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A GENERAL STATISTICAL FRAMEWORK FOR DISSECTING
PARENT-OF-ORIGIN EFFECTS UNDERLYING ENDOSPERM

TRAITS IN FLOWERING PLANTS1

BY GENGXIN LI AND YUEHUA CUI

Michigan State University

Genomic imprinting has been thought to play an important role in seed
development in flowering plants. Seed in a flowering plant normally contains
diploid embryo and triploid endosperm. Empirical studies have shown that
some economically important endosperm traits are genetically controlled by
imprinted genes. However, the exact number and location of the imprinted
genes are largely unknown due to the lack of efficient statistical mapping
methods. Here we propose a general statistical variance components frame-
work by utilizing the natural information of sex-specific allelic sharing among
sibpairs in line crosses, to map imprinted quantitative trait loci (iQTL) un-
derlying endosperm traits. We propose a new variance components parti-
tion method considering the unique characteristic of the triploid endosperm
genome, and develop a restricted maximum likelihood estimation method in
an interval scan for estimating and testing genome-wide iQTL effects. Cyto-
plasmic maternal effect which is thought to have primary influences on yield
and grain quality is also considered when testing for genomic imprinting.
Extension to multiple iQTL analysis is proposed. Asymptotic distribution of
the likelihood ratio test for testing the variance components under irregular
conditions are studied. Both simulation study and real data analysis indicate
good performance and powerfulness of the developed approach.

1. Introduction. The life cycle of an angiosperm starts with the process of
double fertilization, where the fertilization of the haploid egg with one sperm cell
forms the embryo, and the fusion of the two polar nuclei with another sperm cell
develops into endosperm [Chaudhury et al. (2001)]. Thus, endosperm is a tissue
unique to angiosperm. The embryo and endosperm are genetically identical, except
that the endosperm is triploid composed of one set of paternal and two identical
sets of maternal chromosomes. In cereals, the endosperm of a grain is the major
storage organ providing nutrition for early-stage seed development, and more than
that, serves as the major source of food for human beings. The identification of
important genes that underlie the variation of quantitative traits of various interests
in endosperm is thus paramountly important.
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Genomic imprinting refers to the situation where the expression of the same
genes is different depending on their parental origin [Pfifer (2000)]. It has been
increasingly recognized that many endosperm traits are controlled by genomic im-
printing. For example, endoreduplication is a commonly observed phenomenon
which shows a maternally controlled parent-of-origin effect in maize endosperm
[Dilkes et al. (2002)]. Cells undergoing endoreduplication are typically larger than
other cells, which consequently results in larger fruits or seeds beneficial to human
beings [Grime and Mowforth (1982)]. Other reports of genomic imprinting with
paternal imprinting in maize endosperm include, for instance, the r gene in the
regulation of anthocyanin [Kermicle (1970)], the seed storage protein regulatory
gene dsrl [Chaudhuri and Messing (1994)], the MEA gene affecting seed devel-
opment [Kinoshita et al. (1999)] and some α-tubulin genes [Lund, Messing and
Viotti (1995)]. These studies underscore the value of developing statistical meth-
ods that empower geneticists to identify the distribution and effects of imprinted
genes controlling endosperm traits.

Statistical methods for mapping imprinted genes or imprinted quantitative trait
loci (iQTL) have been extensively studied. Focusing on different genetic de-
signs and different segregation populations, methods were developed in mapping
iQTL underlying quantitative traits in controlled experimental crosses [e.g., Cui,
Cheverud and Wu (2007); Cui et al. (2006); Wolf et al. (2008)], in outbred pop-
ulation [e.g., de Koning, Bovenhuis and van Arendonk (2002)] and in human
population [e.g., Hanson et al. (2001); Shete, Zhou and Amos (2003)]. Broadly
speaking, these methods can be categorized into two frameworks: one based on
the fixed effect model where the iQTL effect is considered as fixed [e.g., Cui et al.
(2006, 2007); de Koning, Bovenhuis and van Arendonk (2002)], and the other con-
sidering iQTL effect as random and estimating the genetic variances contributed
by an iQTL [e.g., Hanson et al. (2001); Shete, Zhou and Amos (2003); Li and
Cui (2009a)]. The method proposed by Li and Cui (2009a) extended the variance
components model to experimental crosses and showed relative merits in mapping
iQTLs with inbred lines. However, all these approaches for iQTL mapping were
developed based on diploid populations, whereby chromosomes are paired. Their
applications are immediately limited when the ploidy level of the study population
is more than two, for instance, the triploid endosperm.

In this study we propose to extend our previous work in iQTL mapping with
the variance components approach in experimental crosses [Li and Cui (2009a)],
and consider the unique genetic makeup of the triploid endosperm genome to map
iQTLs underlying triploid endosperm traits. Cytoplasmic maternal effects are also
considered and adjusted when testing for genomic imprinting. Motivated by a real
experiment, we propose a reciprocal backcross design initiated with two inbred
lines. The likelihood ratio test (LRT) is applied to test the significance of the vari-
ance components and its asymptotic distribution is evaluated under irregular con-
ditions.
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The article is organized as follows. Section 2 will illustrate the basic genetic
design and the statistical mapping framework. We propose a new approach for
calculating the parental specific allelic sharing among inbreeding triploid sibs.
Statistical hypothesis testings are proposed to assess iQTL effects. The limiting
distribution of the LRT under the proposed mapping framework is studied. The
multiple iQTL model is also proposed to separate closely linked (i)QTLs. Sections
3 and 4 will be devoted to simulations and real application followed by a general
discussion in Section 5.

2. Statistical method.

2.1. The genetic design. Using experimental crosses for QTL mapping has
been the traditional means in targeting genetic regions harboring potential genes
responsible for quantitative trait variations. Toward the goal of mapping iQTL un-
derlying endosperm traits in line crosses, we propose a reciprocal backcross de-
sign. A similar design was proposed by Li and Cui (2009a) for diploid mapping
populations. In brief, two inbred parents with genotypes AA and aa are crossed
to produce an F1 population (Aa). F1 individuals are then backcrossed with one
of the parents to generate backcross populations. We can use both parents as the
maternal strain to cross with an F1 individual to generate two backcross segrega-
tion populations. Or we can use F1 individuals as the maternal strains to cross with
both parents to produce another two sets of segregation populations. The so-called
reciprocal backcross design generates four different segregation populations with
each one being considered as one family. Large number of backcross families can
be obtained by simply replicating each one of the above crosses.

