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Abstract

Gene-environment (G×E) interaction plays a pivotal role in understanding the genetic

basis of complex disease. When environment factors are measured in a continuous scale,

one can assess the genetic sensitivity over different environmental conditions on a disease

phenotype. Motivated by the increasing awareness of the power of gene set based associa-

tion analysis over single variant based approach, we proposed an additive varying-coefficient

model to jointly model variants in a genetic system. The model allows us to examine how

variants in a set are mediated by one or multiple environment factors to affect a disease phe-

notype. We approached the problem from a high dimensional variable selection perspective.

In particular, we can select variants with varying, constant and zero coefficients, which cor-

respond to cases of G×E interaction, no G×E interaction and no genetic effect, respectively.

The procedure was implemented through a two stage iterative estimation algorithm via the

Smoothly Clipped Absolute Deviation (SCAD) penalty function. Under certain regularity

conditions, we established the consistency property in variable selection as well as effect sep-

aration of the two stage iterative estimators, and showed the optimal convergence rates of

the estimates for varying effects. In addition, we showed that the estimate of non-zero con-

stant coefficients enjoy the oracle property. The utility of our procedure was demonstrated

through simulation studies and real data analysis.

Key words: Nonlinear gene-environment interaction; SCAD penalty; Local quadratic ap-

proximation; Varying-coefficient model
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1 Introduction

Human complex diseases are not only determined by genetic variants, but also affected by

the environmental factors, as well as the interplay between them. Gene expression changes

under different environmental conditions reveals the interaction between genes and environ-

ment. The expression changes are less likely due to the change of gene sequence itself, but

rather due to the structural changes such as DNA methylation or histone modification which

consequently play a regulatory rule to moderate gene expressions. Such epigenetic changes

has been increasing recognized as the epigenetic basis of gene-environment (G×E) interac-

tion (Liu et al. 2008; ). Identification of G×E interaction could shed novel insights into the

phenotypic plasticity of complex disease phenotypes (Feinberg 2004).

In a typical G×E interaction study, the environmental factor can be either discrete or

continuous. For example, smoking can be a discrete variable when evaluating the risk of

asthma. When environmental variables are measured in a continuous scale, a more clear pic-

ture of the interaction can be assessed since the varying patterns of genetic effects responsive

to environmental changes can be traced, leading to a better understanding of the genetic

heterogeneity under different environmental stimuli (Ma et al. [1]; Wu and Cui. [2]). As illus-

trated in Wu and Cui [2], one can assess the nonlinear G×E interaction when an environment

factor is measured in a continuous scale. For example, individual obese condition can be

a factor when evaluating the risk of hypertension. One can assess the nonlinear effect of a

genetic factor on the risk of hypertension considering the heterogeneity of individual obese

conditions in a population, leading to a better understanding of the disease heterogeneity.

When assessing G×E interactions, investigators are predominantly focused on the single

variant based analysis, such as the parametric methods in Guo [3], semi-parametric methods

in Chatterjee et al [4] and Maity et al [5], and non-parametric methods in Ma et al [1] and Wu

and Cui [2]. Recently, there is a large wave of genetic association studies focusing on a set

of variants, namely the set-based association studies, for example, the gene-centric analysis

in Cui et al [6], the gene-set analysis in Schaid et al [7] and Efron and Tibshirani [8], and

the pathway-based analysis in Wang et al. [9]. By assessing the joint function of multiple

variants in a set, one can obtain better interpretation of the disease signals and gain novel
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insight into the disease etiology. Motivated by the set-based association studies, we propose

a set-based framework to investigate how variants in a gene-set mediated by one or multiple

environment factors to affect the disease responses. This framework could shed novel insight

into the elucidation of the regulation mechanism of a genetic set (e.g., a pathway), triggered

by environment factors.

In a typical set-based association study, the number of variants p within a genetic sys-

tem could be large, which makes the regular regression fail, especially when p is close to

or larger than the sample size n. The problem can be approached from the perspective of

high dimensional variable selection. In this work, we extend our previous work on nonlinear

gene-environment interaction study from a single variant based analysis to a multiple variant

based analysis under a penalized regression framework. We include variants that belongs to

a particular gene-set or pathway which potentially interact with one or multiple environment

factors through an additive varying-coefficient model. We propose to select genetic variants

with coefficient functions that are varying, non-zero constant and zero which corresponds to

cases with G×E interactions, no G×E interactions and no genetic effects, respectively. Our

approach enjoys the power and merits of high-dimensional variable selection by simultane-

ously fitting all the variants in a genetic system into a regression model, therefore avoids the

limitation of multiple testing corrections, especially when the data dimension is large.

This paper is organized as follows. In Section 2, we describe the penalized least square

estimation procedure via B-spline basis expansion and Smoothly Clipped Absolute Devia-

tion (SCAD) penalty, as well as the computational algorithms. In Section 3, we present

the theoretical results including consistency in variable selection and show the optimal con-

vergence rates of the estimates of varying effect. We show that the estimates of non-zero

constant coefficients enjoy the oracle property, that is, the asymptotic distribution of the

non-zero constant coefficient function is the same as that when the true model is known in

priori. The merit of the proposed approaches is demonstrated through extensive simulation

studies in Section 4 and real data analysis in Section 5. The technical proofs are relegated

to Appendix.
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2 Statistical Method

2.1 Additive varying-coefficient model with SCAD penalty

Throughout this paper, we assume an environment variable (Z) is continuously measured

through which we can model the nonlinear interaction effect. For simplicity, we start the

presentation with one environmental factor. Extension to multiple environmental factors are

given in the end. Let (Xi, Yi, Zi), i = 1, . . . , n be independent and identically distributed

(i.i.d.) random vectors, then the varying coefficient (VC) model, initially proposed by Hastie

and Tibshirani [10], has the form

Yi =
d

∑

j=0

βj(Zi)Xij + εi, (1)

where Xij is the jth component of (d+1)-dimensional genetic vector Xi with the first compo-

nent Xi0 being 1, βj(·)’s are unknown varying-coefficient functions, Zi is the environmental

variable, and εi is the random error such that E(εi|X,Z) = 0 and V ar(εi|X,Z) = σ2 < ∞.

In the model, we assume there are total d genetic variants which are moderated by a common

environment factor Z.

The smooth functions {βj(·)}dj=0 in (1) can be approximated by polynomial splines. With-

out loss of generality, suppose that Z ∈ [0, 1]. Let wk be a partition of the interval [0,1],

with kn uniform interior knots

wk = {0 = wk,0 < wk,1 < . . . < wk,kn < wk,kn+1 = 1}, for k = 0, · · · , d.

