proportions corresponding to the relevant chi-square distribution, thus yields
better approximation. When jointly analyzing SBP and DBP under Models II and III, SL approximation is limited by ignoring
the covariance of multiple traits which greatly influences the degrees of freedom of the mixture chi-square distribution.
This matter leads to higher false positive rates as shown in simulation studies (see Fig. 1) than the methods Amos and
New do. The difference between Amos and New in Model II is that the new method estimates the correlation of two traits
to adjust the mixing proportions of the chi-square distribution, but Amos applies a fixed mixing proportion, hence yields
higher false positive results than the new method does. For Model III, both Amos and New incorporate the covariance of
two traits to adjust the degrees of freedom of the mixture chi-square distribution. The discrepancy between the two lies in
the calculation of mixing proportions. Again, Amos fixes the mixing components, while our new method estimates the
correlation of the two effects to calculate the mixing proportions, hence is more data adaptive. The simulation studies
demonstrate the performance of the three methods under different model setup. The real data analysis further confirms
the performance and is consistent with the simulation results.

The three motivating models represent the most important models in variance components linkage analysis. It is
worth noting that the commonly applied mixture chi-square approximation is still valid under the univariate trait analysis
assuming only the additive effect component.When extended tomultiple traits analysis, it is limited to adopt. Our extensive
simulation studies demonstrate the utility of the proposed threshold calculation method. We expect the new method can
reduce false positives or false negatives in determining a linkage signal, hence reduce the cost of unnecessary investigations
in a lab condition due to false results.
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Appendix

Proof of Proposition 1. Following the arguments in Lehmann andCasella (1998), it is possible to define a sequence of points
θ̂ς in the closed set G about θ0 to locally maximize ℓ(θ). Then following lemma 1 in Chernoff (1954), the

√
n-consistency of

θ̂ς can be proved.

Proof of Proposition 2. See the proof of Theorem 3.2 in Shapiro (2000). In brief, two key steps are involved. First, the
parameter set is nearly convex at θ0. Comparing with convexity, near convexity is a loose condition. In particular, near
convexity can be achieved by some smooth constraints in real application. When the fitted function is monotonically
nondecreasing and twice continuously differentiable on a given interval, the parameter set is nearly convex at θ0 under
the Mangasarian–Fromovitz constraints. Next, define the Lipschitz continuous functions Fn(θ̂ς ) and Fn(θ̃ς ) as −

1
nℓ(θ) in

terms of θ̂ς and θ̃ς , respectively.When Fn(θ̂ς ) and Fn(θ̃ς ) satisfy conditions 3.8 and 3.9 of Theorem 3.2 in Shapiro (2000), the
asymptotic equivalence of θ̂ς and θ̃ς can be achieved by the property of the near convexity (condition A in Shapiro, 2000).

Proof of Theorem 3.1. First note that LR can be approximated as the difference of two quadratic forms with respect to
Ω0 and Ω1 (see Theorem 1 in Chernoff, 1954). Following the

√
n-consistency of the optimizer and the property of the

approximating cones, the large sample distribution of LR is the same as that of testing θ ∈ CΩ0 against θ ∈ CΩ1 . Next,
we prove that LR asymptotically follows a mixture chi-square distribution.
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Table A.1
List of possible subsets of ψν|Y without covariance terms.

Set Subset Count

ψν|Y = {Y ; Y ∈ Rq, g(Y ) ∈ ν} ψ1
ν|Y = {Y ; Y1 > 0, Y2 > 0, . . . , Yq > 0, g(Y ) ∈ ν} (

q
0 )

ψ2
ν|Y = {Y ; Y1 ≤ 0, Y2 > 0, . . . , Yq > 0, g(Y ) ∈ ν} (

q
1 )

ψ3
ν|Y = {Y ; Y1 > 0, Y2 ≤ 0, . . . , Yq > 0, g(Y ) ∈ ν}

. . .
ψ

q+1
ν|Y = {Y ; Y1 > 0, Y2 > 0, . . . , Yq ≤ 0, g(Y ) ∈ ν}

. . .

. . .