To distinguish the allelic parental origin, we use subscript letters f and m to
denote an allele inherited from the father and mother, respectively. A list of pos-
sible offspring genotypes considering the unique genetic makeups in the triploid
endosperm genome is detailed in the second column in Table 1. Clearly, the en-
dosperm genome carries one extra maternal copy due to the unique double fertil-
ization step in flowering plants. When a dosage effect is considered, we do expect
different expression values triggered by endosperm and embryo genes.

2.2. The model. In QTL mapping different line crosses can be combined to-
gether to increase the parameter inference space via a variance components method
[Xie, Gessler and Xu (1998)]. VC method has been shown to be powerful in as-
sessing genomic imprinting in human linkage analysis [Hanson et al. (2001)]. Re-
cently, Li and Cui (2009a) extended the VC model to experimental crosses and
proposed an iQTL mapping framework via combining different line crosses for
iQTL detection. We extend our previous work to triploid endosperm tissue consid-
ering the unique genetic components in the endosperm genome.

Suppose total K families are collected which are composed of the four dis-
tinct backcross families. Assume nk individuals are sampled in the kth family.
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TABLE 1
The allelic-specific IBD sharing coefficients for full-sib pairs in a reciprocal backcross design

Offspring
genotype

Parent-specific IBD sharing Total IBD

Backcross πmm πff πm/f π

QmQmQf QmQmqf QmQmQf QmQmqf QmQmQf QmQmqf QmQmQf QmQmqf

QQ × Qq QmQmQf 4/3 4/3 1/3 0 4/3 2/3 3 2
QmQmqf 4/3 4/3 0 1/3 2/3 0 2 5/3

QmQmQf qmqmQf QmQmQf qmqmQf QmQmQf qmqmQf QmQmQf qmqmQf

Qq × QQ QmQmQf 4/3 0 1/3 1/3 4/3 2/3 3 1
qmqmQf 0 4/3 1/3 1/3 2/3 0 1 5/3

qmqmQf qmqmqf qmqmQf qmqmqf qmqmQf qmqmqf qmqmQf qmqmqf

qq × Qq qmqmQf 4/3 4/3 1/3 0 0 2/3 5/3 2
qmqmqf 4/3 4/3 0 1/3 2/3 4/3 2 3

QmQmqf qmqmqf QmQmqf qmqmqf QmQmqf qmqmqf QmQmqf qmqmqf

Qq × qq QmQmqf 4/3 0 1/3 1/3 0 2/3 5/3 1
qmqmqf 0 4/3 1/3 1/3 2/3 4/3 1 3
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The phenotypic variation of a quantitative trait in family k (denoted as yk) can be
explained by the genotype-specific cytoplasmic maternal effect (denoted as μk),
additive QTL effect (denoted as ak), polygene effect (denoted as gk) and random
residual effect (denoted as ek). To incorporate the parent-of-origin effect, the addi-
tive QTL effect (ak) can be further partitioned into two separate effects, an effect
due to the expression of the maternal allele (denoted as akm) and an effect due
to the expression of the paternal allele (denoted as akf ). The model can thus be
expressed as

yki = μk + 2akmi + akf i + gki + eki, k = 1, . . . ,K; i = 1, . . . , nk,(2.1)

where akmi , akf i , gki and eki are random effects with normal distribution, that
is, akmi ∼ N(0, πimjm|kσ 2

m), akf i ∼ N(0, πim/jf |kσ 2
f ), gki ∼ N(0, φij |kσ 2

g ), eki ∼
N(0, σ 2

e ); gki and eki are uncorrelated to akmi and akf i ; the coefficient 2 for akmi

adjusts for the effects of two identical maternal copies; μk models the maternal
genotype-specific effect; πimjm|k , πif jf |k and φij |k are the IBD coefficients which
are explained in the following section. With four distinct segregation populations,
we have only three distinct maternal genotypes, AA, Aa and aa. Thus, the pa-
rameter μk can be collapsed into three distinct values denoted as μ1, μ2 and
μ3 corresponding to maternal genotypes AA, Aa and aa, respectively. Letting
β = (μ1,μ2,μ3), then model (2.1) can be rewritten in a vector form as

yk = Xkβ + 2akm + akf + gk + ek, k = 1, . . . ,K,(2.2)

where Xk is an nk × 3 matrix with one column of ones and two columns of zeros.

2.3. Parent-specific allele sharing and the covariance between two inbreeding
sibs. One of the major tasks in IBD-based iQTL mapping with the variance com-
ponents model is to calculate the IBD sharing probabilities and the phenotypic
covariances between sibs. Such a method has been developed in the human pop-
ulation [Hanson et al. (2001)], which, however, cannot be applied to a complete
inbreeding population in experimental crosses, because the allelic sharing relation-
ship among sibpairs does not follow the pattern as the one derived from a natural
noninbreeding population. Instead, the IBD sharing probability can be calculated
based on Malécot’s coefficient of coancestry (1948) for an inbreeding population.
Li and Cui (2009a) recently explored different allelic sharing patterns among sib-
pairs in a reciprocal backcross design with a diploid tissue. We extend the method
to the triploid endosperm genome and derive covariances among sibpairs in a
triploid tissue.