Let Fn be a collection of functions on [0,1] satisfying: (1) the function is a polynomial of

degree p or less on subintervals Is = [wk,s, wk,s+1), s = 0, . . . , kn−1 and Ikn = [wj,kn, wj,kn+1);

and (2) the functions are p−1 times continuous differentiable on [0,1]. Let B̄(·) = {B̄jl(·)}Lj

l=1

be a set of normalized B spline basis of Fn. Then for j = 0, . . . , d, the VC functions can be

approximated by basis functions βj(Z) ≈
∑Lj

l=1 γ̄jlB̄jl(Z), where Lj is the number of basis

functions in approximating the function βj(Z). By changing of equivalent basis, the basis

expansion can be reexpressed as

βj(·) ≈
Lj
∑

l=1

γj,lBj,l(·) .
= γj,1 + B̃T

j (·)γj,∗,
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where the spline coefficient vector γj = (γj,1,γ
T
j∗)

T , and B̃j(·) = (Bj2(·), . . . , BjLj
(·))T ; γj,1

and γj∗ correspond to the constant and varying part of the coefficient function, respectively

[18]. We treat γj∗ as a group. If ‖γj∗‖2=0, then the jth predictor only has a non-zero

constant effect and moreover, if γj,1=0, then the predictor is redundant.

To carry out variable selection separating the varying, non-zero constant, and zero effects,

we minimize the penalized least square function,

Q(γ) =
1

n

n
∑

i=1

[

Yi −
d

∑

j=0

L
∑

l=1

γj,lXijBjl(Zi)

]2

+
d

∑

j=1

pλ1(‖γj∗‖2)

+
d

∑

j=1

pλ2(|γj,1|)I(‖γj∗‖2 = 0),

(2)

where λ1 and λ2 are the penalization parameters, pλ(·) is the SCAD penalty function, defined

as

pλ(u) =











λu if 0 ≤ u ≤ λ

− (u2−2aλu+λ2)
2(a−1)

if λ < u ≤ aλ
(a+1)λ2

2
if u > aλ.

(3)

In matrix notation, (2) can be reexpressed as,

Q(γ) = (Y −Uγ)T (Y −Uγ)/n +
d

∑

j=1

pλ1(‖γj∗‖2) +
d

∑

j=1

pλ2(|γj,1|)I(‖γj∗‖2 = 0), (4)

where Y = (Y1, . . . , Yn)
T , γ = (γT

0 , . . . ,γ
T
d )

T , and U := U(X, Z) = (UT
1 , . . . , U

T
n )

T with

Ui = (Xi0B(Zi)
T , . . . , XidB(Zi)

T )T . The first penalty function in (4) is to separate the

varying and constant effects by penalizing the L2 norm of the varying part of the coefficient

functions. The indicator function in the 2nd penalty term helps to penalize the variables of

the constant effects. Both γj,1 and γj∗ will be shrunk to zero if predictor Xj has no genetic

effect.

2.2 Computational Algorithm

The SCAD penalty function is singular at the origin, and do not have continuous 2nd order

derivatives, therefore the regular gradient-based optimization cannot be applied. In this

section, we develop an iterative two-stage algorithm to minimize the penalized loss function

using local quadratic approximation (LQA) to the SCAD penalty following the idea of Tang
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et al. [11]. Following Fan and Li (2001) [12], in a neighbourhood of a given positive u0 ∈ R
+,

pλ(u) ≈ pλ(u0) +
p
′

λ(u0)

2u0
(u2 − u2

0),

where p
′

λ(u) = λ{I(u 6 λ) + (aλ−u)+
(a−1)λ

I(u > λ)} for u >0 and a=3.7. Here we use a similar

quadratic approximation by substituting u with ‖γj∗‖2 and |γj1| in LQA, for j = 1, ..., d.

Given an initial value of γ0
j such that ‖γj∗‖2 6= 0 and |γj1| 6= 0, we have

pλ(‖γj∗‖2) ≈ pλ(‖γ0
j∗‖2) +

p
′

λ(‖γ0
j∗‖2)

2‖γ0
j∗‖2

(‖γj∗‖22 − ‖γ0
j∗‖22) (5)

and

pλ(|γj,1|) ≈ pλ(|γ0
j,1|) +

p
′

λ(|γ0
j,1|)

2|γ0
j,1|

(|γj,1|2 − |γ0
j,1|2). (6)

The sets of predictors with varying, non-zero constant, and zero effects are termed as

V, C and Z respectively. We implement the iterative algorithm in the following two-stage

procedure. At stage 1, using the LQA (5) and dropping the irrelevant constant terms, we

minimize

Q1(γ) = (Y −Uγ)T (Y −Uγ) +
n

2
γTΩλ1(γ0)γ, (7)

where the initial spline vector γ0 is the unpenalized estimator,Ωλ1(γ0)=diag{Ω0,Ω1, . . . ,Ωd},
where Ω0 = 0L, Ωj =

{

0,
pTλ1(‖γ

0
j∗‖2)

‖γ0
j∗‖2

, . . . ,
pTλ1(‖γ

0
j∗‖2)

‖γ0
j∗‖2

}

L
for j = 1, . . . , d. Hence the estimator

can be iteratively obtained as

γ̂VC(m) =
{

UTU +
n

2
Ωλ1(γ̂

VC(m−1))
}−1

UTY . (8)

Suppose that all the predictors are in V at the beginning. The jth predictor will be moved

to C if ‖γ̂VC(m)
j∗ ‖2=0, otherwise it will stay in V.

At stage 2, using the LQA (6) and dropping the irrelevant constant terms, we minimize

the following penalized loss only for the predictors in C,

Q2(γ) = (Y −Uγ)T (Y −Uγ) +
n

2
γTΩλ2(γ̂

VC)γ, (9)

whereΩλ2(γ̂
VC)=diag{Ω0,Ω1, . . . ,Ωd} withΩ0 = 0L,Ωj =

{

pTλ2(|γ̂
VC
j,1 |)

|γ̂VC
j,1 |

I(‖γ̂VC
j∗ ‖L2 = 0), 0, . . . , 0

}

L
.

The estimator can be iteratively obtained as

γ̂CZ(m) =
{

UTU +
n

2
Ωλ2(γ̂

CZ(m−1))
}−1

UTY . (10)
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If the jth predictor is in C, then it will be moved to Z if |γ̂CZ
k,1 |=0, otherwise it stays in C.

We can obtain the estimator γ̂ at convergence from the iterative procedure between the

above two stages, and the estimated coefficient function in (1) as β̂j(z) = BT (z)γ̂j . β̂j(z)

will be a varying function, non-zero constant and zero if γ̂j is in V, C and Z correspondingly.

2.3 Choosing the Tuning Parameters

We choose the number of interior knots kn, the degree of the spline basis p, and the tuning

parameters λ1 and λ2 from a data driven procedure. Here p and kn control the smoothness of

the coefficient functions, while λ1 and λ2 determine the threshold for variable selection. We

adopt the Schwarz BIC criterion [13] to choose kn and p. Due to heavy computational costs,

it becomes infeasible to simultaneously select p and kn for each varying-coefficient function.

