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Abstract

We prove asymptotic normality of a suitably standardized integrated square dif-
ference between a kernel type error density estimator based on residuals and the ex-
pected value of the error density estimator based on innovations in GARCH models.
This result is similar to that of Bickel-Rosenblatt under i.i.d. set up. Consequently the
goodness-of-fit test for the innovation density of GARCH processes based on this statis-
tic is asymptotically distribution free, unlike the tests based on the residual empirical
process. A simulation study comparing the finite sample behavior of this test with
Kolmogorov-Smirnov test and the test based on integrated square difference between
the kernel density estimate and null density shows some superiority of the proposed
test.

1 Introduction

The problem of fitting a given distribution function to a random sample, otherwise known

as the goodness-of-fit testing problem, is a classical problem in statistics. Often omnibus

tests are based on a discrepancy measure between empirical and null distribution functions

(d.f.’s). These tests are easy to implement as long as there are no nuisance parameters under

the null hypothesis. For example, when fitting a known continuous d.f. to the given data,

Kolmogorov-Smirnov test is known to be distribution free for all sample sizes and hence

easy to implement. But it looses this property when fitting an error distribution in the one

sample location-scale model. In comparison, as noted by Bickel and Rosenblatt (1973), some

goodness-of-fit tests based on density estimates do not suffer from this draw back. One such

statistic is the integrated square difference between a density estimate and its expected value

under the null hypothesis.

More precisely, let ε1, · · · , εn be i.i.d. observations from a density f . Let f0 be a given

density with zero mean and finite variance and consider the problem of testing the hypothesis

H0 : f = f0, vs. H1 : f 6= f0.
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Define the density estimator

fn(x) =
1

nh

n∑

k=1

K
(x− εk

h

)
, x ∈ R := (−∞,∞),

where K is a density kernel and h = hn is a sequence of positive numbers, tending to zero.

Bickel and Rosenblatt (1973) proposed to use the statistic

Tn =

∫ (
fn(x)− E0fn(x)

)2
dx

for testing H0, vs. H1. Here E0 is expectation under H0. They proved, under H0 and under

some conditions that included second order differentiability of f0, that as n →∞,

n
√

h
(
Tn − 1

nh

∫
K2(t)dt

)
→D N (0, τ 2), τ 2 = 2

∫
f 2

0 (x)dx

∫
(K ∗K(x))2dx, (1.1)

where g1 ∗g2(x) :=
∫

g1(x− t)g2(t)dt, for any two integrable functions g1, g2. Bachmann and

Dette (2005) weakened their conditions required for (1.1), and also established the following

asymptotic normality result for Tn under the alternatives H1 : f 6= f0,
∫

(f(x)− f0(x))2dx >

0. Assuming only f, f0 to be continuous and square integrable, they proved

√
n
(
Tn −

∫ {
Kh ∗ (f − f0)

}2
(x)dx

)
→D N(0, 4ω2), n →∞, (1.2)

where ω2 = Var[f(ε0) − f0(ε0)], and Kh(·) = (1/h)K(·/h). Bachmann and Dette (2005)

mention they assume f, f0 to be twice continuously differentiable with bounded second

derivatives, but a close inspection of their proofs of (1.1) and (1.2) shows that all they need

is f, f0 to be continuous and square integrable.

Now consider the problem of fitting a zero mean density f0 to the error density of a

stationary linear autoregressive model of a known order. Lee and Na (2002) and Bachmann

and Dette (2005) showed that (1.1) and (1.2) continue to hold for an analog of Tn based

on autoregressive residuals, under H0 and H1, respectively. In other words, not knowing

nuisance autoregressive parameters has no effect on asymptotic level of the test based on

this analog for fitting f0 to the error density in this model.

In this paper we consider the problem of fitting density f0 to the error density of a

generalized autoregressive conditionally heteroscedastic (GARCH(p, q)) model, where p and

q are known positive integers. We provide some sufficient conditions under which (1.1)

continues to hold for T̂n, an analog of Tn based on GARCH residuals, defined at (2.4) below.

In addition, we establish a first order expansion of T̂n under H1. This expansion shows that

unlike in linear autoregressive models, the estimation of the model parameters affects the

asymptotic distribution of T̂n under H1.
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Mimoto (2008) showed that the goodness-of-fit test for the error density in GARCH mod-

els based on a suitably standardized sup-norm statistic ‖f̂n − f0‖∞ has the same asymptotic

null distribution as in the i.i.d. set up. Cheng (2008) derives a similar result in the case of

ARCH models.

This paper is organized as follows. In the next section we describe the model, assump-

tions and recall some preliminaries from Berkes, Horváth and Kokoszka (2003). Asymptotic

normality of T̂n under H0 and a first order approximation of T̂n under H1 are given in section

3 with proofs appearing in section 5. Section 4 contains a simulation study comparing T̂n

test with the Kolmogorov-Smirnov test and the one based on
∫

(f̂n − f0)
2. The proofs given

below use several results from Berkes et al. (2003) and Horváth and Zitikis (2006) about

some properties of GARCH models. Many details of the proofs are different from those

appearing in these papers and Mimoto (2008).

2 Model, some preliminaries and assumptions

In this section, we describe the model, review some known results about the model, and state

the needed assumptions. Let p, q be known positive integers, yk, k ∈ Z := {0,±1, · · · , } be

the GARCH(p, q) process satisfying

yk = σkεk, σ2
k = ω +

∑
1≤i≤p

αiy
2
k−i +

∑
1≤j≤q

βjσ
2
k−j, (2.1)

where θ = (ω, α1, · · · , αp, β1, · · · , βq)
T is the parameter vector of the process, with ω > 0;

αi ≥ 0, 1 ≤ i ≤ p; βj ≥ 0, 1 ≤ j ≤ q. The innovations εk, k ∈ Z, are assumed to be i.i.d.

random variables with a density function f having zero mean and finite variance.