Consider two individuals i and j randomly selected from one backcross fam-
ily with phenotype yi and yj . Figure 1 shows all possible allelic sharing patterns
between individuals i and j . The solid line indicates IBD sharing for alleles de-
rived from the same parent and the dotted line indicates IBD cross-sharing for
alleles derived from different parents. The allelic cross-sharing is unique to in-
breeding populations, whereby this cross-sharing probability reduces to zero for
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FIG. 1. Possible alleles shared IBD for individuals i and j in inbreeding backcross families. The
solid lines indicate IBD sharing for alleles inherited from the same parent. The dotted lines indicate
IBD cross-sharing for alleles inherited from different parents.

noninbreeding populations. Here we propose to calculate the IBD sharing between
individuals i and j (denoted as πij ) for a triploid genome as

πij =
{ 3θij , if i �= j ,

1
3(5 + 3Fi), if i = j ,

(2.3)

where θij is Malécot’s coefficient of coancestry and Fi is the inbreeding coefficient
[Harris (1964); Cockerham (1983); Lynch and Walsh (1998)]. By definition, θij is
calculated as the probability of two randomly selected alleles from individuals i

and j being identical by descent. The calculation of πij is different from the usual
IBD sharing calculation in noninbreeding populations. It is instead interpreted as
triple the Malécot coefficient of coancestry [Xie, Gessler and Xu (1998)]. For easy
notation, we still adopt the term “IBD sharing probability” for πij in the rest of the
presentation. The calculation of the inbreeding coefficient follows the procedure
given in Lynch and Walsh (1998).

To illustrate the idea, consider two backcross individuals i (with genotype
AmAmAf ) and j (with genotype BmBmBf ). The coefficient of coancestry θij be-
tween these two individuals can be expressed as

θij = 1
9{Pr(Am1 ≡ Bm1) + Pr(Am1 ≡ Bm2) + Pr(Am2 ≡ Bm1)

+ Pr(Am2 ≡ Bm2) + Pr(Am1 ≡ Bf ) + Pr(Am2 ≡ Bf )

+ Pr(Af ≡ Bm1) + Pr(Af ≡ Bm2) + Pr(Af ≡ Bf )}
= 1

9(4θimjm + 2θimjf
+ 2θif jm + θif jf

),

where the notation ≡ refers to identical by decent; the subscript numbers 1 and
2 indicate two maternally inherited alleles; θi·j · is defined as the allelic kinship



1220 G. LI AND Y. CUI

coefficient [Lynch and Walsh (1998)]. Note that the two terms θimjf
and θif jm are

indistinguishable, but their sum denoted as θim/jf
(= θimjf

+θif jm) is unique. Thus,

we have θij = 1
9(4θimjm + 2θim/jf

+ θif jf
). Following equation (2.3), we have

πij = 3θij = 4
3θimjm + 2

3θim/jf
+ 1

3θif jf
= πimjm + πim/jf

+ πif jf
for i �= j.

It can be seen that the IBD sharing between any two individuals can be decom-
posed as three separate components, one due to the IBD sharing for alleles derived
from the maternal parent (πimjm = 4

3θimjm), one due to the cross-sharing for alleles
derived from different parents (πim/jf

= 2
3θim/jf

) and one due to the IBD sharing

for alleles derived from the paternal parent (πif jf
= 1

3θif jf
). An exhaustive list of

all possible IBD sharing probabilities for the four backcross families is given in
Table 1.

Dropping the family index k, the covariance between any two individuals i and
j can be expressed as

Cov(yi, yj |πimjm,πim/jf
, πif jf

)

= Cov(2ami + af i + gi + ei,2amj + afj + gj + ej )

= 4π ′
imjm

σ 2
m + 2π ′

im/jf
σ 2

mf + πif jf
σ 2

f + φijσ
2
g + Iijσ

2
e ,

where π ′
imjm

= 1
4(πimjm) and π ′

im/jf
= 1

2(πim/jf
) are the IBD sharing and cross-

sharing probabilities by considering one single maternal allele; σ 2
mf measures the

variation of trait distribution due to alleles cross-sharing; φij is the expected alleles
shared IBD; Iij is an indicator variable taking value 1 if i = j and 0 if i �= j . For
a natural population without inbreeding, there is no allele cross-sharing for an
individual with itself, hence, πim/jf

= 0. For a diploid noninbreeding population,
the trait covariance can be simplified as the one given in Shete, Zhou and Amos
(2003). In matrix form, the phenotypic variance-covariance for individuals in the
kth backcross family can then be expressed as

�k = �m|kσ 2
m + �m/f |kσ 2

mf + �f |kσ 2
f + �g|kσ 2

g + Iσ 2
e ,(2.4)

where the elements of �m|k , �f |k and �m/f |k can be found in Table 1.

2.4. QTL IBD sharing and genome-wide linkage scan. The above described
IBD sharing probability is calculated at a known marker position. Unless mark-
ers are dense enough, we have to search across the genome for potential (i)QTL
positions and their effects. In general, the QTL position can be viewed as a fixed
parameter by searching for a putative QTL at every 1 or 2 cM on a map interval
bracketed by two markers throughout the entire linkage map. Thus, we need to
estimate the QTL IBD sharing at every scan position. Since the conditional proba-
bility of an endosperm QTL given upon two flanking markers is the same as the one
derived from a diploid genome [Cui and Wu (2005)], the same procedure termed
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as the expected conditional IBD sharing described in Li and Cui (2009a) can be
applied to calculate the QTL IBD sharing probability at every scan position.

Assuming multivariate normality of the trait distribution for data in each family
and assuming independence between families, the joint log-likelihood function
when K backcross families are sampled can be formulated as

� =
K∑

k=1

log[f (yk;μk,�k)],(2.5)

where f is the multivariate normal density. Parameters to be estimated include
β = (μ1,μ2, u3) and 	 = (σ 2

m,σ 2
f , σ 2

mf ,σ 2
g , σ 2

e ). Two commonly used methods in
linkage analysis, the maximum likelihood (ML) method and the restricted max-
imum likelihood (REML) method, may be applied to estimate parameters. It is
commonly recognized that the REML method gives less biased estimation com-
pared to the ML method [Corbeil and Searle (1976)]. Here we adopt the REML
method with the Fisher scoring algorithm to obtain the REML estimates [see Li
and Cui (2009a) for details of the algorithm].