Thus, we assume the same p and kn for the varying-coefficient functions. The range for kn

is [max(⌊0.5n 1
(2p+3) ⌋, 1), ⌊1.5n 1

(2p+3) ⌋], where ⌊x⌋ denotes the integer part of x. The optimal

pair of kn and p can be selected via a two-dimensional grid search, according to the following

criterion:

BICkn,p = log(RSSkn,p
) +

(kn + p+ 1)

n
log(n),

where RSSkn,p = (Y −Uγ̂)T (Y −Uγ̂), γ̂ = (γ̂T
0 , 0

T , . . . , 0T )T . Conditional on the selected

kn and p, λ1 is the minimizer of

BICλ1 = log(RSSλ1
) +

dfλ1

n
log(n),

where RSSλ1 = (Y −Uγ̂λ1)
T (Y −Uγ̂λ1), γ̂λ1 is the minimizer of (7), and dfλ1 is the effective

degree of freedom, defined as the total number of predictors in V and C.
Conditional on γ̂λ1, λ2 is the minimizer of

BICλ2 = log(RSSλ2
) +

dfλ2

n
log(n),

where RSSλ2 = (Y −Uγ̂λ2)
T (Y −Uγ̂λ2), γ̂λ2 is the minimizer of (8), and dfλ2 is the effective

degree of freedom, defined similarly as dfλ1.

2.4 Asymptotic Results

Here we establish the asymptotic properties of the penalized least square estimators. Without

loss of generality, we assume there are v varying coefficients as βj(·) ≡ βj(z),j = 1, . . . , v,
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(c − v) non-zero constant coefficients as βj(·) ≡ βj > 0, j = v + 1, . . . , c, and (d − c) zero

coefficients as βj(·) ≡ 0, j = (c+1), . . . , d. Our asymptotic results are based on the following

assumptions.

(A1) Let Hr be the collection of all functions on the compact support [0,1] such that

the r1th order derivatives of the functions are Hölder of order r2 with r = r1 + r2, i.e.,

|hr1(z1) − hr1(z2)| ≤ C0|z1 − z2|r2 where 0 ≤ z1, z2 ≤ 1 and C0 is a finite positive constant.

Then βj(z) ∈ Hr, j = 0, 1, . . . , v, for some r ≥ 3
2
.

(A2) The density function of the index variable Z, f(z), is continuous and bounded away

from 0 and infinity on [0, 1], i.e., there exist finite positive constants C1 and C2 such that

C1 ≤ f(z) ≤ C2 for all z ∈ [0, 1].

(A3) Let λ̃0 ≤ . . . ≤ λ̃d be the eigenvalues of E[XXT |Z = z]. Assume that λ̃j (k =

0, . . . , d) are uniformly bounded away from 0 and infinity in probability. In addition, the

random design vectors are bounded in probability.

(A4) For wj, the partition of the compact interval [0,1] defined as {0 = wj,0 < wj,1 <

. . . < wj,kn < wj,kn+1 = 1}, j = 0, . . . , d, there exists finite positive constant C3 such that

max(wj,k+1 − wj,k, k = 0, . . . , kn)

min(wj,k+1 − wj,k, k = 0, . . . , kn)
≤ C3.

(A5) The tuning parameters satisfy k
1
2
nmax{λ1, λ2} → 0 and n

1
2k−1

n min{λ1, λ2} → ∞.

(A6) bn := maxj{|p′′

λ1
(‖γ̃j∗‖)|, |p′′

λ2
(|γ̃j,1|)| : γ̃j∗ 6= 0, γ̃j,1 6= 0} → 0 as n → ∞, where γ̃j is

defined in the appendix.

(A7) lim infn→∞lim infθ→0+λ
−1
1 p

′

λ1
(θ) > 0 and lim infn→∞lim infθ→0+λ

−1
2 p

′

λ2
(θ) > 0

The above assumptions are commonly used in literature of polynomial splines and vari-

able selections. The assumption similar to (A1) could be found in Kim [14] and Tang et

al [11]. (A1) guarantees certain degrees of smoothness of the true coefficient function in

order to improve goodness of approximation. (A2) and (A3) are similar to those in Huang

et al [15, 16] and Wang et al [17]. (A4) suggests that the knot sequence is quasi-uniform on

[0,1], by Schumaker [18]. (A5-A7) are conditions on tuning parameters, of which (A5) could

be found in Tang et al [11]; (A6) and (A7) are similar to those in Fan and Li [12] and Wang

et al [17].

Theorem 1. Under the assumptions (A1-A7) and suppose kn = O
(

n
1

2r+1

)

, then we
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have

(1) β̂j(z) are nonzero constant, j = v + 1, . . . , c and β̂j(z) = 0, j = c + 1, . . . , d, with

probability approaching 1;

(2) ‖β̂j(z)− βj(z)‖ = Op(n
−r

2r+1 ), j = 0, . . . , v for any fixed z.

The proof can be found in the Appendix. Denote β∗ = (βv+1, . . . , βc)
T as the vector

of true nonzero constant coefficients. The following theorem establishes the asymptotic

normality of the estimator.

Theorem 2. Under the assumptions (A1-A7) and suppose kn = O(n
1

2r+1 ), then as

n → ∞,
√
n(β̂∗ − β∗)

d−→ N (0, σ2Σ−1),

where Σ is defined as (B.12) in the Appendix.

3 Simulation

The performance of the proposed method was demonstrated through extensive simulation

studies. We used the percentage of choosing the true model out of total R replicates, defined

as the oracle percentage, to evaluate the accuracy of variable selection by identifying varying,

non-zero constant and zero effects. The precision of estimation was assessed by integrated

mean squared error (IMSE). Let β̂
(r)
j be the estimator of a nonparametric function βj in the

rth (1 6 r 6 R) replication, and {zm}ngrid

m=1 be the grid points where β̂
(r)
j was evaluated. We

used the integrated mean squared error (IMSE) of β̂k(z), defined as

IMSE(β̂j(z)) =
1

R

R
∑

r=1

1

ngrid

ngrid
∑

m=1

{β̂(r)
k (zm)− βj(zm)}2,

to evaluate the estimation accuracy of coefficient βj , and the total integrated mean squared

error (TIMSE) of all the d coefficients, defined as TIMSE=
∑d

j=1 β̂j(z), to evaluate the overall

estimation accuracy. Note that IMSE(β̂j) is reduced to MSE(β̂j) when β̂j is a constant. The

percentage of correctly selecting each individual true functions (defined as the selection ratio)

was used to evaluate the selection performance.
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3.1 Case when predictors are continuous

In example 1, we simulated data from the following VC model,

Yi = β0(Zi) +

d
∑

j=1

βj(Zi)Xij + εi,

where the index variable Zi ∼unif (0,1), and the predictors Xi were generated from a mul-

tivariate normal distribution with mean 0 and Cov(Xj, Xj
′ ) = 0.5|j−j

′
| for 1 ≤ j, j

′ ≤ d.

The performance was evaluated under both d=10 and 50. We let the coefficients of Xj ,

j = 0, 1, 2 be of varying effects, Xj , j = 3, 4 be of non-zero constant effects, and the rest be

zeros. The random error εi were generated from a standard normal distribution and t distri-

bution with 3 degrees of freedom respectively. The coefficients were set as: β0(z) = sin(2πz),

β1(z) = 2 − 3 cos{(6z − 5)π/3}, β2(z) = 3(2z − 1)3, β3(z) = 2, β4(z) = 2.5, and βj(z) = 0

for j > 4.
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Figure 1: The selection ratio under different error distributions for different coefficient functions.