. . .
ψ2q
ν|Y = {Y ; Y1 ≤ 0, Y2 ≤ 0, . . . , Yq ≤ 0, g(Y ) ∈ ν} (

q
q )

Following Theorem 1 in Chernoff (1954), the asymptotic distribution of LR is equivalent to the following quadratic
approximation

LR = inf
θ∈CΩ0

(Y − θ)′M(Y − θ)− inf
θ∈CΩ1

(Y − θ)′M(Y − θ) (A.1)

where Y ∼ N(θ, M−1). Subtracting θ0 from Y and θ, we get an equivalent form of (A.1) as

LR = inf
θ∈CΩ0−θ0

(Y − θ)′M(Y − θ)− inf
θ∈CΩ1−θ0

(Y − θ)′M(Y − θ) (A.2)

with Y ∼ N(0, M−1) and M is the Fisher information matrix.
Let C∨

= (CΩ1 − θ0)

(CΩ0 − θ0)

⊥, where (CΩ0 − θ0)
⊥ is the orthogonal complement of (CΩ0 − θ0). Following the

Pythagoras theorem (Shapiro, 1988), the statistic LR in (A.2) can be expressed as

LR = inf
θ∈C∨

(Y − θ)′M(Y − θ). (A.3)

It can be seen that C∨ is a closed polyhedral convex conewith dimension q (q ≤ m) since C∨ is the intersection of convex
cones. Thus a polar cone C∨0 can be defined as C∨0

= {γ ∈ Rq
; γ ′θ ≤ 0, ∀ θ ∈ C∨

}, and (C∨0)0 = C∨ by the basic property
of the polar cone (Stoer and Witzgall, 1970, Chapter 2).

Let F(C∨) represent the set of all faces of C∨. Following Shapiro (1985), we can select a face ν ∈ F(C∨) corresponding to a
polar face ν0 ∈ F(C∨0), and the linear spaces produced by ν and ν0 are orthogonal to each other. For one face ν (or ν0), we can
find a projection Tν (or Tν0 ) (a symmetric idempotent matrix giving projection onto the spaces by ν (or ν0)) and Tν = I − Tν0
since they are orthogonal. Then TνY (or Tν0Y ) is a projection of a random vector Y onto C∨ (or C∨0). For a given Y , let
g(Y ) = (g1(Y ), g2(Y ), . . . , gq(Y ))T be the minimizer to achieve the infimum in (A.3). Define ψν|Y = {Y ∈ ℜ

q
: g(Y ) ∈ ν}

so that g(Y ) ∈ ν if and only if TνY ∈ C∨ and Tν0Y ∈ C∨0. By Shapiro (1985), ψν|Y can also be defined by the inequalities as
ψν|Y = {Y ∈ ℜ

q
: e′TνY ≤ 0, e ∈ C∨0, f ′Tν0Y ≤ 0, f ∈ C∨

}. Thus, g(Y ) = TνY ∈ C∨, for all Y ∈ ψν|Y . Consequently, the
likelihood ratio statistic in (A.3) can be expressed as,

LR = (Y − g(Y ))′ M (Y − g(Y )) for all Y ∈ ψν|Y . (A.4)

Note that the setψν|Y is composed of several almost disjoint setsψ i′
ν|Y , i

′
= 1, . . . , l(q). The total number of these disjoint

subsets l(q) is calculated by the general form of binomial theorem, i.e., l(q) = 2q−o, where q is the number of parameters in
C∨ and o is the number of covariance terms in C∨. Moreover, all these subsets are classified into q − o + 1 categories. To
display these subsets, we start from the simple case that no covariance term is inψν|Y (o = 0). The subsets ofψν|Y are given
in Table A.1.

The case when covariance terms are involved in C∨ is calculated differently. Take a simple case as an example and
let C∨

= {θ; θ1 > 0, θ2 > 0, θ3 ∈ R}, where θ1 is a variance term for trait one, θ2 is the variance term for trait 2,
θ3 is the covariance between the two traits. Because of the definition of covariance, θ3 occurs only when θ1 > 0 and
θ2 > 0, so θ3 is represented by θ3I(θ1 > 0, θ2 > 0). Corresponding to this constraint, the set ψν|Y is denoted as
ψν|Y = {Y ; Yi ∈ R, i ∈ q∨

\ o∨, YjI(Yj−2 > 0, Yj−1 > 0) ∈ R, j ∈ o∨, g(Y ) ∈ ν}, where the set q∨ is defined as
q∨

= {1, 2, . . . , q} and o∨ is denoted as a subset of q∨, and is shown as o∨
= {3, 6, . . . , q} = {3k∨, k∨

= 1, 2, . . . , q
3 }. Thus,

the whole subsets under this constrained condition can be shown as in Table A.2.
The general form of the whole number of subsets is l(q) = 2q−o, and these subsets consist of q− o+ 1 groups. Therefore,

ψν|Y =

l(q)
i′=1

ψ i′
ν|Y .

