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1. Introduction

An important problem in statistics is to use a variable X to explain the response Y. This is often done in practice in terms
of the regression function u(x) := E(Y|X = x), assuming it exists. One often stipulates this function to be of a parametric form
and then proceeds to make inference about the underlying parameters. It is then of interest to assess the accuracy of the
assumed parametric form, i.e., to test for the lack-of-fit of the assumed parametric model for u(x) based on the available
data. Monograph of Hart (1997) contains numerous tests for this problem and provides a review through 1997.

Koul and Ni (2004) proposed a class of tests for fitting a parametric model to the regression function based on minimum
squared deviations between a nonparametric estimator of u(x) and the parametric model being fitted. They established
asymptotic normality of a suitably standardized minimum distance test statistics and the minimum distance estimators.
Koul and Song (2009) extended this methodology to Berkson measurement error models. In a finite sample comparison of
these tests with some other existing tests, it was found that a member of this class preserves asymptotic level and has very
high power against the chosen alternatives. Moreover, the best fitted parameter estimate has literally no empirical bias at
the selected models. In both of these papers design is random and of dimension p > 1.

Here, we shall investigate their asymptotic behavior when design is non-random and uniform on [0,1]. More precisely,
we observe Y,;,1 <i<n, from the model

Yni:,u<%)+8niv 1<i<n, (1.1

where ¢,;, i>1, are independent error r.v.’s, Eey; =0, Es,zﬂ <oo, 1 <i<n. Let M = {myx);x €[0,1,0 € @ c R} be given
family of parametric regression models, where q is a known positive integer. The problem of interest is to test for

H : u(x) =myg(x), YO<x<1, for some 0p € O, vs.
‘Hy : H is not true.
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To describe the proposed tests, let K be a density kernel function on [—1,1], and b= b,, be a deterministic bandwidth
sequence. Let G be a o- finite measure on [0,1] and define

Mn(0) = / {anK ("X ’)(Y me(:/n»rdG(x).

0, = argminM;(0). (1.2)
0O
A class of tests of 7, one for each G, is based on the minimized dispersion Mn(én).

To establish asymptotic normality of Mn(én) one needs a central limit theorem for weighted degenerate U-statistics
where the weights are given by triangular arrays of real numbers and the kernels may depend on n. Hall (1984) gives
such a result for non-weighted degenerate U statistics of multivariate i.i.d. random variables. This result was used in Koul
and Ni (2004) to prove asymptotic normality of M. (0y) in the case of random design. Lemma 2.1 below gives an extension
of this result to the weighted degenerate U statistics with the weights as mentioned above. This lemma is of independent
interest. It is used here to prove asymptotic normality of a suitably standardized Mn(én) under H and under some
alternatives.

Other authors that have investigated asymptotic distributions of weighted degenerate U statistics include O’Neil and
Redner (1993), Major (1994), and Rifi and Utzet (2000). The weights and kernels in these papers are not allowed to depend
on n and the weak limits are generally non-Gaussian. See Hsing and Wu (2004) and references therein for asymptotic
normality of weighted non-degenerate U statistics of dependent observations, where again the weights and kernels are not
allowed to depend on n.

For the sake of clarity of the exposition, in the next section we discuss asymptotic distributions of the above entities
under null hypothesis when my(x) is linear in 6. The case of more general m, will be discussed briefly in Section 3.
Consistency of the proposed tests against a fixed alternative and asymptotic power against a sequence of local alternatives
n=my, +nb'/?)1 Y is discussed in Section 4, where  is a Lipschitz continuous function of order 1 on [0,1]. Among the
class of functions G having density g on [0,1], the g that yields the maxnmum asymptotic power 1—&(z,—a™! f WA (x)dx) at
the asymptotic level o against this sequence of alternatives is g = l// where a = 2(f{f K®OK(t+uwdu}? dt)'/?, @ is the d.f. of
a standard normal r.v., and z, is such that &(z,)=1-0a, 0 <a <1, see Theorem 4.2 and Remark 4.1 below.

In the sequel, all limits are taken as n— oo, unless specified otherwise, and for any two sequence of real numbers
ap,by,a, ~ by, means that a,/b, — 1. The convergence in distribution is denoted by —p and N(a,B) denotes the g-variate
normal distribution with mean vector a and covariance matrix B.

2. Main results when my(x) = 0'((x)

In this section we shall discuss asymptotic distributions of the above minimum distance estimators and minimized
distances under H when my is linear in 0. Part of the reason for this is to keep the exposition relatively transparent. Let
4, j=1,...,q, be continuous G-square integrable functions on [0,1] and let £(x) == (£1(x),£2(X), ...,Lq(X))'. Consider the
problem of testing

L : ux) = 0pt(x), V¥x €[0,1], and some 0y € O vs.
F1 : ‘H is not true. 2.1)

To proceed further, let

n )
£n(X) ::%ZK(%)ZUM), 0<x<1,
=1

1 -1
Xp = / Ca(X)ln(x) dG(x), 2 = / £(x)e(x) dG(x).
JOo JO

We make the following assumptions about G, K, and the window width sequence b:

G has a continuous Lebesgue density g on [0,1], and for some 0 <¢ <1,
r1—€
g(x)>0, x € [¢,1—¢], and / (@e(x))? dG(x) >0, Vvae R 2.2)
Je
2, and X are positive definite for all n >q. 2.3)

K is an even positive differentiable density on (—1,1), vanishing outside (—1,1), and has a bounded derivative.
24

b0, nb*-oo. (2.5)
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Note that (2.2)-(2.4), b—0 and continuity of ¢ imply
/ ILa(X)—€(X)I12 dG(x) >0, X,—>ZX. (2.6)

Let 0p be as in 7, 4 := 0—0q, &, == Yj—0u((j/n), and let
1 nx—j (]
Un(x,0) = %]; K <W> <Yj—9 [(E>),

1< nx—j
Un(x) = Un(x,00) = %j; K (W) &njy  Sn = / Un(¥)tn(x) dG(x),

Zn(%,0) := Up(x,0)—Un(x,00) = —A'tn(x).
Under H, Myp(0o) = f(} U2 dG and

Ma(0) = / U%(x,0) dG(x) = / [Un(x)—A'a(x)]? dG(x) = / U2dG-24'Sy+ A2, A.

