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Abstract This paper addresses the problem of fitting a known density to the mar-
ginal error density of a stationary long memory moving average process when its mean
is known and unknown. In the case of unknown mean, when mean is estimated by the
sample mean, the first order difference between the residual empirical and null distri-
bution functions is known to be asymptotically degenerate at zero, and hence can not
be used to fit a distribution up to an unknown mean. In this paper we show that by using
a suitable class of estimators of the mean, this first order degeneracy does not occur.
We also investigate the large sample behavior of tests based on an integrated square
difference between kernel type error density estimators and the expected value of the
error density estimator based on errors. The asymptotic null distributions of suitably
standardized test statistics are shown to be chi-square with one degree of freedom in
both cases of the known and unknown mean. In addition, we discuss the consistency
and asymptotic power against local alternatives of the density estimator based test in
the case of known mean. A finite sample simulation study of the test based on residual
empirical process is also included.

Keywords Kernel density estimator · Chi square distribution · Residual empirical
process
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206 H. L. Koul et al.

1 Introduction

The problem of fitting a parametric family of distributions to a probability distribution,
known as the goodness-of-fit testing problem, is classical in statistics, and well studied
when the underlying observations are i.i.d. See, for example, Durbin (1973, 1975),
Khmaladze (1979, 1981), D’Agostino and Stephens (1986), among others.

A discrete time stationary stochastic process with finite variance is said to have
long memory if its autocorrelations tend to zero hyperbolically in the lag parameter,
as the lag tends to infinity, but their sum diverges. The importance of these processes
in econometrics, hydrology and other physical sciences is abundantly demonstrated in
the works of Beran (1992, 1994), Baillie (1996), Dehling et al. (2002) and Doukhan
et al. (2003), and the references therein.

Consider the moving average time series

X j =
∞∑

i=0

biζ j−i , j ∈ Z := {0,±1,±2, . . .}, (1.1)

where ζs, s ∈ Z are i.i.d. with zero mean and unit variance. The constants {b j , j ∈ Z}
satisfy bk = 0, k < 0, b0 = 1 and

b j ∼ cj−(1−d) as j → ∞, for some 0<c<∞ and 0 < d < 1/2. (1.2)

One can verify {X j } is a stationary process, E X0 = 0 and Cov(X0, X j ) ∼ c2 B(d, 1−
2d) j−(1−2d), as j → ∞, where B(a, b) := ∫ 1

0 xa−1(1 − x)b−1dx, a > 0, b > 0.
Consequently the process {X j , j ∈ Z}, has long memory.

Now, let F and f denote the marginal distribution and density functions of X0 and
F0 be a known distribution function (d.f.) with density f0. The problem of interest is
to test the hypothesis

H0 : f = f0 vs. H1 : f �= f0.

A motivation for this problem is that often in practice one uses inference procedures
that are valid under the assumption of {X j } being Gaussian. If one were to reject the
hypothesis that the marginal error distribution is Gaussian, then the validity of the use
of such inference procedures would be questionable.

Now, let throughout the paper, Z denote a N (0, 1) r.v., and define

F̂n(x) := n−1
n∑

j=1

I (X j ≤ x), x ∈ R, κ2(θ) := c2 B(d, 1 − 2d)/d(1 + 2d),

θ := (c, d)′, ‖ f0‖∞ := sup
x∈R

f0(x).

A test of H0 is the Kolmogorov–Smirnov test based on Dn := supx∈R |F̂n(x)−F0(x)|.
Giraitis et al. (1996) observed, under some conditions, that
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Goodness-of-fit tests 207

Dn(θ) := n1/2−d Dn

κ(θ)‖ f0‖∞
→D |Z |. (1.3)

Here, and in the sequel, →D stands for the convergence in distribution.
Let ĉ, d̂ be consistent and log(n) consistent estimators of c and d, under H0, respec-

tively, and set θ̂ := (̂c, d̂ ). Let zα be 100(1 − α)th percentile of N (0, 1) distribution.
From (1.3), we readily obtain that the test that rejects H0 whenever Dn(θ̂ ) ≥ zα/2, is
of asymptotic size α. Thus this test is relatively easy to implement, relative to the cor-
responding test in the i.i.d. case where one must use the distribution of the supremum
of Brownian bridge to obtain critical values.