Considering a linear transformation on Y and θ, a new closed convex cone C∗ is defined as C∗
= {θ∗

; θ∗
= Λ

1
2 P ′θ, θ ∈

C∨
}, where PΛP ′

= M . Let Z (Z = Λ
1
2 P ′Y , a linear transformed random vector) which is distributed as a multivariate
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Table A.2
The whole possible subsets of ψν|Y with covariance terms.

Subset Count

ψ1
ν|Y = {Y ; Y1 > 0, Y2 > 0, Y3 ∈ R, Y4 > 0, Y5 > 0, Y6 ∈ R, . . . , Yq−2 > 0, Yq−1 > 0, Yq ∈ R, g(Y ) ∈ ν} (

q − o
0 )

ψ2
ν|Y = {Y ; Y1 ≤ 0, Y2 > 0, Y4 > 0, Y5 > 0, Y6 ∈ R, . . . , Yq−2 > 0, Yq−1 > 0, Yq ∈ R, g(Y ) ∈ ν} (

q − o
1 )

ψ3
ν|Y = {Y ; Y1 > 0, Y2 ≤ 0, Y4 > 0, Y5 > 0, Y6 ∈ R, . . . , Yq−2 > 0, Yq−1 > 0, Yq ∈ R, g(Y ) ∈ ν}

ψ4
ν|Y = {Y ; Y1 > 0, Y2 > 0, Y3 ∈ R, Y4 ≤ 0, Y5 > 0, . . . , Yq−2 > 0, Yq−1 > 0, Yq ∈ R, g(Y ) ∈ ν}

. . .
ψ

q−o+1
ν|Y = {Y ; Y1 > 0, Y2 > 0, Y3 ∈ R, Y4 > 0, Y5 > 0, Y6 ∈ R, . . . , Yq−2 > 0, Yq−1 ≤ 0, g(Y ) ∈ ν}

. . .

. . .

. . .
ψ2q−o

ν|Y = {Y ; Y1 ≤ 0, Y2 ≤ 0, Y4 ≤ 0, Y5 ≤ 0 . . . , Yq−2 ≤ 0, Yq−1 ≤ 0, g(Y ) ∈ ν} (
q − o
q − o )

normal distribution withmean zero and identity covariance. In terms of this random vector Z the likelihood ratio LR in (A.3)
is evaluated equivalently as:

LR = inf
θ∗

∈C∗
∥Z − θ∗

∥
2. (A.5)

In the same way, C∗ is a closed convex cone and C∗0 is denoted as the polar cone of C∗ with (C∗0)0 = C∗. So there is a
face ν∗

∈ F(C∗) (or ν∗0
∈ F(C∗0)) such that a symmetric idempotent matrix Tν∗ (or Tν∗0 ) giving projection onto the space

created by ν∗ (or ν∗0) is defined. The linear transformation of Y to Z guarantees that there also exists a minimizer denoted
by d(Z) for (A.5), in which d(Z) = Tν∗Z ∈ C∗, ∀ Z ∈ ψν∗|Z , whereψν∗|Z can be defined by a linear transformation fromψν|Y .

Note that the setψν∗|Z is also a polyhedral convex cone by its definition and satisfies the conditions of Lemma3.1 (Shapiro,
1985), and Tν∗0 is an symmetric idempotent matrix corresponding to face ν∗0, then the likelihood ratio statistic in (A.5) can
be written as

LR = ∥Z − d(Z)∥2
= ∥Z − Tν∗Z∥

2
= Z ′(I − Tν∗)Z = Z ′Tν∗0Z, for all Z ∈ ψν∗|Z . (A.6)

It is clear that the minimum value of LR obtained for Y ∈ ψν|Y in (A.4) is equivalent to the infimum value of LR obtained for
Z ∈ ψν∗|Z in (A.6).

Note that the set ψν∗|Z is also made up of several almost disjoint sets, i.e., ψν∗|z =

l(q)
i′=1

ψ i′
ν∗|z . Condition on Z ∈ ψ i′

ν∗|Z , LR

follows a chi-square distribution with rank(Tν∗0) = rank (I − Tν∗ ) degrees of freedom. By Bayes’ theorem, the distribution
of LR in (A.6) is derived to be a mixture chi-square distribution.