Necessary and sufficient conditions for the existence of a unique stationary solution of

(2.1) have been specified by Nelson (1990) for p = 1, q = 1, and by Bougerol and Picard

(1992a, 1992b) for p ≥ 1, q ≥ 1. In particular, for GARCH(1,1) model, E log(β1 +α1ε
2
0) < 0

implies stationarity of the process. Because ex ≥ 1+x, for all x, we have E log(β1 +α1ε
2
0) ≤

β1 +α1E(ε2)−1. Thus, if error density is standardized to have zero mean and unit variance,

then β1 + α1 < 1 implies the stationarity of the GARCH(1, 1) process.

A major characteristic of the GARCH process is that the past dependency of the obser-

vations yk is only through the unobservable conditional variance σ2
k. Berkes et al. (2003)

show that under suitable conditions, σ2
k admits a unique representation as the infinite sum

of y2
k, allowing σ2

k to be estimated from the observations. One of them is to assume that the

polynomials

α1x + · · ·+ αpx
p and 1− β1x− · · · − βqx

q are coprimes (2.2)

on the set of polynomials with real coefficients.
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This is to ensure that the equations (2.1) are true only with θ and there is no other parameter

that satisfies the equation.

Let u = (r, s1, · · · , sp, t1, · · · , tq) denote a generic element of the parameter space

U :=
{
u : t1 + · · ·+ tq ≤ ρ0,

u < min(r, s1, · · · , sp, t1, · · · , tq) ≤ max(r, s1, · · · , sp, t1, · · · , tq) ≤ u
}
,

where 0 < u < u, 0 < ρ0 < 1, qu < ρ0. With coefficients ci(u), 0 ≤ i < ∞ as in Berkes et

al. (2003), let

wk(u) = c0(u) +
∑

1≤i<∞
ci(u)y2

k−i.

Assuming that E|ε0|δ < ∞ for some δ > 0 and θ is an interior point of U with none of

the coordinates equal to zero, Berkes et al. showed that σ2
k = wk(θ), for all k ∈ Z, a.s.

Assuming further that the distribution of ε2
0 is non-degenerate, this representation is almost

surely unique. With given observations yk, 1 ≤ k ≤ n, this representation allows one to

estimate σ2
k by the truncated version

σ̂2
k = ŵk(θn) = c0(θn) +

k−1∑
i=1

ci(θn)y2
k−i, (2.3)

where θn is an estimator of θ based on yk, 1 ≤ k ≤ n. This leads to the GARCH residuals

{ε̂k = yk/σ̂k} and to the GARCH error density estimate

f̂n(x) =
1

nh

n∑

k=1

K
(x− ε̂k

h

)
.

The proposed test for H0 is to be based on

T̂n =

∫ (
f̂n(x)− E0fn(x)

)2

dx. (2.4)

We shall now state additional needed assumptions for obtaining asymptotic distributions

of T̂n under H0 and H1. About θn assume

√
n(θn − θ) = Op(1). (2.5)

Lee and Hansen (1994), Lumsdaine (1996) and Berkes et al. (2003) discuss some sufficient

conditions that imply (2.5) for the sequence of quasi-maximum likelihood estimators.

About the kernel K, assume

K is a bounded symmetric density on [−1, 1], vanishing off (−1, 1), and twice (2.6)

differentiable with bounded derivative K ′ and
∫ (

K ′′(z)
)2

dz < ∞,
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where g′ and g′′ denote, respectively, the first and second derivatives of a smooth function g.

In order to use results from Berkes et al. (2003), we need to assume

E|ε2
0|δ < ∞, for some δ > 1. (2.7)

We say density f satisfies condition C(f) if the following holds.

f is absolutely continuous with its a.e. derivative ḟ satisfying (2.8)

I`(f) :=

∫ ( ḟ(x)

f(x)

)2
f(x)dx < ∞, Is(f) :=

∫ (
1 + x

ḟ(x)

f(x)

)2
f(x)dx < ∞,

∫ ∫
x2

{
ḟ(x− zh)− ḟ(x)

}2
dxK(z)dz → 0, as h → 0.

Note that I`(f) and Is(f) are, respectively, Fisher information for location and scale pa-

rameters in one observation from f . Their finiteness together imply f is bounded, Lipschitz

(1/2), cf. Koul (2002, p78), and

∫
(ḟ(x))2dx < ∞,

∫ (
xḟ(x)

)2
dx < ∞, and

∫ (
f(x) + xḟ(x)

)2
dx < ∞. (2.9)

Also, note that f being bounded implies that P{ε2
0 ≤ t} = o(tη), as t → 0, for some η > 0,

which is one of the conditions required in Berkes et al. (2003).

For the bandwidth h, we assume

h → 0, nh5 →∞, as n →∞. (2.10)

Condition C(f) avoids assuming higher order differentiability of f . Many smooth densi-

ties can be shown to satisfy C(f). An example of non-differentiable density that also satisfies

this condition is double exponential density f(x) = e−|x|/2. For, clearly a.e. derivative of

this f(x) is ḟ(x) = -sign(x)f(x). Hence,

I :=

∫ ∫
x2

[
ḟ(x− zh)− ḟ(x)

]2
dxK(z)dz

=

∫ ∫
x2

[
sign(x− zh)

{
f(x− zh)− f(x)

}
+

{
sign(x− zh)− sign(x)

}
f(x)

]2
dxK(z)dz

≤ 2(I1 + I2),

where

I1 :=

∫ ∫
x2[f(x− zh)− f(x)]2dxK(z)dz,

I2 :=

∫ ∫
x2

{
sign(x− zh)− sign(x)

}2
f 2(x)dxK(z)dz.
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But, for z > 0, and because f is a density bounded by 1/2,

I1 =

∫ ∫
x2

( ∫ zh

0

sign(x− s)f(x− s)ds
)2

dxK(z)dz

≤ 2h2

∫
z2K(z)dz + (2/3)h4

∫
|z|3K(z)dz,

I2 = 4

∫ ∫ hz

0

x2f 2(x)dxK(z)dz ≤ (1/3)h3

∫
|z|3K(z)dz.

Similar facts hold for z < 0. Hence, I → 0, as n → ∞, because h → 0. The rest of the

conditions in (2.8) are easy to verify in this case.

Throughout the rest of the paper, for any square integrable function g on R, its L2 norm

is denoted by ‖g‖2 :=
( ∫

g2(x)dx
)1/2

, and all limits are taken as n → ∞, unless stated

otherwise.