Figure 1 shows the selection ratio for predictors under different error distributions. The

top panel denotes the result for d = 10 and the bottom panel for d = 50. Under different data
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dimensions, the SCAD penalty performs relatively stable with consistently high selection

ratio for true functions under both error distributions. For the false selection ratio, higher

error rate is observed under the t(3) error distribution. The oracle percentage and parameter

estimation results were summarized in Table 1. Here we computed IMSEs for all predictors,

including β4 and β5 to reflect the overall estimation precision. When βj (j = 4, 5) was selected

as non-zero constant, IMSE reduces to MSE. The IMSEs was calculated if βj (j = 4, 5) was

incorrectly identified as varying effect. In all the cases and under different error distributions,

the SCAD approach demonstrates stable performance in comparison to the result obtained

when fitting the true model (the oracle model). Under the d = 10 case, the penalized

approach has smaller TIMSE than the oracle model does due to shrinkage. When data

dimension increases to d = 50, the penalized method has larger TIMSE. This is expected

since relatively larger noises are introduced when the data dimension is increased.

Table 1: List of IMSE, TIMSE, and Oracle Percentage under N (0, 1) and t(3) error distri-
butions with SCAD and ALASSO penalty functions.

d = 10 d = 50

N (0,1) error t(3) error N (0,1) error t(3) error

SCAD Oracle SCAD Oracle SCAD Oracle SCAD Oracle

Oracle Perc. 0.972 1 0.92 1 0.945 1 0.8 1

β0(u) 0.0214 0.0216 0.0398 0.1929 0.0221 0.0219 0.0431 0.0426

β1(u) 0.0902 0.0951 0.1166 0.3392 0.0878 0.0927 0.1230 0.1253

β2(u) 0.0365 0.0431 0.0764 0.5859 0.0404 0.0428 0.1042 0.0751

β3(u) 0.0122 0.0032 0.0753 0.1775 0.0478 0.0027 0.1727 0.0105

β4(u) 0.0045 0.0031 0.0183 0.1100 0.0101 0.0029 0.0239 0.0083

TIMSE 0.1648 0.1661 0.3282 0.4017 0.2086 0.1631 0.5146 0.2619

3.2 Cases when predictors are discrete genetic variables

Since the paper deals with G×E interaction, in example 2, we simulated genetic predictors

which are discrete in nature. We considered multiple genetic factors X obtained from a
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gene-set or pathway, with the following additive VC model,

Yi = β0(Zi) +
d

∑

j=1

βj(Zi)Xij + εi,

where SNP Xi’s were coded with 3 categories (1,0,-1) for genotypes (AA,Aa,aa) respectively.

We simulated the SNP genotype data based on the pairwise linkage disequilibrium(LD)

structure. Suppose the two risk alleles A and B of two adjacent SNPs have the minor allele

frequencies (MAFs) pA and pB, respectively, with LD denoted as δ. Then the frequencies of

four haplotypes can be expressed as pab = (1−pA)(1−pB)+δ, pAb = pA(1−pB)−δ, paB = (1−
pA)pB−δ, and pAB = pApB+δ. Assuming Hardy-Weinberg equilibrium, the SNP genotype at

locus 1 can be simulated assuming a multinomial distribution with frequencies p2A, 2pA(1−pA)

and (1 − pA)
2 for genotypes AA, Aa, aa, respectively. We can then simulate genotype

for locus 2 based on the conditional probability. For example, P (BB|AA) = p2AB/pAA,

P (Bb|AA) = pABpAb/pAA and P (bb|AA) = p2ab/pAA. So conditional on genotype AA at locus

1, the genotype at locus 2 with the largest probability can be generated. The advantage of

this simulation is that we can control the pairwise LD structure between adjacent SNPs.

We assumed pairwise correlation of r = 0.5 which leads to δ = r
√

(pA(1 − pA)pB(1 − pB)).

Detailed information about the simulation can be found at Cui et al. (2008) [6]. The non-

zero coefficient functions were assumed to be the same as those given in example 1. We

evaluated the performance under n = 500 with 500 replicates. Better performance results

for large samples (n > 500) were observed, but were omitted to save space.

Figure 2 shows the selection ratio when d=10, under different combinations of MAF

and error distribution. The height of bars represents the selection percentage out of 500

replicates. The selection performance is better under the normal error distribution, with

relatively higher selection rate for the first five true functions and lower false selection ratio

for the rest, compared to the results obtained under the t(3) error. In genetic association

studies, model performance generally improves as the MAF increases. The same trend is

observed under our variable selection framework. For example, higher false selection ratio

was observed under the t(3) error when p = 0.1. The false selection ratio decreases as MAF

increases to 0.3. The result for d = 50 is presented in Fig. 3, which shows a very similar

pattern as the d = 10 case. The results demonstrate the stable performance of the proposed
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Figure 2: The selection ratio under different error distributions for different coefficient functions
when d = 10.

variable selection method.
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Figure 3: The selection ratio under different error distributions for different coefficient functions
when d = 50.

Table 2 lists the oracle proportions, the IMSE and TIMSE for d=10. In general, the
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Table 2: List of IMSE, TIMSE, and Oracle percentage under N (0, 1) and t(3) error distri-
butions when d = 10.

p = 0.1 p = 0.3 p = 0.5
N (0,1) error t(3) error N (0,1) error t(3) error N (0,1) error t(3) error
SCAD Oracle SCAD Oracle SCAD Oracle SCAD Oracle SCAD Oracle SCAD Oracle

Oracle perc. 0.976 1 0.72 1 0.992 1 0.91 1 0.98 1 0.894 1
β0(u) 0.0863 0.0891 0.3078 0.2247 0.0268 0.0273 0.0607 0.0601 0.0213 0.0214 0.0431 0.0451
β1(u) 0.1611 0.1667 0.3285 0.3557 0.1071 0.1174 0.1600 0.1746 0.1044 0.1106 0.1581 0.1725
β2(u) 0.1264 0.1238 0.4890 0.2932 0.0561 0.0637 0.1360 0.1320 0.0497 0.0604 0.1101 0.1170
β3(u) 0.0270 0.0192 1.3307 0.0643 0.0086 0.0084 0.1111 0.0237 0.0077 0.0077 0.0439 0.0192
β4(u) 0.0191 0.0174 0.2943 0.0475 0.0066 0.0065 0.0443 0.0222 0.0063 0.0063 0.0240 0.0135
TIMSE 0.4205 0.4162 2.9342 0.9855 0.2007 0.2233 0.5311 0.4126 0.1895 0.206 0.4072 0.3673

model selection performance improves as the MAF increases from 0.1 to 0.5. For example,

the oracle percentage increases from 0.72 to 0.91 under the t(3) error when the MAF increases

from 0.1 to 0.3. We observed dramatic reduction on the IMSE and TIMSE as the MAF

increases. Under the normal error, the TIMSE is 0.4205 which reduces to 0.2007 when

the MAF increases to 0.3 and further reduces to 0.1895 when p = 0.5. This result is

consistent with the general observation in a genetic association study in which typically

a model performs better as the MAF increases. It is worth mentioning that we observed

dramatic improvement in model performance when the MAF increases from 0.1 to 0.3,

compared to the improvement when the MAF increases from 0.3 to 0.5. For example, the

IMSE for β1(u) reduces from 0.3285 to 0.1600, a 51% reduction when p increases from 0.1

to 0.3, while it only has 1% reduction when p increases from 0.3 to 0.5 under the t(3) error

distribution for the SCAD penalty. This empirical observation shows the stable performance

of the model under moderate allele frequency.