Given a positive number c > 0 and a randomvectorY , the tail probability of LRunder the null hypothesis can be evaluated
as,

Pr(LR > c) = Pr((Y − g(Y ))′M(Y − g(Y )) > c, Y ∈ ψν∨|Y )

= Pr


(Y − g(Y ))′M(Y − g(Y )) > c, Y ∈

l(q)
i′=1

ψ i′
ν|Y


. (A.7)

Applying the union rule for these almost disjoint sets, the representation of (A.7) is changed to

Pr(LR > c) = Pr


l(q)
i′=1

{(Y − g(Y ))′M(Y − g(Y )) > c, Y ∈ ψ i′
ν|Y }



=

l(q)
i′=1

Pr((Y − g(Y ))′M(Y − g(Y )) > c, Y ∈ ψ i′
ν|Y )

=

l(q)
i′=1

Pr(Y ∈ ψ i′
ν∨|Y ) Pr((Y − g(Y ))′M(Y − g(Y )) > c|Y ∈ ψ i′

ν|Y ). (A.8)
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According to the resemblance between the result in (A.4) and the comment in (A.6), the representation of the probability
can be further expressed as

Pr(LR > c) =

l(q)
i′=1

Pr(Y ∈ ψ i′
ν|Y ) Pr(Z

′Tν∗0Z > c|Z ∈ ψ i′
ν∗|Z )

=

l(q)
i′=1

Pr(Y ∈ ψ i′
ν|Y ) Pr(χ

2
rank(T

ν∗0 |ψ i′
ν∗|Z )

> c) (A.9)

where Pr(Y ∈ ψ i′
ν|Y ) is the mixing proportion corresponding to the chi-square components with

l(q)
i′=1 Pr(Y ∈ ψ i′

ν|Y ) = 1,
and rank(Tν∗0 |ψ

i′
ν∗|Z ) denotes the degrees of freedom of the corresponding χ2 distribution. This completes the proof.

The distribution of LR under Model I: The parameters of this model are given as θ = {θ1, θ2, θ3, θ4, θ5} =

{σ 2
a , σ

2
d , σ

2
g , σ

2
e , µ}, and the approximating cone under the null hypothesis is defined as CΩ0 = {θ; θ1 = 0, θ2 = 0, θ3 >

0, θ4 > 0, θ5 ∈ R} against CΩ1 = {θ; θ1 > 0, θ2 > 0, θ3 > 0, θ4 > 0, θ5 ∈ R} under the alternative. The number of
parameters to be tested is 2. Thus the set of Y consists of l(q) = 4 almost disjoint sets with 3 categories:

(i) ψ1
ν|Y = {Y ; Y1 > 0, Y2 > 0, g(y) ∈ ν};

(ii) ψ2
ν|Y = {Y ; Y1 > 0, Y2 ≤ 0, g(y) ∈ ν}, ψ3

ν|Y = {Y ; Y1 ≤ 0, Y2 > 0, g(y) ∈ ν};
(iii) ψ4

ν|Y = {Y ; Y1 ≤ 0, Y2 ≤ 0, g(y) ∈ ν}.

When Y ∈ ψ1
ν|Y , LR = Z2

1 + Z2
2 ∼ χ2

2 where Zi
i.i.d.
∼ N(0, 1) for i = 1, 2, and the corresponding mixture proportion is

estimated by Pr(Y ∈ ψ1
ν|Y ). For Y in category (ii) (i.e., Y ∈ ψ2

ν|Y or Y ∈ ψ3
ν|Y ), LR ∼ χ2

1 with the corresponding mixing
proportion calculated by Pr(Y ∈ ψ2

ν|Y ) + Pr(Y ∈ ψ3
ν|Y ). For the last category, LR ∼ χ2

0 for Y ∈ ψ4
ν|Y , and the mixing

proportion is Pr(Y ∈ ψ4
ν|Y ). The calculation of the mixing proportion follows Plackett (1954) or Kendall (1954). Specifically,

Pr(Y ∈ ψ1
ν|Y ) =

π−cos−1 ρ12
2π , Pr(Y ∈ ψ2

ν|Y ) + Pr(Y ∈ ψ3
ν|Y ) =

1
2 , and Pr(Y ∈ ψ4

ν|Y ) =
cos−1 ρ12

2π , where ρ12 is the correlation
between the estimators of additive and dominance effects. Therefore, the distribution is approximated as