3 Main Results

In the first theorem below we give some preliminary results about f̂n. To state this result

we need to introduce

gn(x) = −1

2
(θn − θ)T 1

n

n∑

k=1

w′
k(θ)

wk(θ)

1

h2
E

[
ε0K

′
(x− ε0

h

)]
,

where w′
k(θ) is the column vector of length p + q + 1, consisting of the first derivatives of

wk(θ) w.r.t. θ, and where T denotes the transpose. We are now ready to state

Theorem 3.1 Suppose the GARCH(p, q) model (2.1) is stationary with the true error den-

sity f satisfying C(f). In addition, assume (2.2), and (2.5)-(2.7) hold. Then,

‖f̂n − fn − gn‖2 = Op(
1

nh5/2
), (3.1)

and

√
n‖gn‖2 = Op(1). (3.2)

Consequently, if also (2.10) holds, then

√
n‖f̂n − fn‖2 = Op(1). (3.3)

Theorem 3.1 is useful in establishing an analog of the result (1.1) for T̂n as follows. We

shall first approximate T̂n by Tn. Assume H0 holds and recall E0 denotes the expectation
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under H0. Direct calculations show that

n
√

h
(
T̂n − Tn

)
(3.4)

= n
√

h

∫ (
f̂n(x)− E0fn(x)

)2

dx− n
√

h

∫ (
fn(x)− E0fn(x)

)2

dx

= n
√

h

∫ (
f̂n(x)− fn(x)

)2

dx + 2n
√

h

∫ (
f̂n(x)− fn(x)

)(
fn(x)− E0fn(x)

)
dx.

By (2.10) and (3.3), the first term is op(1). The following proposition shows the same holds

for the second.

Proposition 3.1 Suppose the conditions of Theorem 3.1 hold with f = f0. Then, under

(2.10) and H0,

n
√

h

∫ (
f̂n(x)− fn(x)

)(
fn(x)− E0fn(x)

)
dx →p 0.

This proposition together with (3.4) yields the following corollary.

Corollary 3.1 Suppose the GARCH(p, q) model (2.1) is stationary and (2.5) - (2.7), C(f0),

and (2.10) hold. Then, under H0,

n
√

h
(
T̂n − Tn

)
= op(1),

and hence,

n
√

h
(
T̂n − 1

nh

∫
K2(x)dx

)
→D N (0, τ 2), τ 2 = 2

∫
f 2

0 (x)dx

∫
(K ∗K)2(x)dx. (3.5)

Remark 3.1 An alternative test of H0 using density estimates could be based on T̃n :=∫
(f̂n(x)− f0(x))2dx. Upon taking v = 2 in (3.5) of Horváth and Zitikis (2006) one obtains

that under (2.10) and E|ε0|3+δ < ∞ with some δ > 0, and under some conditions on K and

f that are stronger than those given above, n
√

h
(
T̃n −

∫
K2(x)dx/nh

)
→D N (0, τ 2).

It is important to point out that under our assumptions, (3.5) does not follow directly

from asymptotic normality of T̃n, because n
√

h|T̂n − T̃n| →p ∞. To see this, consider

T̂n − T̃n = −
∫

(E0fn − f0)
2(x)dx + 2

∫
(f0 − E0fn)(f̂n − E0fn)(x)dx

= −
∫

(E0fn − f0)
2(x)dx + 2

∫
(f0 − E0fn)(f̂n − fn)(x)dx

+2

∫
(f0 − E0fn)(fn − E0fn)(x)dx.

But,
∫

(E0fn − f0)
2(x)dx =

∫ ( ∫
K(z)(f0(x− zh)− f0(x))dz

)2

dx

=

∫ ( ∫
K(z)

∫ zh

0

ḟ0(x− s)dsdz
)2

dx = Op(h
2).
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Hence, under (2.10),

√
nh

∫
(E0fn − f0)

2(x)dx = Op(
√

nh5) →p ∞.

Next, by the Cauchy-Schwarz inequality, (1.1) and (3.3),

√
nh

∣∣∣
∫

(f0 − E0fn)(f̂n − fn)(x)dx
∣∣∣

≤
( ∫

(E0fn − f0)
2(x)dx

)1/2(
nh

∫
(f̂n − fn)2(x)dx

)1/2

= op(1)

√
nh

∣∣∣
∫

(f0 − E0fn)(fn − E0fn)(x)dx
∣∣∣

≤
( ∫

(E0fn − f0)
2(x)dx

)1/2(
nh

∫
(fn − E0fn)2(x)dx

)1/2

= op(1)

Therefore,
√

nh|T̂n − T̃n| →p ∞, and also n
√

h|T̂n − T̃n| →p ∞.

The next theorem gives the first order limiting behavior of T̂n under the alternative H1.

Theorem 3.2 Suppose the GARCH(p, q) model (2.1) is stationary, and (2.5) - (2.7), C(f),

C(f0), and (2.10) hold. Then, under H1,

√
n
(
T̂n −

∫ {
Kh ∗ (f − f0)(x)

}2

dx
)

=
√

n
(
Tn −

∫ {
Kh ∗ (f − f0)(x)

}2

dx
)

−√n(θ̂n − θ)T E
[w′

0(θ)

w0(θ)

] ∫ (
f(x) + xḟ(x)

)
(f(x)− f0(x))dx + op(1).

This result is unlike the result (1.2) in AR models because of the presence of the second

term in the right hand side above. A primary reason that an analog of this term is absent in

the AR model is that the analog of w′
0(θ)/w0(θ) in the AR(p) model is (y1−p, y2−p, · · · , y0)

T

whose expected value is zero when fitting an error density with zero mean. But here these

entities come from a scale factor and hence their expectation can not be zero.

4 Simulation Study

This section contains results of a simulation study illustrating a finite sample performance

of the goodness-of-fit tests based on T̂n of Corollary 3.1 and T̃n of Remark 3.1 against the

Kolmogolov-Smirnov (KS) test based on n1/2 supx∈R |F̂n(x)− F0(x)|, where

F̂n(x) =
1

n

n∑
i=1

I(ε̂i ≤ x), x ∈ R.
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In the study, GARCH(1,1) process with ω = 0.5, α1 = .4, β1 = .2 (so that θ = (.5, .4, .2)T ) of

varying length n were simulated, each iterated 10,000 times. Note that α1 +β1 = .6 < 1, and

to ensure stationarity further, first 500 observations were not included in each simulation.