Another observation from the simulation is that the model performs better under the

normal error than the t(3) error does. We observed larger oracle percentage, smaller IMSE

and TIMSE for the coefficient functions under the normal error compared to the results

under the t(3) error. For example, the TIMSE for the SCAD penalty is 0.4205 under the

normal error, while it is 2.9342 under the t(3) error for fixed p = 0.1. In addition, the

oracle percentage, IMSE and TIMSE under the normal error are all quite similar as those

obtained as if we know the truth (the oracle) in all cases, demonstrating the stable selection

performance of the SCAD penalty.
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Table 3: List of IMSE, TIMSE, and Oracle percentage under N (0, 1) and t(3) error distri-
butions when d = 50.

p = 0.1 p = 0.3 p = 0.5
N (0,1) error t(3) error N (0,1) error t(3) error N (0,1) error t(3) error
SCAD Oracle SCAD Oracle SCAD Oracle SCAD Oracle SCAD Oracle SCAD Oracle

Oracle Perc. 0.908 1 0.435 1 0.986 1 0.745 1 0.988 1 0.87 1
β0(u) 0.1929 0.0884 0.5687 0.2209 0.0289 0.0278 0.0860 0.0599 0.0215 0.0216 0.0450 0.0434
β1(u) 0.2064 0.1684 0.3851 0.3340 0.1107 0.1137 0.1858 0.1742 0.1048 0.1123 0.1551 0.1608
β2(u) 0.5235 0.1218 0.6934 0.2614 0.0817 0.0646 0.2205 0.1301 0.0608 0.0579 0.1754 0.1085
β3(u) 2.0918 0.0196 2.4522 0.0484 0.1083 0.0075 0.3865 0.0254 0.0470 0.0078 0.1681 0.0167
β4(u) 0.3475 0.0158 0.5996 0.0445 0.0229 0.0068 0.0840 0.0220 0.0120 0.0053 0.0480 0.0190
TIMSE 3.3644 0.4140 5.7021 0.9092 0.3526 0.2204 1.2288 0.4117 0.2461 0.2050 0.6492 0.3484

A similar pattern was observed when the data dimension increases to 50 (Table 3).

As the MAF increases from 0.1 to 0.3, we observed sharply decreased IMSE and TIMSE.

Compared to the low dimensional case when d = 10, the performance under p = 0.1 is

relatively unstable. For example, the TIMSE for the SCAD method is 3.3644 when d = 50,

compared to 0.4205 when d = 10 under the normal error and p = 0.1. However, we observed

dramatic reduction in TIMSE when the MAF increases to 0.3 under d = 50. Thus, one

has to be very careful about the interpretation of the selection result under low MAF in

real data analysis. We did additional simulations when the sample size increases to 1000

and observed consistently improved results under different scenarios (data not shown). In

summary, the SCAD penalty function shows consistently good performance and can separate

varying, constant and zero effects under moderate allele frequencies. Coupling with the

results displayed in Fig. 2 and 3, the proposed variable selection method shows relatively

stable performance to assess gene-environment interactions.

4 A Case Study

We applied the method to a real dataset from a study conducted at Department of Obstetrics

and Gynecology at Sotero del Rio Hospital in Puente Alto, Chile. The initial objective of

the study was to pinpoint genetic variants associated with a binary response indicating large

for gestational age (LGA) or small for gestational age (SGA) depending on new born babies’

weight and mothers’ gestational age. After data cleaning by removing SNPs with MAF less
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than 0.05 or deviation from Hardy-Weinberg equilibrium, the dataset contains 1536 new

born babies with 189 genes covering 660 single nucleotide polymorphisms (SNPs).

Mother’s body mass index (MBMI), defined as mother’s body mass (kg) divided by the

square of their height (m2), is a measure for mothers’ body shape and obesity condition.

Since a baby resides inside its mother’s womb, the environment factor for a baby is defined

through its mother, such as mother’s obesity condition (MBMI) or age. Increasing evidence

has indicated that both pre-pregnant weight (BMI) and weight gain in pregnancy have

big influence on babies’ birth weight (Stamnes Koepp et al. [19]. Due to the complicated

interaction between fetus’ genes and mother’s obesity level, baby’s birth weight might be

different for a fetus with the same gene but under different environment conditions. The

variation in birth weight could be explained or partially by the underlying genetic machinery

and how genes respond to mother’s obesity condition to affect birth weight.

Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling

pathway is the main signaling mechanism for a broad range of cytokines and growth factors in

mammals [20]. Total 68 SNPs covering 24 genes in the data were extracted for this pathway.

We applied the SCAD penalty method to the pathway and selected one SNP (2069762)

located in the exon region in gene Interleukin 9 with constant effect. This means that the

SNP is associated with birth weight but is not sensitive to mother’s BMI condition. All the

other SNPs have no effect and the intercept term shows varying effect.

We also conducted the single SNP based analysis as shown in Ma et al [1] for this SNP

by fitting the following model

Y = β0(X) + β1(X)G+ ε,

We first tested H0 : β1(X) = β and obtained a p-value of 0.0913. This implies that the

coefficient is a constant. Then we fitted a partial linear model Y = β0(X) + βG+ ε without

G×E interaction, and tested H0 : β = 0 and obtained a p-value of 7.32×10−5, which gives

strong evidence of association of the SNP with birth weight. We did the same analysis for all

other SNPs in the same pathway and found no SNPs with p-value less than 0.001. The single

SNP-based analysis confirms the variable selection result by the SCAD penalty approach.
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5 Discussion

The significance of G×E interactions in complex disease traits has stimulated waves of dis-

cussion. A diversity of statistical models have been proposed to assess the gene effect under

different environmental exposures, as reviewed in Cornelis et al [20]. The success of gene set

based association analysis, as shown in Wang et al [9], Cui et al [6], Wu and Cui [21] and

Schaid et al [7], motivates us to propose a high dimensional variable selection approach to un-

derstand the mechanism of G×E interactions associated with complex diseases. We adopted

a penalized regression method within the VC model framework to investigate how multiple

variants within a genetic system are moderated by environmental factors to influence the

phenotypic response.

In a G×E study, people are typically interested in assessing variants which are sensitive to

environment changes and those that are not. We can determine if a particular genetic variant

is sensitive to environmental stimuli by examining the status of the coefficient function. We

can separate the varying-coefficients and constants through B spline basis expansions under

a penalized framework. The varying coefficients correspond to G×E effects and the constant

effects correspond to no interaction effects. Through another penalty function, we can further

shrink the constant effect into zero if the corresponding SNP has no genetic effect. A two-

stage iterative estimation procedure with double SCAD penalty functions was developed

following Tang et al. [11]. Asymptotic properties of the two-stage estimator were established

under suitable regularity conditions.