Before proceeding further, recall that in the case of dependent short memory station-
ary observations (satisfying some mixing conditions; see, e.g., Dedecker et al. 2007),
the empirical process n1/2(F̂n(x)− F0(x)) weakly converges to a centered Gaussian
process {W (x), x ∈ R} with covariance Cov(W (x),W (y)) =∑ j∈Z Cov(I (X0 ≤ x),
I (X j ≤ y)). For linear processes in (1.1) with summable weights

∑∞
j=0 |bi | < ∞,

the last result holds both under short memory (
∑∞

i=0 bi �= 0) and negative mem-
ory (b j ∼ cj−(1−d), −1/2 < d < 0,

∑∞
i=0 bi = 0) assumptions. See Doukhan and

Surgailis (1998). In particular, under short (d = 0) or negative (−1/2 < d < 0) mem-
ory, the test based on Dn(θ) in (1.3), as well as other tests discussed in this paper, is
generally inconsistent and the limit distribution of n1/2 Dn depends on the probability
structure of {X j } (via supx |W (x)|) in a complicated fashion. On the other hand, if (esti-
mated) d is suspected to be close to zero, a visual inspection of F̂n(x)− F0(x), x ∈ R

might help the practitioner to decide between the two possibilities d = 0 and d > 0:
in the former case, the empirical process behaves as a Gaussian process fluctuating
around zero, while in the latter case, it resembles a signed probability density staying
away from zero.

Now consider the problem of fitting f0 to f up to an unknown location parameter,
i.e. the problem of interest is to test

H0�oc : f (x) = f0(x − μ), ∀ x ∈ R, for some μ ∈ R, vs.

H1,�oc : H0�oc is not true.

This is equivalent to stipulating that we observe Yi ’s from the model Yi = μ + Xi ,
for some μ �= 0, and wish to test H0 based on Yi , 1 ≤ i ≤ n. Let F̄n be the empirical
d.f. based on Yi − Ȳ , 1 ≤ i ≤ n, and D̄n := supx |F̄n(x) − F0(x)|, where Ȳ is the
empirical mean. An interesting observation made in Koul and Surgailis (2002, 2010)
is that in this case the null weak limit of the first order difference between the residual
empirical process and the null model is degenerate at zero, i.e., n1/2−d D̄n →p 0, and
hence it can not be used asymptotically to test for H0�oc.

This is partly due to the uniform reduction principle that says that the weak limit
of empirical process n1/2−d(F̂n − F) is a degenerate process, and partly due to the
choice of the estimator Ȳ of μ. In this paper we first provide a class of estimators of μ
for which the weak limit of the process n1/2−d(F̄n − F0) under H0�oc is a non-degen-
erate Gaussian distribution. In addition, we investigate tests based on kernel density
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208 H. L. Koul et al.

estimators testing for both hypotheses H0 and H0�oc, using both the proposed class
of estimators of μ and Ȳ .

To be precise, let ϕ be a piece-wise continuously differentiable function on [0, 1]
and define

Ỹ := 1

n

n∑

i=1

Yi

[
1 + ϕ

(
i

n

)]
= μ(1 + ϕ̄n)+ X̄ + W̄ , δ̃ := Ỹ − μ, (1.4)

X̄ := 1

n

n∑

i=1

Xi , W̄ := 1

n

n∑

i=1

Xiϕ

(
i

n

)
, ϕ̄n := 1

n

n∑

i=1

ϕ

(
i

n

)
, ϕ̄ :=

1∫

0

ϕ(u)du.

Under the assumed conditions of ϕ, ϕ̄n → ϕ̄, and ϕ̄n − ϕ̄ = O(n−1). By the
Ergodic Theorem, X̄ → E X0 = 0, a.s. Also, by Lemma 2.1, W̄ = op(1). Hence, if
ϕ̄ = 0, Ỹ →p μ.

Let

F̃n(x) := n−1
n∑

i=1

I (Yi − Ỹ ≤ x) = F̂n(x + δ̃), D̃n(x) := F̃n(x)− F0(x), x ∈ R,

D̃n := sup
x∈R

|D̃n(x)|.

We show that under H0�oc and ϕ̄ = 0, n1/2−d D̃n →p ν(θ)‖ f0‖∞|Z |, where ν(θ) is
as in Lemma 2.1; see Theorem 2.1. Consequently, the test that rejects H0�oc whenever
D̃n := {ν(θ̃ )‖ f0‖∞}−1n1/2−d̃ D̃n > zα/2 is asymptotically distribution free and of
the asymptotic level α, where now c̃, d̃ are consistent and log(n)-consistent estimators
of c, d under H0�oc, and θ̃ := (̃c, d̃ )′.

Next, let K be a density kernel on [−1, 1], h ≡ hn be bandwidth sequence, E0
denote the expectation under H0, and define

f̂n(x) := 1

nh

n∑

i=1

K

(
x − Xi

h

)
, f̃n(x) := 1

nh

n∑

i=1

K

(
x − (Yi − Ỹ )

h

)
, x ∈ R,

Tn :=
∫ (

f̂n(x)− E0 f̂n(x)
)2

dx, T̃n :=
∫
( f̃n(x)− E0 f̂n(x))

2dx .