Hence, in view of (2.3),
(0n—00)=27"S0,  Mn(0y) = Mn(00)—S,Z; 'S, ¥n=>q. 2.7)

Our aim is to obtain limiting distributions of 0, and Mn(@n) under 7. The following proposition gives the limiting
distribution of 0, under the two different sets of conditions on the errors.

Proposition 2.1. Suppose A and assumptions (2.2)-(2.5) hold.

(i) If, in addztzon &nj1 <]<n are iid. with mean zero and positive and finite variance o2, then n'/2(0,— 00)—pNyg
0,622712 271, where £ = fo Lu)e(uy g?(u) du.

(ii) In addition, suppose for some continuous positive functions ¢%(x) and p4(x) on [0,1], &,,1 <j<n, are heteroscedastic
mdependent r.v.'s with ﬁmte 4th moments and Ee};=0>(j/n), Eey = pu(G/n), 1<j<n. Then, n/2(0,—00) > pNg
0,271,271, where Xy = [) €(x)6(x) o2(x)g2(x) dx.

Proof. For the time being assume ¢,; to be independent r.v.’s with Eg,; =0 and Ea = ¢2(j/n), for some continuous positive
function ¢2 on [0,1]. In view of (2.3), (2.6) and (2.7), it suffices to prove asymptotlc normality of S,,. For an a € RY, let

Ly(x) = d'ty(x), LX) =dlx), cy= m / K <%> La(x)dG(x), 1<j<n.
Then,
n'2a's, = 1/Z/Un(x)Ln(x) dG(x) = 1/2}32 /K (n J) Ln(x) dG(X)&nj = Zlcmfnj
iz
Hence,

= Var(n'2a’S,) = ZC Var(sn])_ — Z </ <nx ])Ln(x)dG(X)> (i)

j=1 1—1

1 1
-5 /0 ( / 1<( )Ln(x)g(x)dx> o) du+o(1)— / (Lwyowg)? du=aZa.

In the above derivation we used the fact that [ K(u)du = 1, continuity of g and ¢2(u1), and (2.6) imply, uniformly in0<u <1,
b~ / L,,(x) dG(x) = / K(z)L,(bz+u)g(bz+u)dz— / K(z) dzL(u) g(u).
Hence,

s2sd'Xia, Cov(n!/2S,)— 2. (2.8)

Also, (2.2) and o(u) being continuous and positive on [0,1] imply k = inf, .y - 1_.2(X)0%(x) >0 and a'X1a > icf:""(a’t’(x))2
dG(x) >0, for all a € RY, i.e., Xy is positive definite.

Now consider Case (i) where ¢&,s are the ii.d. r.v.’s with ¢2(j/n) = 62, a constant. Since n'/2a’S, is a triangular array of
independent centered r.v.’s we will apply Lindeberg-Feller CLT. Now, because K is a bounded kernel and because
JILaldG— [|L|dG < oo,

Cn = MAX |yl < Cn~12p1 / ILa(x)|dG(x)—>0 by (2.5). 29
<j<n
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Errors being i.i.d. and square integrable imply that s2 E] _qC2 0' and for any # > 0,
B n B S
snzj; CaiEenI(|Cnjenj| > 1sn) < o~ 2Ee? <|c| > r]é) -0,

by (2.8) and (2.9), thereby verifying the L-F condition in this case.
Next, consider Case (ii) where errors are heteroscedastic having finite fourth moments. Argue as for (2.8), and use the
continuity of u, to obtain

n : 1
> chusti/m=— Z ( / ("" ]>L,,(x)dG(x)> ( )—» /0 LWgW) pa(w) du < oo.

j=1 1—1

This fact, (2.8) and (2.9) in turn imply

5.7 Z E(Crjén))*1(Cojns| > 115n) < ,1254 Z ChittalG/m) < ,7254 Z Criltal/m)—0,
ji=1 nj=1

which again verifies the L-F condition.

Thus, by the Carmér-Wold devise, we obtain n'/2S, —pA4(0,625), in Case (i), and n'/2S,—pN4(0,Z1), in Case (ii).
Because (0,—0p) = Z;1Sn, and because X, — 2, we thus obtain, in view of (2.3),

n'2(0,—00) > pN (0,622 123"y in case (i),

n'2(0,—00) > pN (0,712, Z71) in case (ii). (2.10)

This completes the proof of the proposition. We remark here that in Case (ii), the finite fourth moment assumption may be
replaced by requiring only finite (2+0)th moment. O

Next, we turn to deriving the asymptotic distribution of the minimized distance M;(9y). From now onwards errors are
assumed to be as in Case (i) of the previous proposition and we shall write ¢; for &,;. Let

1 =[x 2 _
C, = (nb)2j; | / K ( i >dG(x).s LK = / K(t+uwK(u) du,

H

nx . .
(nb)zZ/K2< ]>dc(x)'5m' &nj = Yj=0,(/n),
j=1
1
‘= / gz(v)d"/Kf(t)dt, 12 = 4072,
Jo
We have