The conditional QTL IBD-sharing values vary at different testing positions. The
amount of support for a QTL at a particular map position can be displayed graph-
ically through the use of likelihood ratio profiles, which reflect the variation of the
testing position of putative QTLs. The significant QTLs are detected by the peaks
of the profile plot that pass a certain significant threshold (see Section 2.5 for more
details).

2.5. Hypothesis testing. In iQTL mapping, we are interested in testing
whether there is any significant genetic effect at a test position and would like
to further quantify the imprinting effect if any. The hypothesis for testing the exis-
tence of a QTL can be expressed as{

H0 :σ 2
m = σ 2

f = σ 2
mf = 0,

H1 : at least one parameter is not zero.
(2.6)

The LRT is applied for this purpose. Define 	̃ and 	̂ to be the estimates of the
unknown parameters under H0 and H1, respectively. The LRT statistic can be cal-
culated as

LR = −2[logL(	̃|y) − logL(	̂|y)].(2.7)

Let θ = (μ1 μ2 μ3 θ1 θ2 θ3 θ4 θ5)
T = (μ1 μ2 μ3 σ 2

m σ 2
f σ 2

mf σ 2
g σ 2

e )T ∈
	 = R

3 × [0,∞) × [0,∞) × [0,∞) × (0,∞) × (0,∞) be the parameters to
be estimated. Note that the polygene variance is bounded away from zero if we
assume there are more than one QTL in the genome. Let the true parameters
under the null hypothesis be θ0 = (μ10 μ20 μ30 σ 2

m0
σ 2

f0
σ 2

mf0
σ 2

g0
σ 2

e0
)T =

(μ10 μ20 μ30 0 0 0 σ 2
g0

σ 2
e0

)T ∈ 	0 = R
3 ×{0}×{0}×{0}× (0,∞)× (0,∞).
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The three tested genetic variance components under the null hypothesis lie on the
boundaries of the parameter space 	. Thus, the standard conditions for obtain-
ing the asymptotic χ2 distribution of the LRT are not satisfied [Self and Liang
(1987)]. Following the results from Chernoff (1954), Shapiro (1985) and Self and
Liang (1987), the following theorem states that the LR statistic follows a mixture
chi-square distribution, whereby the mixture proportions depend on the estimated
Fisher information matrix.

THEOREM 2.1. Let C	0 and C	 be closed convex cones with vertex at θ0
to approximate 	0 and 	, respectively. Let Y be a random variable with a
multivariate normal distribution with mean θ0, and variance–covariance ma-
trix I−1(θ0). Under the assumptions given in the Appendix, the LR statis-
tic in (2.7) is asymptotically distributed as a mixture chi-square distribution
with the form ω3χ

2
3 :ω2χ

2
2 :ω1χ

2
1 :ω0χ

2
0 , where ω3 = 1

4π
[2π − cos−1 ρ12 −

cos−1 ρ13 − cos−1 ρ23], ω2 = 1
4π

[3π − cos−1 ρ12|3 − cos−1 ρ13|2 − cos−1 ρ23|1],
ω1 = 1

4π
(cos−1 ρ12 +cos−1 ρ13 +cos−1 ρ23), and ω0 = 1

2 − 1
4π

[3π −cos−1 ρ12|3 −
cos−1 ρ13|2 −cos−1 ρ23|1]; ρab is the correlation between the variance terms a and
b calculated from the Fisher information matrix, and ρab|c = (ρab−ρacρbc)

(1−ρ2
ac)

1/2(1−ρ2
bc)

1/2 .

Note that the symbol π in the above theorem is the irrational number (a math-
ematical constant) not the IBD sharing probability. The proof of the theorem is
given in the Appendix.

REMARK. When the random parameter estimators are uncorrelated or the cor-
relation is extremely small, that is, the Fisher information matrix is close to diag-
onal, the mixture proportions for the χ2

k components are reduced to the binomial
form with

(3
k

)
2−3, which is consistent with the result (Case 9) given in Self and

Liang (1987).

Once a QTL is identified at a genomic position, we can further assess its imprint-
ing property. To evaluate whether a QTL shows imprinting effect, the hypotheses
can be formulated as {

H0 :σ 2
f = σ 2

m,

H1 :σ 2
f �= σ 2

m.
(2.8)

Again, the likelihood ratio test can be applied which asymptotically follows a χ2

distribution with 1 degree of freedom since the tested parameter under the null is
nonnegative and does not lie on the boundary of the parameter space. Rejecting H0
indicates genomic imprinting, and the QTL can be called an iQTL. We denote this
imprinting test as LRimp. If the null is rejected, one would be interested in testing
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whether the detected iQTL is completely maternally or paternally imprinted with
the corresponding null hypothesis expressed as H0 :σ 2

m = 0 and H0 :σ 2
f = 0, re-

spectively. The LRT statistic for the two tests asymptotically follows a mixture χ2

distribution with the form 1
2χ2

0 : 1
2χ2

1 . Rejection of complete imprinting indicates
partial imprinting.

Maternal effects can be tested by formulating hypothesis: H0 : μ1 = μ2 = μ3.
Note that these three parameters do not represent the true maternal effects, as
they are confounded with the main genetic effects. But a test of pairwise dif-
ferences can be applied to detect the significance of any maternal contribu-
tion.

2.6. Multiple iQTL model. In practice, there may be several QTLs to reflect
the phenotypic variation in the whole genome. When testing QTL effects at one
chromosome, effects from QTLs located at other chromosomes are absorbed by
the polygenic effect (g). In some cases, two or more QTLs may be located at the
same chromosome, which are termed as background QTL(s) in comparison to the
tested one. When this happens, it is essential to adjust for the background QTL(s)’
effects. Otherwise, it may lead to biased estimation for the putative QTL caused
by the interference of QTL(s) close to the tested interval [Zeng (1994)].