The current work only demonstrates the case with one environment factor. It is broadly

recognized that the etiology of many complex disease is less likely to be affected by one

environment factor, but is rather heterogeneous. When multiple continuously measured

environment factors (say K1) are measured (denoted as Z1), we can extend the current

model to a more general case formulated as follows,

Y =
d

∑

j=0

{

K1
∑

k=1

βkj(Z1k)

}

Xj + ε,

where X0 = 1. This model is called the additive varying-coefficient model. The same estima-

tion and variable selection framework can be applied to select important genetic players that
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show sensitivity to different environmental stimuli. When discrete environment variables

such as smoking status are also available, denote Z2 as a collection of K2 such variables,

then we can fit the following model

Y =

d
∑

j=0

{

K1
∑

k=1

βkj(Z1k) +

K2
∑

l=1

αljZ2l

}

Xj + ε,

which is termed as the partial linear varying-coefficient model. In addition to the two penalty

functions specified in this work, an additional penalty function should be imposed for {α}lj to
select important variants showing interaction withZ2. We will evaluate this in a future study.

In addition, we will extend the current framework to a generalized linear model framework

to consider cases when a disease trait is measured as a binary response. In this case, we are

interested in modeling E[Y |Z1,Z2,X] =
∑d

j=0

{

∑K1

k=1 βkj(Z1k) +
∑K2

l=1 αljZ2l

}

Xj.

In this study, we implemented the estimation through the local quadratic approximation

method. It is known that LQA may suffer from the efficiency loss caused by repeated

factorizations of large matrices, especially when the dimension of the predictors gets large.

Thus, the LQA method may limit the power of the proposed framework to dissect G×E

interactions. An efficient alternative is to use the group coordinate descent (GCD) approach.

We will investigate this in our future work to improve the computational efficiency.
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Appendix: Technical Proofs

Useful notations and lemmas

For convenience, the following notations are adopted :

γ(v) = (γT
0 , . . . ,γ

T
v )

T , γ(c) = (γT
v+1, . . . ,γ

T
c )

T , γ(d) = (γT
v+1,1, . . . , γ

T
d,1)

T ,

γ̃(v) = (γ̃T
0 , . . . , γ̃

T
v )

T , γ̃(c) = (γ̃T
v+1, . . . , γ̃

T
c )

T , γ̃(d) = (γv+1,1, . . . , γd,1)
T ,

Gn = (B(z1), . . . , B(zn))(B(z1), . . . , B(zn))
T , ε = (ε1, . . . , εn)

T ,

Φn = n−1
∑n

i=1U(v)iU
T
(v)i, Ψn = n−1

∑n
i=1U(v)iU

T
(c)i, Λi = U(c)i −ΨT

nΦ
−1
n U(v)i,

where U(v) and U(c) are the sub design matrices corresponding to the predictors with varying

and nonzero constant coefficients respectively. We first provide several lemmas necessary for

the proofs of Theorems 1 and 2. Lemma 1 follows directly from the proof of Lemma A.3 in

Huang et al [15], and Lemma 2 follows from Corollary 6.21 of Schumaker [18].

Lemma 1. Under assumptions (A1-A3), there exists finite positive constants C1 and

C2 such that all the eigenvalues of (kn/n)Gn fall between C1 and C2, and therefore, Gn is

invertible.

Lemma 2. Under assumptions (A1-A3), for some finite constant C3, there exists γ̃ =

(γ̃T
0 , . . . , γ̃

T
d )

T satisfying

(1) ‖γ̃j∗‖L2 > C3, j = 0, . . . , v; γ̃j1 = βj, ‖γ̃j∗‖L2 = 0, j = v + 1, . . . , c; γ̃j = 0,

j = c+ 1, . . . , d;

(2) supz∈[0,1]|βj(z)− B(z)T γ̃j | = O(k−r
n ), j = 0, . . . , d, where γ̃j = (γ̃j,1, γ̃

T
j∗)

T ;

(3) sup(z,x)∈[0,1]×Rd+1 |xTβ(z)−U(x, z)T γ̃| = O(k−r
n ).

Proofs of Theorem 1.

(A) Proof of Theorem 1(1), part 1

Here we first show β̂j(z) is constant for j = v + 1, . . . , d with probability approaching 1 as

n → ∞ , which amounts to demonstrating ‖γ̂vc
j∗‖ = 0, j = v + 1, . . . , d with probability

tending to 1, as n → ∞. To this end, we first show that a minimizer γ̂VC of Q1(γ) exists in

a neighborhood of γ̃ where

Q1(γ) =

n
∑

i=1

(

Yi −UT
i γ

)2
+ n

d
∑

j=1

pλ1(‖γj∗‖). (B.1)
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Let αn = n− 1
2kn + an, where an := maxj{|p′

λ1
(‖γ̃j∗‖)|, |p′

λ2
(|γ̃j,1|)| : γ̃j∗ 6= 0, γ̃j,1 6= 0}.

The property of SCAD penalty function implies that if max{λ1, λ2} → 0, an = 0. We show

that for any given ε > 0, there exists a large constant C such that

P
{

inf‖δ‖=CQ1(γ̂
VC) ≥ Q1(γ̃)

}

≥ 1− ε, (B.2)

where γ̂vc = γ̃ + αnδ. This suggests that with probability at least 1− ε there exists a local

minimum in the ball {γ̃ + αnδ : ‖δ‖ ≤ C}. Hence, there exists a local minimizer such that

‖γ̂vc − γ̃‖ = Op(αn). A direct computation yields

Dn(δ) = Q1(γ̂
vc)−Q1(γ̃)

= −2αn

n
∑

i=1

[

εi +XT
i r(zi)

]

UT
i δ + α2

n

n
∑

i=1

UT
i δδ

TUi

+ n

d
∑

j=1

[

pλ1(‖γ̂vc
j∗‖)− pλ1(‖γ̃j∗‖)

]

:= ∆1 +∆2 +∆3

where rj(z) = B(z)T γ̃j − βj(z), j = 1, . . . , d and r(z) = (r1(z), . . . , rd(z))
T . By the fact

E(εi|Ui, zi) = 0, we obtain that

1√
n

n
∑

i=1

εiU
T
i δ = Op(‖δ‖).

Recall Lemma 2, then
1

n

n
∑

i=1

XT
i r(zi)U

T
i δ = Op(k

−r
n ‖δ‖).

Therefore

∆1 = Op(
√
nαn‖δ‖) +Op(nk

−r
n αn‖δ‖) = Op(nk

−r
n αn)‖δ‖.