Proposition 2.2. In addition to 7 and (2.2)-(2.5), assume & = Y;—0,£(j/n), 1 <j<n, to be iid. r.v.'s with mean zero and
positive and finite variance o and having finite fourth moment. Then,

nb'/>(My(0n)—Cn)— pN'1(0,?). @.11)
Proof. Because M,,(én) = Mn(eo)—S;,Z;IS,, and because
nb'21S, 218, < b'2In' 28,1212, 1 = 0p(1),
it suffices to show that nb1/2(Mn(90)—@,1)—»DNl(O,yz). This in turn will follow from the following two facts. Under #,
nb'*(Cn—Cp) = 0p(1), (2.12)

nb'?(Mn(00)—Cn) > pN1(0,7). (2.13)
First, consider (2.12). Let 4, = 0p,—00 and write

C nx-j ’ nx—j
Cn= (nb)zZ / Kz( )dG<x><a —(0-00) tj/m)* = Cr-24, bzz / 1<2< )dG(x)p]{(]/n)

(nb)2 Z / K? <”X ]>dG(x)£’(]/n)€(]/n)A

j=1
Therefore,

nb"2(Cr—Cp) = —2n'2 A, Bpy + 1A, By An,
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where
By— L z": / K2 (" deee /)
nl = (nb)3/21:1 nb ’j ,

p1/2
(nb)* /=

an =

Z / K> ("" J)dG(x)t’(]/n)t’(}/n)
But, in view of (2.5),

1 X—) , 1 /
By = W//K2 (T)g(x)dxf(u)t’(u) du+o(1)= 72 / K*(v)dv / £(u)e(uy g(u) du+o(1)—0.

Next, consider Bn;. We have E(aBn;)=0 and Var(a'B,;) = O((n?b)~')— 0, because
2
(nzb)Var(a/B,ﬂ)_ e Z (/ K? <nx J) dGx)a' 4’(]/11)) / (/ K?(v) dvg(u)a%’(u)) du
j=1

This, together with the fact n'/24,, = Op(1), completes the proof of (2.12).
We now turn to the proof of (2.13). Let

_ 1 nx—i nx—j
M, = b2 > /K( ) ( )dG(x)s &.

1<i<j<n
Note that
Ma(00) = /U2dc— /1(2("" ]> (”X ') <”" J)desa Ca+2Mp.
n(00) = (b)zz (b) 2] e ) d6®eie; = Cot-2Mo
Thus, to prove (2.13), it suffices to prove
nb' M, - pN'1(0,6%72). (214

Let

1 nx—i nx—j
Wy = b3/2/1<< > )K( i )dG(x).

Then we can rewrite

1/2 o
nb / My, = Z Wh,ij€i&j.

I<i<j<n

Let F; = o—field{g;,i < j}. Because E(g;gj| Fj_1) = €E(¢j) =0, nb'?M,; is a weighted degenerate U statistic where the weights
depend on n,i,j. We thus need a CLT for these types of U statistics.

Let H,(x,y) be a sequence of measurable functions such that H,(x,y)=H,(y,x), for all x,y € R, n> 1. Let X,;,1 <i<n be an
array of p-variate i.i.d. r.v.’s such that

E(Ha(Xn1,Xm2)IXn1) =0, as., EH2(Xp1,Xm) < oo, Vn>1.

Also, let ¢, be arrays of real numbers such that ¢, ; = ¢, j, for all 1 <i,j <n. We shall provide further sufficient conditions
on these entities that ensure asymptotic normality of the more general degenerate weighted U statistic

U= Z Cn,inn(Xnivan)~

1<i<j<n
Let v2 = Var(U) and G,(x,y) := E{Hn(Xn1,X)Hn(Xn1,y)}. We have the following:
Lemma 2.1. In addition to the above assumptions suppose the following holds:

Z] = 2(21 =1 n 1]) EH4(Xn1 vXHZ)
(o S 2P (EHA X X

(2.15)

Z]r: =2 ZJZ = 2(2{]:1 Cn, i Cn Rip) )2EG§(Xn1 XnZ)
(o5 S 2P (EHA (X1 Xn2))?

-0, (2.16)
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Z]l =2 Z]2 =2 Zh— 1 n if; nUZEH4(Xn1v n2) -0
(ZJ = Zl =1 n U)Z(EHZ(XTH’XHZ))
Then, v;'U—-pN1(0,1).

Proof. Hall (1984) proves this result for the special case where ¢, ; =1, and X,,; = X;, for all 1 <i,j < n. We adopt his proof to
prove the above result for this more general weighted degenerate U statistic. Note that if c,;=1 and X,; =X;, then

assumptions (2.15) and (2.16) are equivalent to (2.1) in Hall (1984).
Let G,; = o—field{Xy;,1 <i<j}, and

-1 Kk
= CuiHnni Xej), Sk=>_ Yoj, 2<k<n.
-1 =2

Then, (Yyj,Gnj—1) are martingale difference arrays and S,=U. Let
n
Vi= ) E(YpXn1 <i<j—1).
j=2

Note that v2 =EV; = >, EY7;.

As in Hall (1984), we shall use the martingale CLT, Hall and Heyde (1980, Corollary 3.1, p. 58). Accordingly we must

verify the following two conditions:

n
Vi? Y E(Y (Yl > 17va)—>0, ¥y >0,
=2
vi2V2 51,

Because of the assumed independence of X,;’s and H,, being conditionally centered,

Jj— -1 j-1 j-1
EY; = Z Z Cn it EHn X, Xn)) HnXju Xoie) = > € i EHR X Xni) = > G yEHA(Xn1 Xn2), 2 <j <,
= = i=1 i=1
n
Z ,,,,»,»EH%(xm Xn2)-
Also,
i1 j-1 j-1 j-1 2
EYji= " i yEH(Xej Xni) +3 Sy n,qEHz(xm.xnon(xn],xnk)<3(Zcﬁ,,,-) EHy(Xn1,Xn2).
i=1 i=1k=1k#i i=1

Hence, by (2.15),

V;4 Xn: EYﬁ- Z],Z(Z =1 Cn, u)ZEH (an XnZ) N
=Y Zj_zzt1 c2 )’ [EHA (X Xn2)T

From this (2.17) follows in a routine fashion.