Pr(LR > c) =
π − cos−1 ρ12

2π
P(χ2

2 > c)+
1
2
P(χ2

1 > c). (A.10)

The distribution of LR under Model II: For Model II in (3), only the random additive effects (ak1 , ak2 ) of QTL
for two traits are considered. Denote the parameters of additive major gene effects as σ 2

a1 , σ
2
a2 , σa12 where σa12

is the covariance term between the two traits. Similarly, two covariance terms are denoted for the polygene and
random residual terms. All parameters in this model are defined as: θ = {θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8, θ9, θ10, θ11} =

{σ 2
a1 , σ

2
a2 , σa12 , σ

2
g1 , σ

2
g2 , σg12 , σ

2
e1 , σ

2
e2 , σe12 , µ1, µ2}. The approximating parameter cone under the null hypothesis is defined

as CΩ0 = {θ; θ1 = 0, θ2 = 0, θ3 = 0, θ4 > 0, θ5 > 0, θ6 ∈ R, θ7 > 0, θ8 > 0, θ9 ∈ R, θ10 ∈ R, θ11 ∈ R}. Similarly, the cone
under the alternative hypothesis is denoted as CΩ1 = {θ, θ1 > 0, θ2 > 0, θ3 ∈ R, θ4 > 0, θ5 > 0, θ6 ∈ R, θ7 > 0, θ8 >
0, θ9 ∈ R, θ10 ∈ R, θ11 ∈ R, }. Corresponding to the hypothesis test, the number of tested parameters is 3 (q = 3) and
there is 1 testing covariance term, then the setψν∨|Y has 4 almost disjoint subsets and all these subsets are classified into 3
groups.

(i) ψ1
ν|Y = {Y ; Y1 > 0, Y2 > 0, Y3 ∈ R, g(y) ∈ ν};

(ii) ψ2
ν|Y = {Y ; Y1 > 0, Y2 ≤ 0, g(y) ∈ ν}, ψ3

ν|Y = {Y ; Y1 ≤ 0, Y2 > 0, g(y) ∈ ν};
(iii) ψ4

ν|Y = {Y ; Y1 ≤ 0, Y2 ≤ 0, g(y) ∈ ν}.

The estimator of covariance term is only observed in ψ1
ν|Y , and it will vanish automatically when Y1 ≤ 0 or Y2 ≤ 0. The

LR statistic can be expressed as

LR =


Z2
1 + Z2

2 + Z2
3 ∼ χ2

3 with mixing prop. Pr(Y ∈ ψ1
ν|Y )

Z2
1 ∼ χ2

1 with mixing prop. Pr(Y ∈ ψ2
ν|Y )

Z2
2 ∼ χ2

1 with mixing prop. Pr(Y ∈ ψ3
ν|Y )

0 ∼ χ2
0 with mixing prop. Pr(Y ∈ ψ4

ν|Y )

.

For Y ∈ ψ1
ν|Y , LR ∼ χ2

3 , and the corresponding mixture proportion is calculated as Pr(Y ∈ ψ1
ν|Y ) =

π−cos−1 ρ12
2π . For

Y ∈ ψ2
ν|Y or Y ∈ ψ3

ν|Y , LR ∼ χ2
1 with mixing probability Pr(Y ∈ ψ2

ν|Y ) + Pr(Y ∈ ψ3
ν|Y ) =

1
2 . For Y ∈ ψ4

ν|Y , LR ∼ χ2
0 , and

the mixing probability is evaluated as Pr(Y ∈ ψ4
ν|Y ) =

cos−1 ρ12
2π , where ρ12 is the correlation of additive effects between two

traits. Thus, the tail probability of LR under Model II is given as

Pr(LR > c) =
π − cos−1 ρ12

2π
P(χ2

3 > c)+
1
2
P(χ2

1 > c). (A.11)
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The distribution of LR under Model III: In Model III, random additive effects (ak1 , ak2 ) and dominance effects (dk1 , dk2 )
are considered. Theparameters under thismodel are denoted as: θ = {θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8, θ9, θ10, θ11, θ12, θ13, θ14} =