Note that the choice ϕ ≡ −1 yields Ỹ = 0, and if one also has μ = 0, then f̃n(x) =
f̂n(x), T̃n = Tn . Statistics Tn and T̃n are useful in testing for H0 and H0�oc, respec-
tively.

It is shown in Theorem 2.2 below that the asymptotic null distribution of n1−2d Tn/κ1
is that of Z2, a chi-square r.v. with one degree of freedom, where κ1 is defined at (2.10)
below. Surprisingly, a similar result holds for T̃n provided ϕ̄ = 0 andϕ is not identically
zero.

The case of ϕ ≡ 0 makes Ỹ = Ȳ . The corresponding test statistic T̃n then also has
the first order degenerate behavior analogous to the residual empirical process. In this
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Goodness-of-fit tests 209

case we show that for 1/4 < d < 1/2, n2(1−2d)T̃n has a nonstandard asymptotic null
distribution; see Theorem 2.3 below.

We also discuss consistency and asymptotic power against certain local alternatives
of the Tn-test. Let f be an alternate density that is differentiable and for which

m := ‖ f − f0‖2 > 0. (1.5)

Let f ′ denote the first derivative of f and define


 :=
∫

f ′(x)( f (x)− f0(x))dx, (1.6)

m(h) :=
∫ { ∫

( f (x − uh)− f0(x − uh))K (u)du
}2

dx (1.7)

= m + o(1), h → 0.

We show that under some conditions, n1/2−d(Tn − m(h)) →D N (0, 4κ2(θ)
2),
where κ2(θ) is as in (1.3). Consequently, the Tn-test is consistent against all differen-
tiable fixed densities f satisfying (1.5). We also investigate asymptotic distribution of
Tn under a sequence of local alternatives; see Theorem 2.5.

2 Main results

In this section we shall give precise conditions under which the previously stated
results are proved. We do this in the two subsections. The first one deals with H0 and
H0�oc while the second subsection deals with the asymptotic power analysis of the
Tn-test under fixed and local alternatives.

2.1 Asymptotic null distribution of D̃n, Tn and T̃n

Our proofs here are based on some results derived in Koul and Surgailis (2002) (KS).
Accordingly, we first specify the needed assumptions. Let ζ be a copy of ζ0. Following
KS, assume that the innovation distribution satisfies

E |ζ |3 < C, (2.1)

|Eeiuζ | ≤ C(1 + |u|)−δ, for some 0 < C < ∞, δ > 0, ∀ u ∈ R. (2.2)

Under (2.2), it is shown in KS that the d.f. F of X0 is infinitely differentiable and for
some universal positive constant C ,

( f (x), | f ′(x)|, | f ′′(x)|, | f ′′′(x)|) ≤ C(1 + |x |)−2, ∀ x ∈ R, (2.3)

where f ′′, f ′′′ are the second and third derivatives of f , respectively. This fact in turn
clearly implies f and these derivatives are square integrable.
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210 H. L. Koul et al.

About the kernel K , we assume that it is a symmetric density on [−1, 1], with unit
variance, vanishing off (−1, 1), differentiable with derivative K ′ satisfying

∫
|vK ′(v)|dv < ∞. (2.4)

For the bandwidth h, we assume

h → 0, min(n2d h, n1−2d h) → ∞, as n → ∞. (2.5)

In the sequel, all limits are taken as n → ∞, unless specified otherwise.
First, we recall the following results about X̄ and W̄ from Davydov (1970) and

Koul and Surgailis (2000, Lemma 2.4 (iii)), respectively. Let, as before, θ = (c, d)′,
and

ν2(θ) := c2 B(d, 1 − 2d)

1∫

0

1∫

0

ϕ(u)ϕ(v)|u − v|2d−1dudv.

Lemma 2.1 Let ϕ(x), x ∈ [0, 1] be a piecewise continuously differentiable function
and suppose {X j } satisfy (1.1) and (1.2). Then,

κ−1(θ)n1/2−d X̄ →D Z , n1/2−d W̄ →D ν(θ)Z . (2.6)

We shall now describe the asymptotic null distribution of the statistic D̃n .

Theorem 2.1 Suppose (1.1), (1.2), (2.1), (2.2) hold. Let ϕ(x), x ∈ [0, 1] be a piece-
wise continuously differentiable function satisfying

ϕ̄ = 0. (2.7)

Then, under H0�oc,

n1/2−d sup
x∈R

∣∣F̃n(x)− F0(x)− W̄ f0(x)
∣∣ = op(1).