(2.17)

(2.18)

(2.19)

To prove (2.18), we shall show that V;4E(V37V£)24>0. Towards this goal let v, = E{Y,fj|Xm»,i<j} and note that

V2=, vy, v2=EV}, and

E(V2—v2)2 =EVi_v4 EVi= ZEuanrz > EWnvm).

j=2 2<ji<j»<n
To proceed further, observe that
j=1 j= j=1 j-1
Upj = Z Cn,iiCn 1 E{Hn (Xijs X)) Hin (X Xt | Xeim, 1 < j—1} = Z Z C,ijCn,kj On (Knin Xnk)
i=1k=1 i=1k=1

i1
Cn,,‘jGn(Xni-Xni)"‘z Z Cn,ijCn, ki Gn Knin Xk -

1<i<k<j-1

.

Il
—_

Using the fact EG,,(X,1,X:2)=0 and the assumed independence, one obtains, for any i <k,j <m,

E(Gn (X, Xnt) GnXju Xnm)) = EGA (X1, Xn1), i=k=j=m,
= [EGn(Xn1, Xn1)I?, i=k#j=m,
= EG2(Xn1 . Xn2), i=jk=m,i<k,

=0, otherwise.
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Therefore, for j; <ja,
Ji=1j2—1

E(Vyj, Vnjy) = Z Z Cﬁ i "klz [EGn (X1, X1 + Z Cr i, nUZVar{G Xn1,Xn1)} +4 Z Cn i, nkj] EG? 2(Xn1.Xn2).
i=1k=1 1<i<k<ji—1

In particular,
j-1 2
= (Z c,%,,—,—) [EGn(Xn1 X)) + Z e Var(GeXa Xa)l+4 > ycaiEGiXm Xna), 2 <j<n.
i=1 i=1 1<i<k<j-1
From (2.19), and because EH2(X,1,Xn2)=EGn(Xn1,Xn1), We also have

2 2
n J-1 n J1=1j2—1
= (Z Z Cg,ij> [EH%(an .an)]z Z (Z [om lj> Z Z C% " n i [EGn (X1, X1 )]

j=2i=2 j=2 2<ji<jp<ni=2(=2

Hence,

n
EVA = ZEvﬁﬁz > E(Un, vny,)

2<ji<j2<n

2
Z [(Z cm]) [EGn(Xm Xn1)I? ZCHUVGF{Gn(an.an)}

i=1 i=1

+4 Z n ij n kJEGZ(th n2):|

1<i<k<j-1

1—1j2-1
+2 Z |:Z Z Cﬂ ijy nka[EGﬂ(anva)]z

2<ji<jp<nli=1k=1
Ji—1 y
+ ) i 2, Var{Ga(Xnt Xnt))
i=1

2
+4 Z Cn,ij, Cn,ij, Cn,kj, Cn.kj, Ecn(xnl van):| ,

1<i<k<ji—-1

=1 1<i<k<j-1

1
EVi_vi= Z [Z caVar(Ganm X} +4 > ek iEGh (X xnz)}

Jji—1
+2 Y [Zc%,,»jlcﬁ,.»,ﬂar{cn(xm,xm)}

2<ji<ja<nli=1

1<i<k<ji—1

2
+4 D Cnij, Cnij, Cnky Cnkg, EG X vXnZ):| ,

n j-1 j1—1
= { Git2 D> Y i Cai | Var{Ga(Xan, Xa1)}
2

=2i=1 2<ji<ja<ni=1

n
+2 |:2 Z Cnucn K-

j=21<i<k<j-1

+4 Z Z Cn,ij, Cn,ij, Cn ki, Cn,kj2:| EG% (Xn1,Xn2)

2<i <jz£nlsi<k<j1 1

i=1 i=

n n ji—1 j1-1
=2 Z Z |:<Z Cn,ijy C”~U2> Z Cn i1 Ch y2:| EG2(XI1] Xn2)
1=2j2=2

n n
+ Z Z ZC"'M n,ij, Var{Gn(an‘an)}
1=2j=2i=1
2
n j1—1 X
<2 Z Z (Z C”UIC"U2> EGn(Xn1vXn2)
J1=2j=2 \i=1
n ji1—1

+ Z Z chzh anZEH4(Xn1vXn2)}

j1=2j=2i=1



72 H.L. Koul / Journal of Statistical Planning and Inference 141 (2011) 65-79

In the last but one inequality above, we used the fact
Var(Gn(an |an)) < EG%(an van) = E[EZ{H%(an vXn2)|an }] < EH;:(XM vXn2)~

Hence, (2.18) follows from the condition (2.16). This completes the proof of the lemma. O

Now consider the case where EH2(Xn1,Xn2), EH2(Xn1,Xn2) and EG2(X,1,Xy2) do not depend on n. Then, (2.15)-(2.16) are
implied by

J
21_2(21—1 nz] —>O, (2.20)
(E], Z =1 nl]
D BP0 S ot i) g 221
(ZJ— El_l nlj
M- X2 G 2 Chiz g (2:22)

(217221_1 ”'J

We shall now show that these conditions are satisfied by

1 nx—i nx
Cnjij = Wh,jj = b3/2 / K( b )K( J) g(x)dx.