In the previous work of Li and Cui (2009a), the authors proposed a multiple
iQTL model following the idea of next-to-flanking markers proposed by Xu and
Atchley (1995). We adopted a similar strategy in the current study. Briefly, assum-
ing there are S (i)QTLs in one chromosome, the multiple iQTL model considering
parent-specific allele effect can be expressed as

yki = μk +
S∑

s=1

2akmis +
S∑

s=1

akf is + gki + eki, k = 1, . . . ,K; i = 1, . . . , nk,

where each (i)QTL effect is partitioned as two separate terms to reflect the contri-
bution of the maternal and paternal alleles. In reality, the exact number and loca-
tion of QTLs in a chromosome is generally unknown before doing a genome-wide
search. This problem can be eased by applying the next-to-flanking markers idea
proposed by Xu and Atchley (1995).

Denote a test interval with two flanking markers as Ml–Mr . The markers next
to these two markers are denoted as ML on the left of Ml , and MR on the right
of Mr (L = l − 1 and R = r + 1). Conditional on the two markers, ML and
MR , we expect the effects of QTL(s) located outside of the tested interval can be
absorbed by the IBD values calculated from the two next-to-flanking markers [Xu
and Atchley (1995)]. Thus, the calculation of (i)QTL covariance conditional on
these two markers will avoid the requirement for the position of QTLs outside of
the tested interval. Dropping the family index, the phenotypic covariance between
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two individuals i and j can be expressed as

Cov(yi, yj |πL, π̂imjm, π̂im/jf
, π̂if jf

, πR)

=
L∑

l=1

K(θlL,πL)σ 2
l + π̂imjmσ 2

m + π̂im/jf
σ 2

mf + π̂if jf
σ 2

f

+
R∑

r=1

K(θlR,πR)σ 2
r + φijσ

2
g + Iijσ

2
e

= πLσ 2
L + π̂imjmσ 2

m + π̂im/jf
σ 2

mf + π̂if if σ 2
f + πRσ 2

R + φijσ
2
g + Iijσ

2
e ,

where πL is the IBD sharing value at marker L, and σ 2
L is a composite variance

component which reflects the variation of (i)QTL effects on the left side of the
tested interval [see Li and Cui (2009a) for details]. πR and σ 2

R are defined simi-
larly. The calculations of πL and πR reflect the triploid structure of the endosperm
genome. Testing (i)QTL effects can then be focused on a tested interval while ad-
justing for the background QTLs’ effects located in another place.

3. Simulation. Simulation studies are conducted to investigate the method
performance. We assume a fixed total sample size of 400, then vary the family and
offspring size with different combinations, that is, 4 × 100, 8 × 50, 20 × 20 and
100×4, in order to evaluate the effect of family and offspring size on testing power
and parameter estimation. Simulation details are given in the Simulation and real
data analysis. Here we briefly summarize the main results.

3.1. Single iQTL simulation. For the single iQTL simulation, the results show
that both the 4 × 100 and the 100 × 4 designs yield lower QTL detection power
and higher RMSE (root mean squared error) for QTL position estimation than the
other two designs do. The 20 × 20 design slightly beats the 8 × 50 design with
smaller imprinting type I error and higher QTL detection power. These results
indicate that it is necessary to maintain a balance between the family size and
the offspring size, in order to achieve optimal power and good effects estimation
precision. For a given budget with a fixed total sample size, one should always try
to avoid extreme designs with a large (or small) number of families, each with a
small (or large) number of offsprings.

Focusing on the 20 × 20 design, simulations are performed to show the model
behavior under different imprinting modes, that is, complete paternal imprinting,
complete maternal imprinting, partial maternal imprinting and partial paternal im-
printing. The results indicate that the power to detect imprinting depends on the
underlying degree of imprinting. Relatively higher imprinting power is observed
when an iQTL is maternally imprinting compared to the case when an iQTL is
paternally imprinting.
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3.2. Multiple iQTL simulation. In this simulation data are simulated by as-
suming two (i)QTLs located at two genomic positions and are subject to both the
single iQTL and multiple iQTL analyses. The results indicate a clear benefit of
analysis by fitting a multiple iQTL model rather than fitting a single iQTL model.
While the single iQTL analysis detects one “ghost” QTL located between the two
simulated QTLs, the multiple iQTL analysis can clearly separate the two QTLs
with high precision. Note that the multiple iQTL analysis normally generates lower
LR values than the single iQTL analysis does. Note that the distribution of the LR
value under the multiple iQTL analysis is not clear, and permutation should be
applied to assess significance of any (i)QTLs in multiple iQTL analysis [Xu and
Atchley (1995)].

4. A case study. We apply our method to a real data set which has two en-
dosperm traits of interests: mean ploidy level (denoted as Mploidy) and percent-
age of endoreduplicated nuclei (denoted as Endo). The two traits describe the level
of endoreduplication in maize endosperm, which is thought to be genetically con-
trolled by imprinted genes [Dilkes et al. (2002)]. Four backcross (BC) segregation
populations, initiated with two inbred lines, Sg18 and Mo17, were sampled. The
four BC populations were obtained following the design illustrated in Table 1. The
data show a large degree of variation for endoreduplication among the four BC
populations, and ten linkage groups were constructed from the observed marker
data [Coelho et al. (2007)]. Readers are referred to Coelho et al. (2007) for more
details about the data. The two traits are analyzed with our multiple iQTL model
aimed to identify iQTLs across the ten linkage groups. The data are also analyzed
with a Mendelian model. Results from both imprinting and Mendelian models are
compared and summarized in the Supplementary Materials.