Estimator θn was obtained by the quasi-maximum likelihood method.

Seven densities were used in the study: standard normal density (N), Student-t densities

with degrees of freedom 40, 20, 10, and 5 (T40, T20, T10, T5), double exponential density

(D), and logistic density (L). All densities were standardized to have mean zero and variance

1. For f0, we chose normal, double exponential, and logistic densities, all standardized. For

the kernel function, we used K(u) = (3/4)(1− u2)I(|u| ≤ 1) and bandwidth

h =
( ∫

K2(x)dx
/ ∫

(f ′′0 (x))2dx(

∫
x2K(x)dx)2

)1/5

n−1/t

with t = 5.1. Note that the above h with t = 5 is an optimum bandwidth which minimizes the

asymptotic mean integrated square error of kernel density estimators. For this simulation,

t = 5.1 is chosen to satisfy assumption (2.10).

Test based on empirical (asymptotic) critical values of T̂n is denoted by T̂n,e (T̂n,a). Define

T̃n,e and T̃n,a similarly. Tables 1-3 contain empirical sizes and powers of these tests and of the

KS test using empirical critical values only. The first row entries in all tables are empirical

sizes and should be close to the nominal level .05.

In Table 1, f0 is the standard normal. Test T̂n,e clearly outperforms all the other tests

for all chosen sample sizes.

In Table 2, f0 = D, the double exponential density. Empirical powers of all the tests

quickly becomes large for n = 500, 1000. For all sample sizes chosen, KS test has worse

empirical power compared to that of T̂n,e and T̃n,e, with T̃n,e dominating T̂n,e for n = 100. For

all the values of n considered, T̃n,a test suffers from large bias of the kernel density estimation

around its peak.

In Table 3, f0 = L, the logistic density. Against N, T40, T20 and T10 alternatives, T̃n,e

performs the best. On the other hand, against the alternatives T5 and D, T̂n,e performs the

best for all n considered, and KS test has higher empirical power than T̃n,e for n = 100, 500.

Poor performance of the tests T̂n,a and T̃n,a based on asymptotic critical values results

from the fact that Monte Carlo distributions of the statistics T̂n and T̃n do not appear to

approximate their asymptotic distributions well even for n = 1000. This is also a reason

for no substantial improvement in the empirical power of these tests when n is increased.

Empirical size of the T̃n,a is especially worse when f0 = D.
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Table 1: Empirical sizes and powers of the tests when f0 = N(0, 1).

n f\ Tests T̂n,e T̃n,e KS T̂n,a T̃n,a

f0=N 0.050 0.050 0.050 0.009 0.019
T40 0.046 0.039 0.045 0.008 0.016
T20 0.049 0.034 0.047 0.010 0.015

100 T10 0.072 0.031 0.052 0.013 0.016
T5 0.219 0.051 0.091 0.054 0.030
D 0.539 0.109 0.230 0.178 0.042
L 0.090 0.030 0.056 0.015 0.015

f0=N 0.050 0.050 0.050 0.009 0.029
T40 0.056 0.029 0.051 0.010 0.015
T20 0.083 0.022 0.056 0.016 0.012

500 T10 0.264 0.038 0.098 0.087 0.023
T5 0.912 0.502 0.478 0.752 0.421
D 1.000 0.998 0.976 0.999 0.996
L 0.537 0.106 0.179 0.252 0.071

f0=N 0.050 0.050 0.050 0.011 0.032
T40 0.061 0.024 0.051 0.013 0.016
T20 0.131 0.024 0.069 0.038 0.016

1000 T10 0.521 0.098 0.170 0.280 0.072
T5 0.997 0.930 0.865 0.988 0.906
D 1.000 1.000 0.999 1.000 1.000
L 0.860 0.370 0.349 0.678 0.313
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Table 2: Empirical sizes and powers of the tests when f0 = D.

n f\ Tests T̂n,e T̃n,e KS T̂n,a T̃n,a

f0=D 0.050 0.050 0.050 0.026 0.173
N 0.732 0.831 0.278 0.525 0.971

T40 0.671 0.782 0.252 0.470 0.956
T20 0.592 0.722 0.226 0.396 0.939

100 T10 0.445 0.582 0.188 0.271 0.869
T5 0.210 0.295 0.121 0.110 0.617
L 0.329 0.458 0.152 0.184 0.783

f0=D 0.050 0.050 0.050 0.016 0.386
N 1.000 1.000 0.993 1.000 1.000

T40 1.000 1.000 0.980 1.000 1.000
T20 1.000 1.000 0.957 1.000 1.000

500 T10 0.998 1.000 0.857 0.992 1.000
T5 0.839 0.928 0.424 0.707 0.996
L 0.983 0.995 0.718 0.954 1.000

f0=D 0.050 0.050 0.050 0.020 0.564
N 1.000 1.000 1.000 1.000 1.000

T40 1.000 1.000 1.000 1.000 1.000
T20 1.000 1.000 1.000 1.000 1.000

1000 T10 1.000 1.000 0.996 1.000 1.000
T5 0.986 0.998 0.717 0.966 1.000
L 1.000 1.000 0.976 1.000 1.000
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Table 3: Empirical sizes and powers of the tests when f0 = L.