We have

5 558 (o] 5 [5Con

j=2i=1 j=2i=1

2
/ / {/ zZ+ %)K(x)g(bz+v)dz} dudv~ g (v)dv { K(z+t)K(x)dz} dt. 2.23)

LS n, (it nx—i\  /nx—j 2
;_z<,»_1wn'ij> n3b62(121{ (n )K( )dG(x)})
- #/01 (/OU{/1<<X;’)1<(X_b”)g(x)dx}2du>zdv
~ nl?/o] (/OU {/K(z+ U%“)K(x))g(bz-kv)dz}z du)zdv
! < / { / K(z+t)l<(x)dz}2dt>2 A -

n 1—1 1—1
Zz Zz (JZanIhW"Uz) n2b6 Z Z ( " /K<nx 1>K<nx h)g(x)dx
h1=2j2= 1=

J1=2j2=2

]
~b*6/0 /o </0 /K )g(x)dx

/ K y K = Z)g(y) dydu) dvdz

~b? ./01 ’/0.1 (/0 /K( +— K(W)g(bW+v)dW

x/K(t+—>1<(t)g(bt+z)dtdu> dvdz

N/;/O] (//K(w+oc)1((w)dw

2
x/l((t+oc+ Z_Tv)Iqr)dtdoc) g2(v)g%(x)dvdz

~b / W) dv / (/ K*(oc)K*(OC—Fﬁ)dot)zdﬁ.

X
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Similarly one sees
n, 2ol 1 & & =i (nx—j
w2ow? o= (/K(—)K( l)g(x)dx
jl=2jzz=:2f=z1 B "4b6j1z=:212=2i=1 ~ nb nb
) ; 2
ny—i ny—j»
<JR( k(M Jsww)

~n! / g*()dv / / (K.()K.(t))? dsdt.

These approximations now clearly show that conditions (2.20)-(2.22) are satisfied by w,; and hence the lemma applies
with X,,; = &;, Hy(x,y) = xy. Because of (2.23), here

n_j-1

B= 3 S w et [ godv Ko

j=2i=1
Therefore, we have established (2.13), and hence also (2.11). O
Let z, be 100(1—a) th percentile of the standard normal distribution, 0 < o < 1, and let 62 :== n"! S éf[j, $2 = 46472 Then

the minimized distance test that rejects 7 in favor of #; whenever |§,'nb'/?(My(0,)—Cy)| > z,/, will have asymptotic size o.

3. General .#

We shall now give a set of sufficient conditions on the model M under which the analogs of the results of the previous
section will continue to hold. These are similar yet simpler to those given in Koul-Ni for the random design case where
there was an extra complication because the design was random with an unknown density and errors were allowed to be
heteroscedastic. Consider the following assumptions.

(e) Ee* < 0.
(m1) For each 60, my(x) is continuous in x w.r.t. integrating measure G.
(m2) The parametric family of models my(x) is identifiable w.r.t. 0, i.e., if my, (x) = my,(x), for almost all x (G), then 0; = 0,.
(m3) For some positive continuous function h on [0,1] and for some £ > 0,

Mg, (X)—my, X)| < 102—0,1Ph(x), V0,, 01 € O, x € [0,1].

(m4) For every x, my(x) is differentiable in 6 in a neighborhood of 6, with the vector of derivatives riy(x), such that for

every k < oo,
i i (i
o () - () 00071, () .
10—0oll e

sup
1 <i<n,mb)/210-0pll <k

(m5) The vector function x— ri14,(x) is continuous in x € [0,1] and for every 0 <k < co,

. i . i
’”“(ﬁ)*’"(’o (ﬁ) H -0

(m6) Xy = fol g, (W, (1) dG(u) is positive definite.

max b=1/2
1 <i<n,mb)/210-0oll <k

Under (2.2)-(2.5) and the above assumptions and by adapting arguments of Koul and Ni (2004) and using Lemma 2.1
where Hall (1984) was used one can prove the following results. First, one establishes 0, of (1.2) is consistent for 0y under
‘H, and

A . . 1
n'2(0,—00)—»pN4(0,25' 235", % = 0'2/ g, (Wi g, (1) g2(u) du.
0

Next, let & := Y;—mj (j/n),

n B n 1 nx*l . . n . . R
Cn = (nb)~2 Z/O K? <n—b]> dGwé;, 62 =n"1Y &L, 9% =460
= -

Dy =7, 'nb"*(My(0n)—Cn).

Then, D, »pAN1(0,1), and the test that rejects X, in favor of H;, whenever |D,| > Z42, has asymptotic size o.
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4. Consistency and asymptotic power

In this section we shall discuss consistency of én for 0y under H and of the above test based on D, against a fixed
alternative. We shall also derive asymptotic power of this test against sequences of local nonparametric alternatives.

Let L,(G) denote the class of real valued square integrable functions on [0,1] with respect to G,
p(V] ,Vz) = I[V] 7\)2]2 dG,V],Vz € Lz(G), and

T(v) := argminp(v,my), Vv € Ly(G). “4.1)
0c®
Under assumption (m2), T(my,) = 6o, for any value of 0.

We shall first prove 0, —,T(m) for every continuous regression function m. This in turn is used to prove consistency of the
above test based on D,. We also establish asymptotic normality of n!/ 2(9,1—00) and D, under the local alternatives
Hin : p=mg,+Y/V nb'’2, where  is a real valued Lipschitz continuous function of order 1 on [0,1] such that Jmg,pdG=0.

Basic ideas of the proofs of Lemma 4.2 and Theorems 4.1 and 4.2 below are as in Koul and Ni (2004) and Koul and Song
(2009). However, here the details are inherently different and relatively simpler.

Consistency of@n: Proving consistency of 0y, is facilitated by the following continuity lemma. Its proof is similar to that of
Theorem 1 in Beran (1977).

Lemma 4.1. Under (m3), the following hold.
(a) T(v) always exists, for all v € L,(G).
(b) If T(v) is unique, then T is continuous at v in the sense that for any sequence of {v,} € Lo(G) converging to v in Ly(G),

T(vn) > T(v), i.e. p(vq,v)—0 implies T(vy)—T(v).
(c) In addition, if (m2) holds, then T(my) = 0, uniquely for v0 € ©.