Figure 2 plots the LR values across the ten linkage groups for the two traits. The
solid and dotted curves represent LR profiles for traits Endo and Mploidy, respec-
tively. To adjust for the genome-wide error rate across the entire linkage group,
permutation tests are applied in which the critical threshold value is empirically
calculated on the basis of repeatedly shuffling the relationships between marker
genotypes and phenotypes within each BC family [Churchill and Doerge (1994)].
The corresponding genome-wide significance thresholds (at 5% level) for the two
traits are denoted by the horizontal solid (for Endo) and dotted (for Mploidy) lines.
The 5% level chromosome-wide thresholds are denoted by the dashed (for Endo)
and dash-dotted (for Mploidy) lines. QTLs that are significant at the chromosome-
wide level are called suggestive QTLs. It can be seen that two QTLs (on G7 and
G9) associated with Mploidy and one QTL (on G6) associated with Endo are de-
tected at the 5% genome-wide significance level (denoted by “∗” in Table 2). Two
suggestive QTLs (on G2 and G10) associated with Endo and one suggestive QTL
(on G6) associated with Mploidy are also identified. The detailed QTL location and
effect estimates as well as the test results for imprinting are tabulated in Table 2.
For the trait Mploidy, the identified three QTLs are all imprinted (pimp < 0.05)
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FIG. 2. The profile of the log-likelihood ratios (LR) for testing the existence of QTLs underlying
the two endosperm traits across the 10 maize linkage groups (G1, . . . ,G10). The genome-wide LR
profiles for the percentage of endoreduplication (Endo) and mean ploidy (Mploidy) traits are in-
dicated by solid and dotted curves, respectively. The threshold values for claiming the existence of
QTLs are given as the horizonal solid and dotted line for the genome-wide threshold, and the dashed
and dash-dotted line for the chromosome-wide threshold, for the two traits Endo and Mploidy, re-
spectively. The genomic positions corresponding to the peak of the curves that pass the corresponding
thresholds are the MLEs of the QTL location. The positions of markers on the linkage groups [Coelho
et al. (2007)] are indicated at ticks.

and all show completely maternal imprinting, that is, the maternal copy does not
express. They are thus termed iQTLs. The cytoplasmic maternal effect does not
show any evidence of significance for all the three iQTLs (pM > 0.05). For the
trait Endo, only the QTL detected on G6 shows imprinting effect (pimp < 0.05)
and it shows completely paternal imprinting (pf < 0.05). The other two QTLs do
not show evidence of imprinting (pimp > 0.05). For this trait, significant maternal
effects are detected (pM < 0.01).

In our study, one maternally controlled iQTL is detected for trait Endo, which
is consistent with the result given by Dilkes et al. (2002). Meanwhile, according to
the genetic conflict theory proposed by Haig and Westoby (1991), maternally de-
rived alleles tend to trigger a negative effect on the increase of endosperm growth,
whereas paternally derived alleles tend to play an opposite effect to increase seed
size. The identified iQTLs showing maternal imprinting for trait Mploidy can be
well explained by the genetic conflict theory. Both empirical evidence and theoret-
ical hypothesis support the current finding.
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TABLE 2
The estimated parameters for the three maternal effects and the variance components for two endosperm traits: mean ploidy (Mploidy) and percent of

the endoreduplicated nuclei (Endo)

Maternal effects Genetic effects

Trait Ch μ1 μ2 μ3 σ 2
m σ 2

f σ 2
mf σ 2

L σ 2
R σ 2

g σ 2
e pM pimp pm pf

Mploidy 6∗ 13.13 11.88 9.78 0.01 0.30 0.03 ≈0 0.22 1.25 2.59 0.34 0.045 0.023 0.31
7 11.78 11.19 9.16 0.15 0.60 0.94 ≈0 0.12 1.07 2.69 0.31 0.048 0.024 0.49
9 13.84 12.08 10.01 ≈0 0.94 0.71 ≈0 0.01 1.59 2.55 0.12 0.013 0.021 0.48

Endo 2∗ 72.23 62.40 52.86 0.43 0.83 2.41 0.99 ≈0 5.10 37.49 <0.01 0.67 – –
6 68.37 63.18 54.92 2.92 ≈0 7.14 1.42 0.92 1.28 38.91 <0.01 0.02 0.28 0.01

10∗ 70.78 62.28 50.67 0.58 0.03 1.52 ≈0 0.17 3.24 39.20 <0.01 0.29 – –

The three QTLs for trait Mploidy are located at marker umc1805, marker dupssr9 and umc1040 + 5.76cM on chromosome 6, 7 and 9, respectively. The
three QTLs for trait Endo are located at marker umc2094, bnlg345 + 33.49cM and MMC501 + 18cM on chromosome 2, 6 and 10, respectively. QTLs
showing significance at the genome-wide significance level are indicated by “∗”. pM , pimp, pm and pf are the p-values for testing maternal effect

(H0 :μ1 = μ2 = μ3), imprinting effect (H0 :σ 2
m = σ 2

f ), complete maternal imprinting (H0 :σ 2
m = 0) and complete paternal (H0 :σ 2

f = 0), respectively.
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5. Discussion. The role of genomic imprinting in endosperm development
has been commonly recognized [Dilkes et al. (2002); Kinoshita et al. (1999);
Chaudhuri and Messing (1994)]. But little is known about the exact location and
effect size of imprinted genes in endosperm. As endosperm in cereal provides
the most nutrition for human beings, it is important to identify imprinted genes
that govern seed development, particularly endosperm development. In this article
we develop a variance components linkage analysis method with an experimental
cross design, aimed to identify iQTLs in endosperm. Our method is motivated by
real applications and is evaluated through Monte Carlo simulations.

The proposed method is based on a particular genetic design (reciprocal BC
design) with inbreeding populations. We treat iQTL effects as random, different
from a fixed-effect iQTL model [e.g., Cui (2007)]. Variance components linkage
analysis with a partial inbreeding human population was previously proposed [see
Abney, McPeek and Ober (2000)]. However, extending the VC model to a com-
pletely inbreeding population is challenging. In our previous work, we proposed
a VC-based iQTL mapping framework for an inbreeding diploid mapping pop-
ulation [Li and Cui (2009a)]. Extending the previous work, we propose a novel
IBD partitioning approach to calculate allelic sharing in an inbreeding endosperm
population. Extension to mapping multiple iQTLs is provided. Simulations indi-
cate good performance of the multiple iQTL analysis compared to a single iQTL
model. Meanwhile, to obtain a good balance of iQTL position and effect estima-
tion as well as detection power, we have to avoid extreme sample designs. For a
fixed total sample size, extremely large or small families should be always avoided.