n f\ Tests T̂n,e T̃n,e KS T̂n,a T̃n,a

f0=L 0.050 0.050 0.050 0.015 0.042
N 0.118 0.210 0.077 0.029 0.178

T40 0.095 0.164 0.064 0.023 0.138
T20 0.082 0.132 0.063 0.019 0.109

100 T10 0.060 0.080 0.058 0.018 0.067
T5 0.077 0.045 0.060 0.030 0.040
D 0.199 0.027 0.112 0.056 0.024

f0=L 0.050 0.050 0.050 0.016 0.059
N 0.558 0.777 0.184 0.320 0.806

T40 0.393 0.613 0.140 0.192 0.649
T20 0.255 0.441 0.106 0.104 0.478

500 T10 0.087 0.153 0.058 0.028 0.174
T5 0.202 0.026 0.090 0.102 0.030
D 0.961 0.592 0.621 0.897 0.628

f0=L 0.050 0.050 0.050 0.015 0.068
N 0.886 0.972 0.379 0.740 0.982

T40 0.721 0.898 0.260 0.514 0.924
T20 0.492 0.728 0.180 0.297 0.780

1000 T10 0.130 0.241 0.071 0.053 0.287
T5 0.379 0.054 0.169 0.245 0.067
D 1.000 0.981 0.953 0.999 0.987

12



5 Proofs

This section contains the proofs of some of the claims of section 3. The following Cauchy-

Schwarz inequality is used repeatedly in the proofs. For any real sequences ak, bk, 1 ≤ k ≤ n,

( n∑

k=1

akbk

)2

≤
( n∑

k=1

|ak|
)( n∑

k=1

|ak||bk|2
)
. (5.1)

We also need to recall the following facts from Berkes et al. (2003). Facts 5.1 - 5.5 below

are Lemmas 2.2, 2.3, 5.1, 5.6, and (5.35) in Berkes et al. (2003), respectively.

Fact 5.1 Let log+ x = log x if x > 1, and 0 otherwise. If {ζk, 0 ≤ k < ∞} is a sequence

of identically distributed random variables satisfying E log+ |ζ0| < ∞, then
∑

0≤k<∞ ζkz
k

converges a.s., for all |z| < 1.

Under the assumptions of Theorem 3.1 the following facts hold.

Fact 5.2 There exists a δ∗ > 0, depending on δ of (2.7), such that E|y2
0|δ

∗
+ E|σ2

0|δ
∗

< ∞.

Fact 5.3 E
[
supu∈U σ2

k/wk(u)
]ν

< ∞, for any 0 < ν < δ, where δ is as in (2.7).

Fact 5.4

E sup
u∈U

∥∥∥w′
0(u)

w0(u)

∥∥∥
ν

< ∞ and E sup
u∈U

∥∥∥w′′
0(u)

w0(u)

∥∥∥
ν

< ∞, ∀ ν > 0,

where ‖ · ‖ denotes the maximum norm of vectors and matrices. This implies that

E sup
u∈U

∥∥w′′
0(u)/w0(u)

∥∥ν

E
< ∞, ∀ ν > 0,

where, for any m× r matrix A = ((aij)), ‖A‖E :=
√∑m

i=1

∑r
j=1 a2

ij.

Fact 5.5 For all u ∈ U ,

|wk(u)− ŵk(u)|
ŵk(u)

≤ C2

C1

ρ
k/q
0

∑
0≤j<∞

ρ
j/q
0 y2

−j

where ρ0 is from the definition of U , and 0 < C1, C2 < ∞.

We would like to point out that Fact 5.4 is the corrected version of Lemma 3.4 of Mimoto

(2008) where w2
0(u) appears in the denominators.

We now proceed with the proof of Theorem 3.1. Throughout the proof below, let

rk(u) :=
w′

k(u)

wk(u)
, R k(u) :=

w′′
k(u)

wk(u)
, rk :=

w′
k(θ)

wk(θ)
, Sn :=

n∑

k=1

rk, Sn :=
1

n
Sn. (5.2)

13



Because the underlying process is stationary, by the Ergodic Theorem, in view of Fact 5.4,

Sn → Er0 = E
w′

0(θ)

w0(θ)
, a.s. (5.3)

This notation and fact is often used in the sequel.

Proof of Theorem 3.1. Define

σ2
kn = wk(θn) = c0(θn) +

∑
1≤i<∞

ci(θn)y2
k−i.

Let {ε̃k = yk/σkn} be the non-truncated version of the residuals and let

f̃n(x) :=
1

nh

n∑

k=1

K
(x− ε̃k

h

)
.

Now write f̂n − fn − gn = f̂n − f̃n + f̃n − fn − gn, so that

‖f̂n − fn − gn‖2 ≤ ‖f̂n − f̃n‖2 + ‖f̃n − fn − gn‖2. (5.4)

We claim

∥∥f̂n − f̃n

∥∥
2

= O
( 1

nh3/2

)
, a.s. (5.5)

Use the Mean-Value Theorem and the triangle inequality to obtain

|f̂n(x)− f̃n(x)| =
∣∣∣ 1

nh

n∑

k=1

[
K

(x− ε̂k

h

)
−K

(x− ε̃k

h

)]∣∣∣

≤ 1

nh2

n∑

k=1

|ε̃k − ε̂k|
∣∣K ′(x− ηk

h

)∣∣,

where ηk = εk + c∗(ε̂k− εk), for some 0 < c∗ < 1. Hence, (5.1) and a routine argument yields

∫
|f̂n(x)− f̃n(x)|2dx ≤ 1

n2h3

( n∑

k=1

|ε̃k − ε̂k|
)( n∑

k=1

|ε̃k − ε̂k|
∫

1

h

∣∣∣K ′
(x− ηk

h

)∣∣∣
2

dx
)

=
1

n2h3

( n∑

k=1

|ε̃k − ε̂k|
)( n∑

k=1

|ε̃k − ε̂k|
∫ ∣∣K ′(z)

∣∣2dx
)

=
1

n2h3

( n∑

k=1

|ε̃k − ε̂k|
)2

∫ ∣∣K ′(z)
∣∣2dz.

We shall show

∞∑

k=1

|ε̃k − ε̂k| = O(1), a.s. (5.6)
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This fact and (2.6) then completes the proof of (5.5).