Now, let Kj;(x) := K((nx—j)/nb)/b, and

. 1< 1< j .
() = EJ; Kpj ()Y}, Mpy(x) = E}; Kpi(x)my (E) x €[0,1], 9n == T(f,).
Note that M(0) = p(it,,mye) and 0, = argmingp(f,,mMyg). A consequence of the above lemma is the following:

Lemma 4.2. Suppose (2.2), (2.4), (2.5) and (m3) hold. Furthermore, suppose m is a given continuous regression function such
that the errors Y;—m(i/n), 1 < i< n, are homoscedastic having finite and positive variance o2, and such that T(m) is unique. Then,

@) 9y —pT(m). (b) B —,T(m). (42)

Proof. To prove (a), in view of part (b) of Lemma 4.1, it suffices to prove

P(itm) = 0p(1). 43)

Let, & = Y;—m(i/n), 1 <i<n,
n o n l

Va(x) =n"" l; Kpi(x)&;, Mp(x) =n"" l; Kpi(x)m (ﬁ> x €[0,1]. (4.9

To prove (4.3), write
. 2
. 1 _ _
piitm = | [n > 1<bj<x>v,~m(x>} 4600 = [ 1Vao0-+ (0 -m@ A6 <2 [ V2 dG-+ 2Tz, m).
. =

By Fubini’s Theorem, continuity of g and because E&; =0,

E / V2dG = bl? / K(u) Xn: g <bu + %) du=0(nb)™),

iz
/) V2dG=0,((nb)y 1) =o0,(1) because nb—oc. (4.5)

Continuity of m and (2.2) imply p(m,,m)—0. This completes the proof of part (a).
To prove part (b), it suffices to show that

Zugll\/ln(ﬂ)—p(m.ma)l =0p(1). (4.6)

For, assume this to be true. By (m3) and the triangle inequality

lp(m,my,)—p(m,my,)| < |p"/>(m,mg,)—p'/2(m,my)1* < ClO1 0,17, v6,, 0, € 6.
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This together with (4.6) imply

(ljinélim supP( sup  |Mp(61)—Myu(63)] > F) =0, ve>0. 4.7)
- 164 J

n 05l <&

These two facts in turn imply 0, —pT(m). For, if 0, - pT(m), then, by the compactness of @, there is a subsequence {(:)nk} of
{0n} and a 9£T(m) such that 0,, — 3. Because My, (0n,) < My (T(m)) < |My,, (T(mM))—p(M,Mrm)| + (M, M1(m)),

P(m.my) < (M, M)~ M, (9)|+ M () =M (01| + M (Or) < P10+ 25UPIM ()= P, 0) -+ M (9)~Mir (O, )1
By (4.6) and (4.7), the last two summands in the above bound tend to zero, in probability, so that p(m,my) < p(m,mynm))

eventually, with arbitrarily large probability. In view of the uniqueness of T(m), this is a contradiction unless 3 = T(m).

To prove (4.6), recall My(0) = p(fi,,myg). Use the factorization (a*—b?)=(a—b)(a+b) and the Cauchy-Schwarz (C-S)

inequality to obtain that |p(f,,my9)—p(m,my)| is bounded above by the product q,1142(0)q,11£2(()), where

qm(0) = / ‘([ﬂn(x)—m(x)]—[mno(x)—mo(X)])2 dG(x),

qn2(0) = / ([ftn(X)+ M)~ [Mpg (%) + My (0)])* dG(X).

But qn1(0) < 2(p(f1,,,m)+ p(Mmyg,my)). By (4.3), the first term in this bound is o,(1). We need to show that the second term
tends to zero uniformly in 0 € @. Because, for each 0, my(x) is continuous in x, we already have p(m,4,my)— 0, for every
0 € O. To obtain uniformity, note that v6;,6, € O,

10(Mpg, . Mg,)—p(Myg, Mg, ) >

< / (Mg, (X)— M, (X)) Mg, (X)— g, (0))? AG(x)
x / (Mg, () -+ Mg, (0]~ [y, (X) + My, (X)])? dGX). 48)

Let Hy(x) == n~1 S°1_ | Kp((nx—i)/nb)h(i/n), where h is as in (m3). By (m3), the first factor of the product in the r.h.s. of (4.8)
is bounded above by Cll0;—0,1%( [ H2(x)g(x) dx+1). Using the fact that [K(s)K(s+t)dsdt=1 and h and g are continuous,
direct calculations show that

/ H2(x)g(x) dx— / h?(x)g(x) dx < co. (4.9)

Because my(x) is bounded on [0,1] x ©, the second factor in (4.8) is bounded above by C([ H2(x)g(x)dx+1) = O(1). These
facts, together with the compactness of ® imply that supy.qn1(0) = 0p(1) while my(x) bounded on [0,1] x @ implies that
Supycpqn2(0) = Op(1), thereby completing the proof of (4.6). O

Upon taking m =my, in the above lemma one immediately obtains the following:
Corollary 4.1. Suppose (1.1), H, (2.2), (2.4), (2.5), and (m1)-(m3) hold. Then 3, — 0o, [)n—>p00. in probability.

Consistency of D, test: Consistency of the above test that rejects 7 in favor of an alternative m¢ MM whenever |D,| is large
will be implied by showing |D,|— 00, under the given alternative m. We establish the latter result below. Let m be a
regression function, dy(x) := my(x)—m(x), and

1< i
Dpo(x) = E,; Kpi(x)dg (E) xe[0,1], 0 € 0.
The following theorem provides a set of sufficient conditions under which |D,| - poo.