We can also show that ∆2 = Op(nα
2
n)‖δ‖2. Then, by choosing a sufficiently large C, ∆1 is

dominated by ∆2 uniformly in ‖δ‖ = C. It follows from Taylor expansion that

∆3 ≤ n

d
∑

j=1

[

αnp
′

λ1(‖γ̃j∗‖)
γ̃j∗
‖γ̃j∗‖

‖δj∗‖+ α2
np

′′

λ1(‖γ̃j∗‖)‖δj∗‖2(1 + op(1))

]

≤ n
√
dαnan‖δ‖+ nbnα

2
n‖δ‖2.

With assumption (A6), we can prove that ∆2 dominates ∆3 uniformly in ‖δ‖ = C. Therefore,

(B.2) holds for sufficiently large C, and we have ‖γ̂vc − γ̃‖ = Op(αn).
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In order to prove β̂j(z) is constant for j = v + 1, . . . , d in probability, it is sufficient to

demonstrate that γ̂vc
j∗ = 0, j = v + 1, . . . , d. Note that when max{λ1, λ2} → 0, an = 0 for

large n. Then we need to show that with probability approaching 1 as n → ∞, for any γ̂vc

satisfying ‖γ̂vc − γ̃‖ = Op(n
− 1

2kn) and some small εn = Cn− 1
2kn, we have

∂Q1(γ)

∂γj,∗
< 0, for − εn < γj,∗ < 0, j = v + 1, . . . , d;

> 0, for 0 < γj,∗ < εn, j = v + 1, . . . , d.

where γj,∗ denotes the individual component of γj∗. It can be shown that,

∂Q1(γ̂
vc)

∂γ̂vc
j,∗

= −2
n

∑

i=1

Uij

[

Yi −UT
i γ̂

vc
]

+ np
′

λ1
(|γ̂j,∗|)sgn(γ̂j,∗)

= −2

n
∑

i=1

Uij[εi +XT
i r(zi)]− 2

n
∑

i=1

UijU
T
i [γ̃ − γ̂vc]

+ np
′

λ1
(|γ̂j,∗|)sgn(γ̂vc

j,∗)

= nλ1

[

Op(λ
−1
1 n

−r+1/2
2r+1 ) + λ−1

1 p
′

λ(|γ̂j,∗|)sgn(γ̂vc
j,∗)

]

.

By assumption (A5), λ−1
1 n

−r+1/2
2r+1 → 0. Then it follows from assumption (A7) that the sign of

the derivative is completely determined by that of γ̂vc
j,∗. Therefore, γ̂

vc, the minimizer of Q1,

is achieved at γ̂vc
j∗ = 0, j = v+1, . . . , d. This completes the proof of Theorem 1(1), part 1. �

(B) Proof of Theorem 1(2)

Next we establish the consistency of the varying coefficient estimators. Let αn = n− 1
2kn+an,

γ̂(v) = γ̃(v) + αnδv, γ̂(d) = γ̃(d) + αnδd, δ = (δT
v , δ

T
d )

T , and

Q2(γ(v),γ(d)) =
n

∑

i=1

(

Yi −UT
(v)iγ(v) −UT

(d)iγ(d)

)2
+ n

d
∑

j=v+1

pλ2(|γj,1|). (B.3)

We first show that there exists a local minimizer of Q2(γ(v),γ(d)). It suffices to show that

for any given ε > 0, there exists a large constant C such that

P
{

inf‖δ‖=CQ2(γ̂(v), γ̂(d)) ≥ Q2(γ̃(v), γ̃(d))
}

≥ 1− ε. (B.4)

which implies that with probability at least 1 − ε there exists a local minimum in the ball

{γ̃(v) + αnδv : ‖δv‖ ≤ C} and {γ̃(d) + αnδd : ‖δd‖ ≤ C}, respectively. Therefore, there exists
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local minimizers such that ‖γ̂(v) − γ̃(v)‖ = Op(αn) and ‖γ̂(d) − γ̃(d)‖ = Op(αn). We have

Dn(δv, δd) = Q2(γ̂(v), γ̂(d))−Q2(γ̃(v), γ̃(d))

= −2αn

n
∑

i=1

[

εi +XT
1 R(Zi)

] [

UT
(v)iδ(v) +UT

(d)iδ(d)
]

+ α2
n

n
∑

i=1

[

UT
(v)iδ(v) +UT

(d)iδ(d)
]2

+ n
d

∑

j=v+1

[pλ2(|γ̂j,1|)− pλ2(|γ̃j,1)|]

:= ∆1 +∆2 +∆3,

where r(z) = (r1(z), . . . , rd(z))
T and rj(z) = B(z)T γ̃j − βj(z), j = 1, . . . , d. Since E(εi|U(v),

U(d), zi) = 0, we have

1√
n

n
∑

i=1

εi[U
T
(v)iδ(v) +UT

(d)iδ(d)] = Op(‖δ‖). (B.5)

With Lemma 2 we can show

1

n

n
∑

i=1

XT
i r(zi)

[

UT
(v)iδ(v) +UT

(d)iδ(d)
]

= Op

(

k−r
n ‖δ‖

)

.

Combine the above two equations, we can obtain that

∆1 = Op(n
1
2αn‖δ‖) +Op(nk

−r
n αn‖δ‖) = Op(nk

−r
n αn)‖δ‖.

Since ∆2 = Op(nα
2
n)‖δ‖2, it can be shown that by choosing a sufficiently large C, ∆1 is

dominated by ∆2 uniformly in ‖δ‖ = C. By Taylor expansion,

∆3 ≤ n
d

∑

j=v+1

[

αnp
′

λ2(|γ̃j,1|)sgn(γ̃j,1)|δj1|+ α2
np

′′

λ2(|γ̃j,1|)δ2j1(1 + o(1))
]

≤ (d− v)
1
2nαnan‖δ‖+ nbnα

2
n‖δ‖2.

Recall assumption A6, then it follows that, by choosing an enough large C, ∆2 dominates

∆1 uniformly in ‖δ‖ = C. Consequently (B.4) holds for sufficiently large C, and we have

‖γ̂v − γ̃v‖ = Op(αn) and ‖γ̂d− γ̃d‖ = Op(αn). By the definition of γcz, we have γ̂cz
(d) − γ̃(d) =

Op(αn). Then for j = 0, . . . , v

‖β̂j(zi)− βj(z)‖2 =
∫ 1

0

[

β̂j(z)− βj(z)
]2

dz

≤ 2

∫ 1

0

[

B(z)T γ̂cz
j (z)−B(z)T γ̃j

]2
dz + 2

∫ 1

0

r2j (z)dz

=
2

n
(γ̂cz

j − γ̃j)
TGn(γ̂

cz
j − γ̃j) + 2

∫ 1

0

r2j (z)dz

:= ∆1 +∆2.
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Recall Lemma 1, 2 and kn = O
(

n
1

2r+1

)

, we can demonstrate that ∆1 = Op (k
−1
n α2

n), ∆2 =

Op (k
−2r
n ). ∆1 is dominated by ∆2, thus we finish the proof of Theorem 1(2). �

(C) Proof of Theorem 1(1), part 2

To show β̂j(z) = 0 for j = c + 1, . . . , d, it is sufficient to demonstrate that γ̂cz
j,1 = 0, since

the constancy of βj(z), j = v + 1, . . . , d was already established in (A). By definition,

when max{λ1, λ2} → 0, an = 0 for large n. Then we need to prove that with probability

approaching 1 as n → ∞, for any γ̂(v) and γ̂(d) satisfying ‖γ̂(v) − γ̃(v)‖ = Op(n
− 1

2kn), and

‖γ̂(d) − γ̃(d)‖ = Op(n
− 1

2kn), as well as some small εn = Cn− 1
2kn, we have

∂Q2(γ(v),γ(d))

∂γj,1
< 0, for − εn < γj,1 < 0, j = c+ 1, . . . , d;

> 0, for 0 < γj,1 < εn, j = c+ 1, . . . , d.