In an application to two endosperm traits, we identified three iQTLs for trait
Mploidy. All show paternal expression. We also identified one iQTL for trait Endo,
which shows a maternal expression. According to the parental conflict theory pro-
posed by Haig and Westoby (1991), maternally derived alleles trigger a negative
effect on endosperm cell growth and inhibit endosperm development because the
extra maternal copy could slower nuclear division in endosperm. On the contrary,
paternally derived alleles tend to increase seed size. Thus, the three iQTLs identi-
fied for Mploidy can be explained by the genetic conflict theory. The occurrence
of parental conflict theory explains parent-of-origin effects as an ubiquitous mech-
anism for the control of early seed development [Grossniklaus et al. (2001); Ki-
noshita et al. (1999)].

In VC-based linkage analyses, likelihood ratio test (LRT) has been commonly
applied in assessing QTL significance. The LRT statistic asymptotically follows a
mixture χ2 distribution with binomial mixture coefficients, as many investigators
often claimed [following Case 9 in Self and Liang (1987)]. In a recent investi-
gation, we found that the LRT in a regular VC-based linkage analysis without
considering imprinting follows a mixture χ2 distribution with mixture proportions
depending on the estimated Fisher information matrix [Li and Cui (2009b)]. The
modified calculation of mixture proportion does give more reasonable type I error
rate than the one with binomial coefficients. When imprinting is considered, we
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show that the limiting distribution of the LRT also follows a mixture χ2 distribu-
tion, and we adopt the new criterion for power evaluation. Simulations show that
the new criterion gives type I error closer to the nominal level than the one using
binomial coefficients, and also produces power as good as the later one (data not
shown). We recommend investigators adopt the new criterion in their analysis.

Increasing evidence has suggested that for correlated traits, multivariate ap-
proaches can increase the power and precision to identify genetic effects in ge-
netic linkage analyses [e.g., Boomsma and Dolan (1998); Amos and Andrade
(2001); Evans (2002)]. Also, the joint analysis of multivariate traits can provide
a platform for testing a number of biologically interesting hypotheses, such as
testing pleiotropic effects of QTL and testing pleiotropic vs close linkage. More-
over, if the putative QTL has pleiotropic effects on several traits, the joint analysis
may perform better than mapping each trait separately [Jiang and Zeng (1995)].
Multivariate traits appear frequently in genetic mapping studies. For example, the
two endosperm traits evaluated in this study are highly correlated [Coelho et al.
(2007)]. We expect joint analysis may provide high mapping resolution and power
for iQTL detection. This will be explored in our future investigation. A computer
code written in R for implementing the current analysis is available upon request.

APPENDIX

In standard human linkage analysis with a variance components model, many
authors declare that the likelihood ratio statistic follows a mixture χ2 distribution
with binomial coefficient for each mixture component [e.g., Amos and Andrade
(2001); Hanson et al. (2001); Shete, Zhou and Amos (2003)]. Following Cher-
noff (1954), Shapiro (1985) and Self and Liang (1987), in the following we show
that the mixture proportion actually depends on the estimated Fisher information
matrix.

For a random sample X with density function f (x; θ), following Chernoff
(1954) and Self and Liang (1987), assume that:

(i) For any true parameter θ0, the neighborhood of θ0 is closed and the inter-
section between this closure and 	 defined in the main text is also a closed set.

(ii) The first three derivatives of
∑

i logf (xi; θ) with respect to θ on the
intersection of the neighborhood of θ0 and 	 almost surely exist. Moreover,

| ∂3 ∑
logf

∂θi∂θj ∂θk
| < W(x) for all θ on the intersection, and E[W(x)] < ∞.

(iii) The information matrix I(θ) is positive definite on neighborhoods of θ0.
(vi) The set 	 is convex.

Assuming the above assumptions, the consistency, weak convergence and as-
ymptotic normality of the estimators can be established [see Chernoff (1954); Self
and Liang (1987); Shapiro (1985)]. Here we cite the main results from Chernoff
(1954), Shapiro (1985) and Self and Liang (1987) to show the asymptotic distrib-
ution of the LRT in our case.
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Defining two closed polyhedral convex cones C	0 and C	1 to approximate 	0

and 	1 at θ0, the parameter space under the null hypothesis is approximated as
C	0 = {θ : θ ∈ R

3 × {0} × {0} × {0} × (0,∞) × (0,∞)}, against C	1 = {θ : θ ∈
R

3 × [0,∞) × [0,∞) × [0,∞) × (0,∞) × (0,∞)} under the alternative. Let Y′
be a random variable generated from the multivariate normal distribution, that is,
Y′ ∼ N(θ0, I−1(θ0)). Following Chernoff [(1954), Theorem 1], the asymptotic
distribution of the LRT in (2.7) is equivalent to the following quadratic approxi-
mation:

LR∗ = inf
θ∈C	0

(Y′ − θ)′I (θ0)(Y′ − θ) − inf
θ∈C	1

(Y′ − θ)′I (θ0)(Y′ − θ).(A1)

Subtracting θ0 from Y′ and θ , the expression in (A1) is given by

LR∗ = inf
θ∈C	0−θ0

(Y − θ)′I (θ0)(Y − θ) − inf
θ∈C	1−θ0

(Y − θ)′I (θ0)(Y − θ),(A2)

where Y = Y′ − θ0 ∼ N(0, I−1(θ0)) under the linear transformation.
Let C‡ = (C	1 − θ0) ∩ (C	0 − θ0)

c = {θ : θ1 > 0, θ2 > 0, θ3 > 0}, which is a
closed polyhedral convex cone with 3 dimensions. By the Pythagoras theorem, the
statistic in (A2) can be expressed as

LR∗ = inf
θ∈C‡

(Y − θ)′I (θ0)(Y − θ).(A3)

Let F (C‡) be the set of all faces of C‡. C‡0 = {γ ∈ R
3 :γ ′θ ≤ 0,∀θ ∈ C‡} is

defined to be a polar cone such that (C‡0)0 = C‡. Following Shapiro (1985), we
can select a face ν ∈ F (C‡) corresponding to the polar face ν0 ∈ F (C‡0) such that
the linear spaces generated by ν and ν0 are orthogonal to each other. For one face ν

(or ν0), a projection Tν (or Tν0 ) [a symmetric idempotent matrix giving projection
onto the space generated by ν (or ν0)] can be found such that Tν = I − Tν0 since
they are orthogonal. Then TνY (or Tν0Y) is a projection of Y onto C‡ (or C‡0).