Theorem 4.1. Suppose (2.2), (2.4), (2.5) and (m3) hold. Furthermore, suppose the alternative hypothesis Hy : pu(x) = m(x),vx €
[0,1] holds with the additional assumption that m is continuous, infyp(m,my) > 0 and the errors &; =Y;—m(i/n), 1 <i<n, are
homoscedastic zero mean r.v.'s having finite and positive variance 2 and finite fourth moment. Then, |D| - poo.

Proof. Recall the definition of V,, from (4.4). Subtract and add m(i/n) to Y,»—m(-,"(i /n) and expand the quadratic integrand to
rewrite My (0,) = Sp1 —2Sn2 +Sp3, where

Sy = / V2dG, Sy = / Vo@D, () dGX), Sis = / D2, (x)dG(x).

Note that S, is like My (6). Argue as for (2.13) to establish that under the current set up, nb/%(Spy —Ci)—¢N1(0,y?), where
ci=", ngi(x)fi2 dG(x)/n?, and y? as in (2.13).
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Again, write T for T(m). We claim S;3 = p(m,mr)+0,(1). To see this, proceed as follows. Subtract and add my(i/n) in the ith
summand of D,j"(x) and expanding the quadratic to rewrite S;3 = Sy31 +2Sn32 +Sn33, Where

St = [ D0 dGe0, Sz = [ Durlm,, 0-muro1dGeo,

S = [ My, (0-mur oI G0

Continuity of m(x), my(x) and g(x) in x € [0,1], readily implies

. . o2
5n31=/ EEKM(X){m(;)_mT(DH dG(x)— p(m,mr).

By (m3), Sp33 < 10,—T128 JH2(x)dG(x) = 0p(1), by consistency of 0, for T and (4.9). By the C-S inequality, |Sp32| <|
Si31Sn33/1/2 = 0p(1). Therefore, Sy3 = p(m,mr)+0p(1). By (4.5) and the C-S inequality, |Spz| < |Sn11'/2ISs31"/2 = Op((b)~1/?).
Next, note that

. i 1 i
Cn—Cy = =) Z/I i(X)EiD, (ﬁ>dG(X)+ﬁZ/I<§f(X)D§,, <ﬁ>dG(X)=—ZD1+D2 say.
i1

Calculations similar to the above show that
i
me(3)-m(;,) idceo

il [ > Keo|my, (1) -me (1) endeon+ [ 3" Ko
me(3)-m(;, ) i1dGe0. (4.10)

i=1 i=1
< C/ Z 1<§,(x)h( >|§,| dG)10,—TIF + / Z KZ(x)
i=1 i=1
Direct calculations show that the expected value of the second term in this bound is of the order (nb)~! so that it is
Op((nb)“). Similarly, because 116,—TI = op(1), the first term in this upper bound is op((nb)‘l). As a result, D; = Op((nb)™).
Similar calculations show that D, = O,((nb)~110,—TI%). By the LLN’s, y,,— 7. All these results together yield

Dy =nb"2y~ 1Sy —C:)+nb' 2y~ p(m,my)+op(nb"/?),
hence the theorem, because infyp(m,my) = p(m,mr) >0 and nb'? 500, O

Power at local alternatives: Here we shall now study the asymptotic power of the proposed D, test against some local
alternatives. Accordingly, let i be a known real valued function on [0,1] such that

/m,,ol//d(;:o. @11

Consider the sequence of local alternatives

1nt HX) = Mg, (X)+ 0 (X), Sp=1/\/nb"?. 4.12)
The following theorem gives the asymptotic distributions of 0, and D, under H,.

Theorem 4.2. Suppose (1.1), (2.2), (2.4), (2.5), (m1)-(m6) and H;, hold with Y;—u(i/n),1 <i<n being i.i.d. zero mean r.v.’s
having finite and positive variance t2 and finite fourth moment. Additionally, assume y and h, are Lischitz continuous of order
1 and that (4.11) holds. Then,

n'2(0,—00)— N (0,25 =351, (4.13)
bn_,dN(r1 /1//2dG,1). (4.14)

Remark 4.1. From (4 14) we readily obtain that the asymptotlc power of the D,—test against Hq, is
B =1-D(z4,—) fl// dG). Clearly B(¥) is strictly increasing in 3(g) = y~ fl,b (X)g(x) dx. Thus to find a G that maximizes
this power is equnvalent to finding a g that maximizes $(g) w.r.t. g. Now, recall that y = 2( [ g2(x) dx)'/*( [ K2(t) dt)'/2. Clearly,
with a = 2(fK2(t)dp)'/?,

[V’ wegwdx _ ([Y'xdy'?
a(f g2 dx)'/? a '

Hg) =

with equality if, and only if, gocy?, in Wthh case the maximum asymptotic power is 1—®(z,—a ([ y* dG)!/?

9(cg) = 9(g), for all c € R, one may take g= l// to obtain this power.

). Since
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Proof of Theorem 4.2. Consider (4.13). Under Hy,, & = Yj—my,(i/n)—dntp(i/n). Let

1¢ — 1< i
Va0 = 1 > K, a0 = D Ko ().

i=1 i=1

Because of (2.2) and the assumed Lipschitz continuity of order 1 of ¢ and my,,
/ [, — T2 dG = O(b?), / 119, —1itg, 12 dG = O(b?). (4.15)
Now, first note that nbM,(6p) = Op(1). To see this, under Hy,
Ma(0o) < /vﬁdc+2(nb”2r‘ /ﬁdc.
Argue as for (4.5) to conclude that
/ V2dG=0,((nb)™ ). (4.16)

This together with (4.15) shows that M, (0p) = Op((nb)’l). In turn, this fact and an argument similar to the one used in Koul
and Ni (2004, p. 120) shows that

nbl0,—0oll = 0p(1). 4.17)

Let

Unte0) = 3 3 K <Y"‘mf’ <i>>

i=1
Note that with M,(0) = 0M,(0)/00, 0, satisfies

Ma(n)= =2 [ UnixBuin, (0 dGe0 (4.18)
Adding and subtracting mg,(i/n) from Yi—m(-,"(i/n) in Un(x,0,), rewrite (4.18) as

/Un(x,Ho)mn(,n(x) dG(x) = /Dn()"(x)mn@"(x) dG(x). 4.19)
The right hand sjde of (4.19) is random only because of 0. Arguing as in Koul and Ni (2004, pp. 121-123), it can be shown
to equal to Ry(0,—00)+0p(1), where R, is a matrix, R, — 2. The left hand side, under H;,, can be written as Sp1 +Sn2,

where

Su = [ Va0, (0 dGE0,  Sua = 0n [ 01, (0AGCY.