{σ 2
a1 , σ

2
a2 , σa12 , σ

2
d1
, σ 2

d2
, σd12 , σ

2
g1 , σ

2
g2 , σg12 , σ

2
e1 , σ

2
e2 , σe12 , µ1, µ2}. The approximating cone under the null hypothesis is de-

noted as CΩ0 = {θ; θ1 = 0, θ2 = 0, θ3 = 0, θ4 = 0, θ5 = 0, θ6 = 0, θ7 > 0, θ8 > 0, θ9 ∈ R, θ10 > 0, θ11 > 0, θ12 ∈

R, θ13 ∈ R, θ14 ∈ R}, and the cone under the alternative hypothesis is denoted as CΩ1 = {θ, θ1 > 0, θ2 > 0, θ3 ∈ R, θ4 >
0, θ5 > 0, θ6 ∈ R, θ7 > 0, θ8 > 0, θ9 ∈ R, θ10 > 0, θ11 > 0, θ12 ∈ R, θ13 ∈ R, θ14 ∈ R}. The number of testing parameters
in Model III is 6 (q = 6) and the number of testing covariance terms is 2 (o = 2). Then the set ψν|Y can be partitioned into
16 almost disjoint subsets that comprise 5 categories, i.e.,
(i) ψ1

ν|Y = {Y ; Y1 > 0, Y2 > 0, Y3 ∈ R, Y4 > 0, Y5 > 0, Y6 ∈ R, g(y) ∈ ν};
(ii) ψ2

ν|Y = {Y ; Y1 > 0, Y2 ≤ 0, Y4 > 0, Y5 > 0, Y6 ∈ R, g(y) ∈ ν},
ψ3
ν|Y = {Y ; Y1 ≤ 0, Y2 > 0, Y4 > 0, Y5 > 0, Y6 ∈ R, g(y) ∈ ν};

ψ4
ν|Y = {Y ; Y1 > 0, Y2 > 0, Y3 ∈ R, Y4 > 0, Y5 ≤ 0, g(y) ∈ ν},

ψ5
ν|Y = {Y ; Y1 > 0, Y2 > 0, Y3 ∈ R, Y4 ≤ 0, Y5 > 0, g(y) ∈ ν};

(iii) ψ6
ν|Y = {Y ; Y1 ≤ 0, Y2 ≤ 0, Y4 > 0, Y5 > 0, Y6 ∈ R, g(y) ∈ ν};
ψ7
ν|Y = {Y ; Y1 > 0, Y2 > 0, Y3 ∈ R, Y4 ≤ 0, Y5 ≤ 0, g(y) ∈ ν};
ψ8
ν|Y = {Y ; Y1 ≤ 0, Y2 > 0, Y4 ≤ 0, Y5 > 0, g(y) ∈ ν};
ψ9
ν|Y = {Y ; Y1 ≤ 0, Y2 > 0, Y4 > 0, Y5 ≤ 0, g(y) ∈ ν};
ψ10
ν|Y = {Y ; Y1 > 0, Y2 ≤ 0, Y4 ≤ 0, Y5 > 0, g(y) ∈ ν};
ψ11
ν|Y = {Y ; Y1 > 0, Y2 ≤ 0, Y4 > 0, Y5 ≤ 0, g(y) ∈ ν};

(iv) ψ12
ν|Y = {Y ; Y1 ≤ 0, Y2 ≤ 0, Y4 ≤ 0, Y5 > 0, g(y) ∈ ν};
ψ13
ν|Y = {Y ; Y1 ≤ 0, Y2 ≤ 0, Y4 > 0, Y5 ≤ 0, g(y) ∈ ν};
ψ14
ν|Y = {Y ; Y1 ≤ 0, Y2 > 0, Y4 ≤ 0, Y5 ≤ 0, g(y) ∈ ν};
ψ15
ν|Y = {Y ; Y1 > 0, Y2 ≤ 0, Y4 ≤ 0, Y5 ≤ 0, g(y) ∈ ν};

(v) ψ16
ν|Y = {Y ; Y1 ≤ 0, Y2 ≤ 0, Y4 ≤ 0, Y5 ≤ 0, g(y) ∈ ν};

Based on these 16 almost disjoint subsets, the limiting distribution of LR can be expressed as

LR =



Z2
1 + Z2

2 + Z2
3 + Z2

4 + Z2
5 + Z2

6 ∼ χ2
6 with mixing prop. Pr(Y ∈ ψ1

ν|Y )

Z2
1 + Z2

4 + Z2
5 + Z2

6 ∼ χ2
4 with mixing prop. Pr(Y ∈ ψ2

ν|Y )