For a given Y, let g(Y) be the minimizer to achieve the infimum in (A3). Define
ψν|Y = {Y ∈ R

3 :g(Y) ∈ ν} so that g(Y) ∈ ν if and only if TνY ∈ C‡ and Tν0Y ∈
C‡0. By Shapiro (1985), g(Y) = TνY ∈ C‡, ∀Y ∈ ψν|Y.

Note that the set ψν|Y is composed of 23 disjoint sets in R
3. All these disjoint

sets can be classified into four categories as follows:

(1) ψ1
ν|Y = {Y;Y1 > 0, Y2 > 0, Y3 > 0, g(Y) ∈ ν},

(2) ψ2
ν|Y = {Y;Y1 > 0, Y2 > 0, Y3 ≤ 0, g(Y) ∈ ν}; ψ3

ν|Y = {Y;Y1 > 0, Y2 ≤
0, Y3 > 0, g(Y) ∈ ν}; ψ4

ν|Y = {Y;Y1 ≤ 0, Y2 > 0, Y3 > 0, g(Y) ∈ ν},
(3) ψ5

ν|Y = {Y;Y1 ≤ 0, Y2 ≤ 0, Y3 > 0, g(Y) ∈ ν}; ψ6
ν|Y = {Y;Y1 > 0, Y2 ≤

0, Y3 ≤ 0, g(Y) ∈ ν}; ψ7
ν|Y = {Y;Y1 ≤ 0, Y2 > 0, Y3 ≤ 0, g(Y) ∈ ν},

(4) ψ8
ν|Y = {Y;Y1 ≤ 0, Y2 ≤ 0, Y3 ≤ 0, g(Y) ∈ ν}.
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By linear transformation, we cab define C∗ = {θ∗ : θ∗ = �1/2P ′θ ,∀θ ∈ C‡}
which is a polyhedral closed convex cone. Then (A3) can be further expressed as

LR∗ = inf
θ∗∈C∗ ‖z − θ∗‖2,(A4)

where z = �1/2P ′Y [P�P T = I (θ0)] has a multivariate normal distribution with
mean 0 and identity covariance matrix.

Let C∗0 be a polar cone of C∗ and (C∗0)0 = C∗. Two faces ν∗ and ν∗0 can be
defined with respect to F (C∗) and F (C∗0). The relevant orthogonal projections
Tν∗ and Tν∗0 corresponding to ν∗ and ν∗0 can be defined. Suppose h(z) is the
minimizer to achieve the infimum in (A4). Following Shapiro (1985), a set ψν∗|z
can be defined similarly as ψν|Y, such that h(z) = Tν∗z ∈ C∗, ∀z ∈ ψν∗|z. It satisfies
the conditions of Lemma 3.1 [Shapiro (1985)]. Then we have

LR∗ = ‖z−h(z)‖2 = ‖z−Tν∗z‖2 = z′(I −Tν∗)z = z′Tν∗0z ∀z ∈ ψν∗|z.(A5)

Thus, the distribution of LR∗ in (A3) can be evaluated by

Pr(LR∗ > c2)

= Pr

((
Y − g(Y)

)′
I (θ0)

(
Y − g(Y)

)
> c2,Y ∈

23⋃
i=1

ψi
ν|Y

)

=
23∑

i=1

Pr(Y ∈ ψi
ν|Y)Pr

((
Y − g(Y)

)′
I (θ0)

(
Y − g(Y)

)
> c2|Y ∈ ψi

ν|Y
)

=
23∑

i=1

Pr(Y ∈ ψi
ν|Y)Pr(z′Tν∗0z > c2|z ∈ ψi

ν∗|z),

where, conditional on z ∈ ψi
ν∗|z, z′Tν∗0z is a chi-square distribution [Lemma 3.1,

Shapiro (1985)]. By Bayes’ theorem, the distribution of LR∗ follows a mixture
chi-square distribution with mixing proportions Pr(Y ∈ ψi

ν|Y) (i = 1, . . . ,23) and∑23

i=1 Pr(Y ∈ ψi
ν|Y) = 1.

The calculation of the mixture proportions follows Plackett (1954). Specif-
ically, when Y ∈ ψ1

ν|Y, LR∗ ∼ χ2
3 , and the corresponding mixture proportion

w3 = Pr(Y ∈ ψ1
ν|Y) = 1

4π
[2π − cos−1 ρ12 − cos−1 ρ13 − cos−1 ρ23]. For category

(2), LR∗ ∼ χ2
2 for Y ∈ ψi

ν|Y, i = 2,3,4, with the corresponding mixture probabil-

ity calculated by w2 = ∑4
j=2 Pr(Y ∈ ψi

ν|Y) = 1
4π

[3π − cos−1 ρ12|3 − cos−1 ρ13|2 −
cos−1 ρ23|1]. Correspondingly, LR∗ ∼ χ2

1 for Y ∈ ψi
ν|Y, i = 5,6,7, with the rele-

vant mixture probability evaluated as w1 = ∑7
j=5 Pr(Y ∈ ψi

ν|Y) = 1
2 − w3 in cate-

gory (3). For the last category, LR∗ ∼ χ2
0 for Y ∈ ψ8

ν|Y with the mixture probability

w0 = Pr(Y ∈ ψ8
ν|Y) = 1

2 − w2. Note ρab is the correlation between the terms a and

b calculated from the Fisher information matrix, and ρab|c = (ρab−ρacρbc)

(1−ρ2
ac)

1/2(1−ρ2
bc)

1/2 .

For more details of the derivation, the readers are referred to Li and Cui (2009b).
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SUPPLEMENTARY MATERIAL

Simulation and real data analysis: (DOI: 10.1214/09-AOAS323SUPP; .zip).
Details for simulation are included in the supplemental file. We also analyze the
data with a Mendelian model. A comparison of results with both imprinting and
Mendelian models is summarized in the supplemental file.
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