To prove (5.6), observe that

|ε̃k − ε̂k| = |yk|
∣∣∣ 1√

wk(θn)
− 1√

ŵk(θn)

∣∣∣

=
|yk|√
wk(θn)

∣∣∣ wk(θn)− ŵk(θn)
√

ŵk(θn)
(√

wk(θn) +
√

ŵk(θn)
)

∣∣∣

≤ sup
u∈U

|yk|√
wk(u)

∣∣∣wk(u)− ŵk(u)

2ŵk(u)

∣∣∣

≤ sup
u∈U

|yk|√
wk(u)

( C2

2C1

ρ
k/q
0

∞∑
j=0

ρ
j/q
0 y2

−j

)
, ∀ k ≥ 1,

where 0 < C1, C2 < ∞, and ρ0 is from the definition of U . We obtain the last but one upper

bound above by the fact that ŵk(u) ≤ wk(u), for all k ≥ 1 and u ∈ U , and the last upper

bound by Fact 5.5. Therefore,

∞∑

k=1

|ε̃k − ε̂k| ≤ C2

2C1

( ∞∑
j=0

ρ
j/q
0 y2

−j

)( ∞∑

k=1

sup
u∈U

|yk|√
wk(u)

ρ
k/q
0

)
.

Note that supu∈U |yk|/
√

wk(u) is a stationary sequence, and so is y2
−j. By Fact 5.2, (2.7)

implies E|y2
0|δ

∗
< ∞, for some δ∗ > 0. By the independence of εk and wk(u) and Fact 5.3,

E
[

sup
u∈U

|yk|√
wk(u)

]
= E

[
|ε0|

](
E

[
sup
u∈U

σ2
0

w0(u)

]1/2)
< ∞.

Since log+ moments of both supu∈U yk/
√

wk(u) and y−j are finite, and |ρ0| < 1, Fact 5.1

implies

∑
0≤j<∞

y2
−jρ

j/q
0 < ∞ and

∑

1≤k<∞
sup
u∈U

|yk|√
wk(u)

ρ
k/q
0 < ∞, a.s.,

thereby completing the proof of (5.6).

Next, we shall analyze ‖f̃n− fn− gn‖2, the second term of the upper bound in (5.4). By

the Taylor expansion up to the second order,

f̃n(x)− fn(x)− gn(x) =
1

nh

n∑

k=1

{
K

(x− ε̃k

h

)
−K

(x− εk

h

)}
− gn(x) (5.7)

=
1

nh2

n∑

k=1

(ε̃k − εk)K
′
(x− εk

h

)
− gn(x)

+
1

2nh3

n∑

k=1

(ε̃k − εk)
2K ′′

(x− ξk

h

)
,
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where ξk = εk + c∗(ε̃k − εk), for some 0 < c∗ < 1.

We claim
∫ [ 1

nh3

n∑

k=1

(ε̃k − εk)
2K ′′

(x− ξk

h

)]2

dx = Op(
1

n2h5
). (5.8)

Let ∆n = θn − θ, and write

(ε̃k − εk) = yk

( 1√
wk(θn)

− 1√
wk(θ)

)
= yk

( 1√
wk(∆n + θ)

− 1√
wk(θ)

)

Recall (5.2). The first and second order Taylor expansions of 1/
√

wk(∆n + θ) around θ

yield the following two equations, respectively.

(ε̃k − εk) = −εk

2
∆T

n rk(θ
∗
1) (5.9)

= −εk

2
∆T

n rk +
3εk

8

(
∆T

nrk(θ
∗
2)

)2

− εk

4
∆T

nR k(θ
∗
2)∆n (5.10)

where θ∗1 = θn + c∗1∆n, and θ∗2 = θn + c∗2∆n, for some 0 < c∗1, c∗2 < 1.

By (5.9), the left hand side of (5.8) is equal to

1

4n4h6

∫ [ n∑

k=1

ε2
k

(√
n∆T

nrk(θ
∗
1)

)2
K ′′

(x− ξk

h

)]2

dx (5.11)

≤ 1

4n2h5

[ 1

n

n∑

k=1

ε2
k

(√
n∆T

nrk(θ
∗
1)

)2
]2

∫ (
K ′′(z)

)2

dz,

where the last inequality is obtained by applying (5.1) with ak = ε2
k

(√
n∆T

nrk(θ
∗
1)

)2
, bk =

K ′′((x − ξk)/h
)
, and by a change of variable in the integration. The above bound is

Op(1/n
2h5), by (2.5), (2.6), (2.7) and Fact 5.4, thereby proving (5.8).

Upon combining (5.7) with (5.8), we obtain
∥∥f̃n − fn − gn

∥∥2

2
(5.12)

=

∫ [ 1

nh2

n∑

k=1

(ε̃k − εk)K
′
(x− εk

h

)
− gn(x)

]2

dx + Op

( 1

n2h5

)
.

By (5.10),

1

nh2

n∑

k=1

(ε̃k − εk)K
′
(x− εk

h

)
(5.13)

= − 1

2n3/2h2

n∑

k=1

(√
n∆T

nrk

)
εkK

′
(x− εk

h

)

+
1

nh2

n∑

k=1

(
∆T

nrk(θ
∗
2)

)2 3εk

8
K ′

(x− εk

h

)

− 1

nh2

n∑

k=1

∆T
nR k(θ

∗
2)∆n

εk

4
K ′

(x− εk

h

)
.
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We shall now show
∫ [ 1

nh2

n∑

k=1

εk

(
∆T

nrk(θ
∗
2)

)2

K ′
(x− εk

h

)]2

dx = Op

( 1

n2h3

)
. (5.14)

∫ [ 1

nh2

n∑

k=1

εk∆
T
nR k(θ

∗
2)∆nK

′
(x− εk

h

)]2

dx = Op

( 1

n2h3

)
. (5.15)

To prove (5.14), use (5.1) in a similar fashion as for (5.11) and a change of variable

formula to obtain that the left hand side of (5.14) is bounded above by

1

n2h3

[ 1

n

n∑

k=1

|εk|
(√

n∆T
nrk(θ

∗
2)

)2
]2

∫ (
K ′(z)

)2

dz.

This bound in turn is Op(1/n
2h3), by (2.5), (2.6), (2.7), and Fact 5.4. This proves (5.14).

The proof of (5.15) is exactly similar.

Thus, upon combining (5.12) to (5.15), we obtain

‖f̃n − fn − gn‖2
2 (5.16)

=

∫ [
− 1

2n3/2h2

n∑

k=1

(√
n∆T

nrk

)
εkK

′
(x− εk

h

)
− gn(x)

]2

dx + Op

( 1

n2h5

)
.