Z2
2 + Z2

4 + Z2
5 + Z2

6 ∼ χ2
4 with mixing prop. Pr(Y ∈ ψ3

ν|Y )

Z2
1 + Z2

2 + Z2
3 + Z2

4 ∼ χ2
4 with mixing prop. Pr(Y ∈ ψ4

ν|Y )

Z2
1 + Z2

2 + Z2
3 + Z2

5 ∼ χ2
4 with mixing prop. Pr(Y ∈ ψ5

ν|Y )

Z2
4 + Z2

5 + Z2
6 ∼ χ2

3 with mixing prop. Pr(Y ∈ ψ6
ν|Y )

Z2
1 + Z2

2 + Z2
3 ∼ χ2

3 with mixing prop. Pr(Y ∈ ψ7
ν|Y )

Z2
2 + Z2

5 ∼ χ2
2 with mixing prop. Pr(Y ∈ ψ8

ν|Y )

Z2
2 + Z2

4 ∼ χ2
2 with mixing prop. Pr(Y ∈ ψ9

ν|Y )

Z2
1 + Z2

5 ∼ χ2
2 with mixing prop. Pr(Y ∈ ψ10

ν|Y )

Z2
1 + Z2

4 ∼ χ2
2 with mixing prop. Pr(Y ∈ ψ11

ν|Y )

Z2
5 ∼ χ2

1 with mixing prop. Pr(Y ∈ ψ12
ν|Y )

Z2
4 ∼ χ2

1 with mixing prop. Pr(Y ∈ ψ13
ν|Y )

Z2
2 ∼ χ2

1 with mixing prop. Pr(Y ∈ ψ14
ν|Y )

Z2
1 ∼ χ2

1 with mixing prop. Pr(Y ∈ ψ15
ν|Y )

0 ∼ χ2
0 with mixing prop. Pr(Y ∈ ψ16

ν|Y )

.

Therefore, the tail probability of LR under Model III is given as

Pr(LR > c) = Pr(Y ∈ ψ1
ν|Y )P(χ

2
6 > c)+

5
i′=2

Pr(Y ∈ ψ i′
ν|Y )P(χ

2
4 > c)

+

7
i′=6

Pr(Y ∈ ψ i′
ν|Y )P(χ

2
3 > c)+

11
i′=8

Pr(Y ∈ ψ i′
ν|Y )P(χ

2
2 > c)

+

15
i′=12

Pr(Y ∈ ψ i′
ν|Y )P(χ

2
1 > c). (A.12)

The mixture proportions can be calculated following the results of Kudô (1963, p.415) and Shapiro (1985, p.141).
Specifically,
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(1) The mixing proportion corresponding to the chi-square distribution with 4 df is w1 =
5

i′=2 Pr(Y ∈ ψ i′
ν|Y ), and this

probability can be estimated as

w1 =

5
i′=2

Pr(Y ∈ ψ i′
ν|Y ) =


a=1,b=2,c=4,d=5,e=6
a=2,b=1,c=4,d=5,e=6
a=4,b=5,c=1,d=2,e=3
a=5,b=4,c=1,d=2,e=3

Pr(Ya < 0, Yb > 0, Yc > 0, Yd > 0, Ye ∈ R)

=


a=1,b=2,c=4,d=5
a=2,b=1,c=4,d=5
a=4,b=5,c=1,d=2
a=5,b=4,c=1,d=2

Pr(Ya < 0, Yb > 0, Yc > 0, Yd > 0)

=
1
8π

8π −


a>b;a≠c,b≠c
a,b,c=1,2,4,5

cos−1 ρab|c


where ρab|c is calculated as ρab|c =

ρab−ρacρbc√
ρ2ac


ρ2bc

.

(2) With respect to the chi-square distribution with 3 df, the mixing proportion is given asw1
2 =

7
i′=6 Pr(Y ∈ ψ i′

ν|Y ), and

w1
2 =

7
i′=6

Pr(Y ∈ ψ i′
ν|Y ) = Pr(Y1 < 0, Y2 < 0, Y4 > 0, Y5 > 0, Y6 ∈ R)

+ Pr(Y1 > 0, Y2 > 0, Y3 ∈ R, Y4 < 0, Y5 < 0)
= Pr(Y1 < 0, Y2 < 0, Y4 > 0, Y5 > 0)+ Pr(Y1 > 0, Y2 > 0, Y4 < 0, Y5 < 0)

=
1

4π2
[cos−1 ρ12(π − cos−1 ρ45|12)+ cos−1 ρ45(π − cos−1 ρ12|45)]

where ρcd|ab is estimated by ρcd|ab =

ρab−
ρacρbc+ρadρbd−ρacρbdρcd−ρadρbcρcd

1−ρ2cd
1−ρ2cd−ρ2ac−ρ2ad+2ρ2acρ

2
adρ

2
cd

1−ρ2cd


1−ρ2cd−ρ2bc−ρ2bd+2ρ2bcρ

2
bdρ

2
cd

1−ρ2cd

.