S = [ Va0 dGe0+ [ Vol 00-rie, (0G0 = S + Sz say.

In view of (4.17), for any &>0, there exists an N, and a K, such that P(A;)>1-¢, for all n> N, where
As = {(nb)'/?10,—6,!l < K,}. Hence, using (4.16),
oD i, (
no n 0o n

. n 2
/ GZKW)) dG(x) = 0p(1), (4.20)

i=1

2
n|smz|2sn/v§ dc+/umngn_m(,gnzdcgop(b*)

max
1 <i<n,mb)'?10—-0,l <K,

by (m5) and the fact that the last factor above tends to [dG < oc.

Argue as in the proof of Proposition 2.1, part (i), and as in Koul and Ni (2004, pp. 121-123) to obtain that under 1,
nl/ZS,m —>DN] (O,S) Hence, nl/ZSm —>DN] (O,S)

Now, consider

281 = b7 [ 1,000, 001, (01dG0 +b7/% [ 010,00 4G, @21)

An argument like the one used in (4.20) shows that the first term in this bound tends to zero, in probability.
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Consider the second summand. In view of (4.11) and (4.15), [ Hrhngqu dG— [ Hm@OH2 dG and
b1 [ 00100, 4600 = b [ 7,00~ G0, (0 AGGO +b4 [ 0, 0)-ria, (0] dGix) = OB/ ) 0.

Hence, n'/2S,; —,0, thereby completing the proof of (4.13).
Next, we sketch the proof of (4.14). Let Un(x) = Un(x,00), and

Ty = / U2dG, Ty, = / UnlMngy—m, )1dG, Ty = / Mgy~ 12 dG.

Then we can rewrite My(0n) = Ty + 2Tz + Tn3. Because of /fi(0,—0p) =Op(1) and (m4), T,3=0y(n"") so that nb'/?T,;=
0x(b")=0,(1).

Next, we shall show that Ty, =Oy(n~"b="/4) implying nb'/?T,; = 0,(b"/4)=0p(1). By C-S, T2, < Ty Ty3. Under Hyp,
Yi—my, (i/n) = i (i/n)+¢;. Hence, by (4.15) and (4.16),

Ty <2 / V2 dG+ 62 /Jﬁ dG = 0,((nb)"1)+0p((nb"/?)~1) = O,((nb"/*)™),

so that Tpy = Op(n~1h=1/4).
We need a more precise approximation of T,,;. For that purpose, write T,;; = Tp11 +25,,T,,12+5ﬁTn13, where

- —2
Tnl‘l ZZ/V%dG, Tn12 ZI/anpndG, Tn13 3:/‘%1 dG

With 12 = Var(g),

' 2‘1 S ' 2 -1
Var((/ Vi dG) =1 ﬁ‘q (/ Kpi(X)r(X) dG(x)) =0(n "),

2

Th12— / Vo dG

< /Vﬁ dG/M,,—lmsz:op(n—]b),

nb'/25,|Tarz| = n'2bV/4(0p(n~1/2)+ 0p(n~"/2b"/2)) = Op(b'/*) - ,0.
In view of (4.15), T3 — [ 1//2. We thus obtain that

b 2T,y =n2T + /qﬂ dG+o0p(1). (4.22)

Finally, we need to discuss asymptotic behavior of C, under the local alternative (4.12). With {; = Y;—my, (i/n), rewrite
Yi—my (i/n) = {i—[m; (i/m)—mg,(i/n)] in Cy, to obtain

~ 1 n 2 n i i
Cn= ﬁ; / K2 dGx)— n—zi; | / K20 {m[)n <E) _rmg, <H)} G
-l n . . 2
Tz Z /K,fi(x) {m@n (%) —myg, <%>> dG(x) = Cy1—2Cpa +Cp3.

i=1

But with Ay = 0n—0o, dyi = m;_(i/n)—mg, (i/m)— A}, (i/m), and & = Yi—mg, (i/m)—dup(i/n),
13 18 "1t .
an _ ﬁ z /Kg,(x)t"l dni dG(X)+ ? Z / Kgi(x)giAnmb‘g <%> dG(X)

i=1 i=1
3 / K200 (%) A, (%) dG().

1 .
+ % Z] / Kiicow (%) dpi dG(X)+ % >
1= 1=

Recall that 6,=1/V nb'/2, Use assumptions (2.5) and (m3), to show that the first and the second terms in C,, are
0,(n~32b~1), the third and the fourth terms are of the order O,(n~2b~>/). This implies C,, = 0,(d2). Similarly, one can
show that Cy3 = 0p(37).

Since Y;—my, (i/n) = &+ dn(i/n), if we let D, =n=2Y"7_; [KZe? dG, then using the similar argument, we can show that
Cn =Dn+op(5ﬁ). Finally, we also have },—,y.

Therefore, under the local alternative hypothesis (4.12),

b5, (M(0n)—Cp) =nb"?$ " (Ta11—Dn) + 9  Tarz +0p(1),

which, together with the fact nbl/zf),{](Tnn —Dp)—pN1(0,1) and Tpi3 —p fl//z dG concludes the proof of the theorem. O
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