Let Zn denote the first term in the right hand side above. To obtain its rate of convergenc,

introduce

Gk(x) = εkK
′
(x− εk

h

)
− E

[
ε0K

′
(x− ε0

h

)]
.

Also, write ∆n = (∆n,1, . . . , ∆n,p+q+1), and rk = (rk,1, rk,2, · · · , rk,p+q+1)
′. Then,

−
n∑

k=1

√
n∆T

nrkεkK
′
(x− εk

h

)
− gn(x) = −√n∆T

n

n∑

k=1

rkGk(x),

and by the Cauchy-Schwarz inequality,

Zn =

∫ [ 1

n3/2h2

√
n∆T

n

n∑

k=1

rkGk(x)
]2

dx

=
1

n3h4

∫ [ p+q+1∑
j=1

√
n∆n,j

n∑

k=1

rk,jGk(x)
]2

dx

≤ 1

n3h4

p+q+1∑
j=1

(√
n∆n,j

)2
p+q+1∑

j=1

∫ [ n∑

k=1

rk,jGk(x)
]2

dx.

Fix a 1 ≤ j ≤ p+ q +1. Let F` denote the σ−algebra generated by the r.v.’s {εk, k ≤ `}.
Then,

E
(
rk,jGk(x)

∣∣Fk−1

)
= E

(
rk,j

)
EG0(x) = 0, ∀ k, x.
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Hence,

∫
E

[ n∑

k=1

rk,jGk(x)
]2

dx =

∫ n∑

k=1

E
[
rk,jGk(x)

]2

dx = nEr2
0,j

∫
E

[
G2

0(x)
]
dx.

But, since G0 is centered,
∫

EG2
0(x)dx ≤

∫
E

[
ε0K

′
(x− ε0

h

)]2

dx = h

∫ ∫ 1

−1

(x− zh)2
(
K ′(z)

)2
f(x− zh)dzdx

≤ 2h ‖K ′‖∞
∫

y2f(y)dy = O(h),

because K ′ is bounded and supported in [−1, 1]. We have
∫

x2f(x)dx < ∞ from the moment

assumption (2.7). This together with Fact 5.4 proves that Zn = Op(1/n
2h3), which in turns,

together with (5.16), (5.5) and (5.4) completes the proof of (3.1).

Next, we prove (3.2). With Sn defined at (5.2), observe that

n‖gn‖2
2 =

[1

2

√
n∆T

nSn

]2
∫ [ 1

h2
E

{
ε0K

′
(x− ε0

h

)}]2

dx.

Let ψ(x) := f(x) + xḟ(x). We shall shortly prove
∫ [ 1

h2
E

{
ε0K

′
(x− ε0

h

)}
− ψ(x)

]2

dx → 0. (5.17)

Consequently, in view of (5.3),

n‖gn‖2
2 =

[1

2

√
n∆T

nEr0

]2
∫

ψ2(x)dx + o(1), a.s. (5.18)

This result together with (2.5) completes the proof of (3.2).

To prove (5.17), recall K is a density on [−1, 1], vanishing at the end points. Use the

change of variable formula, integration by parts and f being absolutely continuous to write

E
{ 1

h2
ε0K

′
(x− ε0

h

)}
=

1

h

∫
(x− zh)K ′(z)f(x− zh)dz

=
1

h

∫
(x− zh)f(x− zh)dK(z)

=

∫
K(z)

{
f(x− zh) + (x− zh)ḟ(x− zh)

}
dz.

Hence,
∫ [

E
{ 1

h2
ε0K

′
(x− ε0

h

)}
− ψ(x)

]2

dx

=

∫ [ ∫ {
f(x− zh)− f(x)

}
K(z)dz + x

{
ḟ(x− zh)− ḟ(x)

}
K(z)dz

−h

∫
zḟ(x− zh)K(z)dz

]2

dx

≤ 4
(
B1 + B2 + h2B3

)
,
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where

B1 :=

∫ [ ∫ {
f(x− zh)− f(x)

}
K(z)dz

]2

dx,

B2 :=

∫ [ ∫
x
{
ḟ(x− zh)− ḟ(x)

}
K(z)dz

]2

dx, B3 =

∫ [ ∫
zḟ(x− zh)K(z)dz

]2

dx.

By the Cauchy-Schwarz inequality and Fubini Theorem, and because K is a density,

B1 ≤
∫ ∫ {

f(x− zh)− f(x)
}2

dxK(z)dz =

∫ ∫ { ∫ x

x−zh

ḟ(s)ds
}2

dxK(z)dz

≤
∫ ∫

|z|h
∫ x

x−h|z|

(
ḟ(s)

)2
dsdxK(z)dz ≤ h2

∫
z2K(z)dz

∫ (
ḟ(s)

)2
ds = O(h2),

by assumption (2.9). Similarly, the same assumption implies

B2 ≤
∫ ∫

x2
{
ḟ(x− zh)− ḟ(x)

}2
dxK(z)dz → 0.

Finally, in view of (2.9),
∫ (

ḟ(s)
)2

ds < ∞, and

B3 ≤
∫

z2

∫ (
ḟ(x− zh)

)2
dxK(z)dz =

∫
z2K(z)dz

∫ (
ḟ(s)

)2
ds = O(1).

This completes the proof of (5.17). Claim (3.3) follows from (3.1) and (3.2), thereby com-

pleting the proof of Theorem 3.1.

Proof of Proposition 3.1. To begin with note that by the Cauchy-Schwarz inequality,

(1.1), (3.1) and (2.10),

∣∣∣n
√

h

∫
(f̂n(x)− fn(x)− gn(x))(fn(x)− E0fn(x)

)
dx

∣∣∣

≤ √
n
∥∥f̂n − fn − gn

∥∥
2

√
nh

∥∥fn − E0fn

∥∥
2

= Op(n
−1/2h−5/2) Op(1) = op(1).

Hence,

2n
√

h

∫ (
f̂n − fn

)
(x)

(
fn − E0fn

)
(x)dx = 2n

√
h

∫
gn(x)

(
fn − E0fn

)
(x)dx + op(1). (5.19)

Moreover,

2n
√

h

∫
gn(x)

(
fn(x)− E0fn(x)

)
dx (5.20)

= −√n∆T
n Sn

√
nh

∫
E

[ ε0

h2
K ′

(x− ε0

h

)](
fn(x)− E0fn(x)

)
dx.