(3) w2
2 =

11
i′=8 Pr(Y ∈ ψ i′

ν|Y ) is the mixing probability for the chi-square component with 2 df. The mixing proportion is
evaluated as

w2
2 =

11
i′=8

Pr(Y ∈ ψ i′
ν|Y ) =


a,b=1,2;c,d=4,5;a≠b;c≠d

Pr(Ya < 0, Yb > 0, Yc < 0, Yd > 0)

=
1

4π2
[cos−1 ρ14(π − cos−1 ρ25|14)+ cos−1 ρ15(π − cos−1 ρ24|15)

+ cos−1 ρ24(π − cos−1 ρ15|24)+ cos−1 ρ25(π − cos−1 ρ14|25)]

where ρcd|ab is defined as in (2).
(4) Following the comment by Shapiro (1985), the mixing proportions are assigned equally on the even and odd places.

Thus the mixing probabilityw3 =
15

i′=12 Pr(Y ∈ ψ i′
ν|Y ) for the chi-square component with 1 df is calculated as

w3 =

15
i′=12

Pr(Y ∈ ψ i′
ν|Y ) =


a=1,b=2,c=4,d=5
a=2,b=1,c=4,d=5
a=4,b=5,c=1,d=2
a=5,b=4,c=1,d=2

Pr(Ya > 0, Yb < 0, Yc < 0, Yd < 0)

=
1
2

−

5
i′=2

Pr(Y ∈ ψ i′
ν|Y )

=
1
8π

 
a>b;a≠c,b≠c
a,b,c=1,2,4,5

cos−1 ρab|c − 4π


where there is a resemblance about the calculation of ρab|c betweenw3 =

15
i′=12 Pr(Y ∈ ψ i′

ν|Y ) andw1 =
5

i′=2 Pr(Y ∈

ψ i′
ν|Y ).

(5) Due to the equivalence of weights on odd and even places (Kendall, 1954), we havew0 +w4 = Pr(Y ∈ ψ1
ν|Y )+ Pr(Y ∈

ψ16
ν|Y ) =

1
2 −

11
i′=6 Pr(Y ∈ ψ i′

ν|Y ) =
1
2 − w1

2 − w2
2 . Suppose the two mixing proportions w0 = Pr(Y ∈ ψ1

ν|Y ) for the
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chi-square component with 6 df and w4 = Pr(Y ∈ ψ16
ν|Y ) for the chi-square component with 0 df equally share the

probability 1
2 −

11
i′=6 Pr(Y ∈ ψ i′

ν|Y ). Then, the mixing proportion is approximated as

w0 = w4 = Pr(Y ∈ ψ1
ν|Y ) = Pr(Y ∈ ψ16

ν|Y ) =
1
4

−
1
2

11
i′=6

Pr(Y ∈ ψ i′
ν|Y )

=
1
4

−
1

8π2
[cos−1 ρ12(π − cos−1 ρ45|12)

+ cos−1 ρ45(π − cos−1 ρ12|45)

+ cos−1 ρ14(π − cos−1 ρ25|14)

+ cos−1 ρ15(π − cos−1 ρ24|15)

+ cos−1 ρ24(π − cos−1 ρ15|24)

+ cos−1 ρ25(π − cos−1 ρ14|25)].

Back to our original motivating models, the limiting distribution of the LR is given as π−cos−1 ρ12
2π χ2

2 :
1
2χ

2
1 :

cos−1 ρ12
2π χ2

0

for Model I, π−cos−1 ρ12
2π χ2

3 :
1
2χ

2
1 :

cos−1 ρ12
2π χ2

0 for Model II andw0χ
2
6 : w1χ

2
4 : w1

2χ
2
3 : w2

2χ
2
2 : w3χ

2
1 : w4χ

2
0 for Model III.
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