It can be shown that

∂Q2(γ̂(v), γ̂(d))

∂γ̂j,1
= −2

n
∑

i=1

U(d)ij

[

Yi −UT
(v)iγ̂(v) −UT

(d)iγ̂(d)

]

+ np
′

λ(|γ̂j,1|)sgn(γ̂j,1)

= −2
n

∑

i=1

U(d)ij

[

εi +XT
i r(zi)

]

− 2
n

∑

i=1

U(d)ijU
T
(v)i [γ̃v − γ̂v]

− 2

n
∑

i=1

U(d)ijU
T
(d)i [γ̃d − γ̂d] + np

′

λ(|γ̂j,1|)sgn(γ̂j,1)

= nλ2

[

Op

(

λ−1
2 n

−r+1/2
2r+1

)

+ λ−1
2 p

′

λ(|γ̂j,1|)sgn(γ̂j,1)
]

.

By assumption (A5), λ−1
2 n

−r+1/2
2r+1 → 0. Then it follows from assumption (A7) that the sign

of the derivative is completely determined by that of γ̂j,1. Therefore, γ̂cz, the minimizer of

Q2, is achieved at γ̂cz
j,1 = 0, j = c+ 1, . . . , d. This completes the proof of Theorem 1(1). �

Proofs of Theorem 2.

In Theorem 1, we showed that both γ̂j∗ = 0, j = v + 1, . . . , c and γ̂j = 0, j = c + 1, . . . , d,

hold with probability approaching 1. Then Q2 reduces to

Q2(γ(v),γ(d)) =

n
∑

i=1

(

Yi −UT
(v)iγ(v) −UT

(c)iγ(c)

)2
+ n

c
∑

j=v+1

pλ2(|γj,1|)

:= Q2(γ(v),γ(c)).

(B.6)
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Since (γ̂(v), γ̂(c)) is the minimizer of Q2(γ(v),γ(c)), we obtain

∂Q2(γ̂(v), γ̂(c))

∂γ̂(v)

= −2
n

∑

i=1

U(v)i

[

Yi −UT
(v)iγ̂(v) −UT

(d)iγ̂(d)

]

= 0;

∂Q2(γ̂(v), γ̂(c))

∂γ̂(c)

= −2

n
∑

i=1

U(c)i

[

Yi −UT
(v)iγ̂(v) −UT

(c)iγ̂(c)

]

+ n
c

∑

j=v+1

p
′

λ2(|γ̂j,1|)sgn(γ̂j,1) = 0.

(B.7)

By applying Taylor expansion on p
′

λ2(|γ̂j,1|) in (B.7), we have

p
′

λ2(|γ̂j,1|) = p
′

λ2(|γj,1|) + p
′′

λ2(|γj,1|)(γ̂j,1 − γj,1)[1 + op(1)].

By the fact that p
′

λ2(|γ̂j,1|) = 0 as λ2 → 0, and p
′′

λ2(|γj,1|) = op(1) from the assumption, it

follows that
∑c

j=v+1 p
′

λ2(|γ̂j,1|)sgn(γ̂j,1) = op(γ̂j,1 − γj,1) = op(γ̂(c) − γ(c)). Consequently, we

have
1

n

n
∑

i=1

U(c)i

[

Yi −UT
(v)iγ̂(v) −UT

(c)iγ̂(c)

]

+ op(γ̂(c) − γ(c)) = 0.

Following similar lines of arguments in Theorem 1, we can show

1

n

n
∑

i=1

U(c)i

[

εi +XT
i r(zi) +UT

(v)i(γ(v) − γ̂(v)) +UT
(c)i(γ(c) − γ̂(c))

]

+op(γ̂(c)−γ(c)) = 0. (B.8)

Meanwhile, a straightforward calculation yields

1

n

n
∑

i=1

U(v)i

[

εi +XT
i r(ui) +UT

(v)i(γ(v) − γ̂(v)) +UT
(c)i(γ(c) − γ̂(c))

]

= 0. (B.9)

Recall the definition of Φn and Ψn, (B.9) is equivalent to

γ̂(v) − γ(v) = Φ−1
n

{

1

n

n
∑

i=1

U(v)i

[

εi +XT
i r(zi)

]

+Ψn[γ(c) − γ̂(c)]

}

. (B.10)

Plugging (B.10) into (B.8) results in

1

n

n
∑

i=1

U(c)i

{

εi +XT
i r(zi)−UT

(v)iΦ
−1
n

1

n

n
∑

i=1

U(v)i

[

εi +XT
i r(zi)

]

}

=
1

n

n
∑

i=1

U(c)i

[

U(c)i −ΨT
nΦ

−1
n U(v)i

]T
(γ̂(c) − γ(c)) + op(γ̂(c) − γ(c)).

(B.11)
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Together with the facts that

1

n

n
∑

i=1

ΨT
nΦ

−1
n U(v)i

[

εi +XT
i r(zi)−UT

(v)iΦ
−1
n

1

n

n
∑

j=1

U(v)j [εj +XT
j r(zj)]

]

= 0

and
1

n

n
∑

i=1

ΨT
nΦ

−1
n U(v)i

[

U(c)i −ΨT
nΦ

−1
n U(v)i

]T
= 0.

and recall the definition of Λi, a direct computation from (B.11) leads to

[

1

n

n
∑

i=1

ΛiΛ
T
i + op(1)

]

√
n(γ(c) − γ̂(c)) =

1√
n

n
∑

i=1

Λiεi +
1√
n

n
∑

i=1

ΛiX
T
i r(zi)

+
1√
n

n
∑

i=1

ΛiU
T
(v)iΦ

−1
n

1

n

n
∑

j=1

U(v)j

[

εj +XT
j r(zj)

]

:= ∆1 +∆2 +∆3.

It follows from the law of large numbers that

1

n

n
∑

i=1

ΛiΛ
T
i

p−→ Σ

where

Σ = E
(

U(c)U
T
(c)

)

− E
{

E(ΨT
n |Z)E(Φn|Z)−1E(Ψn|Z)

}

. (B.12)

Consequently,

∆1
d−→ N (0, σ2Σ)

follows from central limit theorem. Because Xi is bounded and ‖r(z)‖ = op(1), we have

∆2 = op(1). Besides,
∑n

i=1 ΛiU
T
(v)i=0 implies that ∆3 = 0. Therefore, by Slutsky theorem,

we complete the proof of Theorem 2. �
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