Let ψ0(x) = f0(x) + xḟ0(x). We claim

√
nh

∫ [ 1

h2
E0

{
ε0K

′
(x− ε0

h

)}
− ψ0(x)

](
fn(x)− E0fn(x)

)
dx →p 0. (5.21)
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This follows from (5.17) and the fact E0

(
nh

∥∥fn−E0fn

∥∥2

2
) = O(1), because the square of the

left hand side of (5.21) is bounded above by
∫ [ 1

h2
E0

{
ε0K

′
(x− ε0

h

)}
− ψ0(x)

]2

dxnh
∥∥fn − E0fn

∥∥2

2
.

Therefore, in view of (5.19) and (5.20),

2n
√

h

∫ (
f̂n − fn

)(
fn − E0fn

)
dx = −√n∆T

n Sn

√
nh

∫
ψ0(x)[fn(x)− E0fn(x)]dx + op(1).

Next, we shall show that

V0 := Var0

(√
nh

∫
ψ0(x)[fn(x)− E0fn(x)]dx

)
= o(1). (5.22)

We have

V0 = nh

∫ ∫
ψ0(x)ψ0(y)E0

{(
fn(x)− E0fn(x)

)(
fn(y)− E0fn(y)

)}
dxdy.

But

E0

{(
fn(x)− E0fn(x)

)(
fn(y)− E0fn(y)

)}

=
1

nh2

{
E0

[
K

(x− ε0

h

)
K

(y − ε0

h

)]
− E0K

(y − ε0

h

)
E0K

(x− ε0

h

)}

=
1

nh

∫
K

(x− y

h
+ w

)
K(w)f0(y − wh)dw

− 1

n

∫
K(t)f0(x− th)dt

∫
K(s)f0(y − sh)ds

=: An,h(x, y)−Bn,h(x, y), say.

Hence, one can write V0 = V01 − V02, where

V01 := nh

∫ ∫
ψ0(x)ψ0(y)An,h(x, y)dxdy

=

∫ ∫ ∫
ψ0(x)ψ0(y)K

(x− y

h
+ w

)
K(w)f0(y − wh)dwdxdy

= h

∫ ∫ ∫
ψ0(t− sh)ψ0(t)K(s + w)K(w)f0(t− wh)dwdsdt

≤ ‖f0‖∞ h

∫
(K ∗K)(s)

∫
ψ0(t− sh)ψ0(t)dtds → 0,

by C(f0). Similarly,

V02 := nh

∫ ∫
ψ0(x)ψ0(y)Bn,h(x, y)dxdy

= h

∫ ∫ ∫ ∫
|ψ0(x)ψ0(y)|K(t)f0(x− th)K(s)f0(y − sh)dtdsdxdy

≤ ‖f0‖2
∞ h

∫ ∫ ∫ ∫
|ψ0(x)ψ0(y)|K(t)K(s)dtdsdxdy = ‖f0‖2

∞ h
( ∫

|ψ0(x)|dx
)2 → 0.

20



Therefore, in view of (5.3), (5.22) and (2.5),

2n
√

h

∫ (
f̂n − fn

)
(x)

(
fn − E0fn

)
(x)dx = op(1).

This concludes the proof of Proposition 3.1.

Proof of Theorem 3.2. Let ∆ := f − f0. We have

√
n
(
T̂n −

∫ (
Kh ∗∆

)2

(x)dx
)

=
√

n

∫ (
f̂n(x)− fn(x) + fn(x)− E0fn(x)

)2

dx−√n

∫ (
Kh ∗∆

)2

(x)dx

=
√

n

∫ (
f̂n(x)− fn(x)

)2

dx

+
√

n
( ∫ (

fn(x)− E0fn(x)
)2

dx−
∫ (

Kh ∗∆
)2

(x)dx
)

+2
√

n

∫ (
f̂n(x)− fn(x)

)(
fn(x)− E0fn(x)

)
dx

+2
√

n

∫ (
f̂n(x)− fn(x)

)(
Efn(x)− E0fn(x)

)
dx

The first term is op(1) by Theorem 3.1. The second term is exactly the left hand side of

(1.2). The third term is op(1) by Proposition 3.1.

Next, observe that
∣∣∣√n

∫ (
f̂n − fn

)
(x)

(
Efn − E0fn

)
(x)dx−√n

∫
gn(x)(Efn − E0fn)(x)dx

∣∣∣

≤ √
n
∥∥∥f̂n − fn − gn

∥∥∥
2

∥∥∥E0fn − E0fn

∥∥∥
2

= op(1),

by Theorem 3.1, and C(f) and C(f0). Therefore,

2
√

n

∫ (
f̂n(x)− fn(x)

)(
Efn(x)− E0fn(x)

)
dx (5.23)

=
√

n

∫
gn(x)(Efn − E0fn)(x)dx + op(1).

Note that

2n
√

h

∫
gn

(
Efn(x)− E0fn(x)

)
dx

= −√n∆T
n Sn

√
nh

∫
E

[ ε0

h2
K ′

(x− ε0

h

)](
Efn(x)− E0fn(x)

)
dx.

Recall ψ(x) = f(x) + xḟ(x). Because of C(f) and C(f0), and (5.17), one readily sees
∫

1

h2
E

[
ε0K

′
(x− ε0

h

)](
Efn(x)− E0fn(x)

)
dx

−
∫

ψ(x)
(
Efn(x)− E0fn(x)

)
dx = op(1).
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But, since under C(f), C(f0), f and f0 are bounded and f(x)+xḟ(x) is square integrable,

cf. (2.9), the dominated convergence theorem implies,

∫
ψ(x)[Efn(x)− E0fn(x)]dx

=

∫
ψ(x)

∫
K(z)[f(x− zh)− f0(x− zh)]dzdx →

∫
ψ(x)[f(x)− f0(x)]dx.

This, in view of (2.5) and (5.3), completes the proof of Theorem 3.2.
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