Consequently, n1/2−d D̃n →D ν(θ)‖ f0‖∞|Z |.
Proof By Lemma 2.1, n1/2−d |̃δ| = Op(1). This fact together with results from KS
imply that under the assumed conditions, and under H0�oc,

n1/2−d sup
x∈R

|F̃n(x)− F̂n(x)− f0(x) δ̃| = op(1),

n1/2−d sup
x∈R

∣∣F̂n(x)− F0(x)+ f0(x) X̄
∣∣ = op(1).
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Goodness-of-fit tests 211

Hence, the decomposition F̃n(x)− F0(x) = F̃n(x)− F̂n(x)+ F̂n(x)− F0(x) yields

n1/2−d sup
x∈R

∣∣F̃n(x)− F0(x)− (̃δ − X̄
)

f0(x)
∣∣ = op(1).

By assumption on ϕ and by (2.7), ϕ̄n = O(n−1) = o(nd−1/2). This fact and the
identity δ̃ − X̄ = W̄ + μϕ̄n now readily yields the theorem.

Remark 2.1 Let c̃, d̃ be consistent and log(n)-consistent estimators of c, d, respec-
tively, under H0�oc and let θ̃ := (̃c, d̃)′. A consequence of the above theorem is that
the test that rejects H0�oc whenever D̃n := {ν(θ̃ )‖ f0‖∞

}−1
n1/2−d̃ D̃n > zα/2 is

of the asymptotic level α.

Next, we turn to obtaining the asymptotic distributions of Tn and T̃n . Let E denote
the expectation when density of X0 is f , and define

S̃n(a) :=
∫
( f̃n(x)− E f̂n(x + aϕ̄))2dx, a ∈ R. (2.8)

Note that when f = f0, S̃n(0) = T̃n . Moreover, if in addition, ϕ̄ = 0, then S̃n(a) =
T̃n , for all a ∈ R.

First, we state a general result about the asymptotic distribution of S̃n(μ). Through-
out, for any square integrable function g, ‖g‖2 := ∫

R
g2(x)dx .

Theorem 2.2 Suppose (1.1), (1.2), (2.1)–(2.5) hold. Let ϕ(x), x ∈ [0, 1] be a piece
wise continuously differentiable function. Then,

n1−2d S̃n(μ) →D κ
2
ϕ(θ)Z

2, κ2
ϕ(θ) := ν2(θ)

∫ (
f ′(x + μϕ̄)

)2
dx . (2.9)

Theorem 2.2 implies the following corollary about the limit distributions of the test
statistics Tn and T̃n for testing H0 and H0�oc.

Corollary 2.1 Under the conditions of Theorem 2.2 the following hold.
(i) Suppose μ = 0, ϕ(x) ≡ −1, and H0 holds. Then, S̃n(0) = Tn, and

n1−2d Tn →D σ
2(θ)Z2, σ 2(θ) := κ2(θ)‖ f ′

0‖2. (2.10)

(ii) Suppose ϕ̄ = 0 and H0loc holds. Then, S̃n(μ) = T̃n, and

n1−2d T̃n →D κ
2
2 (θ)Z

2, κ2
2 (θ) := ν2(θ)‖ f ′

0‖2. (2.11)

It thus follows that the test that rejects H0 whenever n1−2d̂ Tn/σ
2(θ̂) > kα has the

asymptotic size α, 0 < α < 1, where kα is the (1−α)100th percentile of the χ2
1 distri-

bution. Similarly, the test that rejects H0�oc, whenever n1−2d̃(T̃n/ν
2(θ̃)‖ f ′

0‖2) > kα,
has the asymptotic size α, 0 < α < 1. Here, ĉ, d̂, θ̂ , c̃, d̃ and θ̃ are as before.
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212 H. L. Koul et al.

Remark 2.2 A particularly simple choice of function ϕ in Corollary 2.1 is ϕ(x) =
I (0 < x ≤ 1/2)− I (1/2 < x ≤ 1). It satisfies ϕ̄ = 0 and leads to

Ỹ := Ȳ + 1

n

[n/2]∑

i=1

Yi − 1

n

n∑

i=[n/2]+1

Yi = 2

n

[n/2]∑

i=1

Yi .

Moreover, in this case

ν2(θ) = c2 B(d, 1 − 2d)

d(1 + 2d)

(
21−2d − 1

)
. (2.12)

In other words the corresponding T̃n-test uses the first half sample to estimate μ and
then the entire set of residuals to perform the test.

The above example can help to understand why a partial centring by Ỹ can be better
than the natural or naive centring by the empirical mean, for testing H0loc. From the
uniform reduction principle, we have F̂n(x)− F0(x) = − f0(x)X̄ +op(X̄), uniformly
in x , and therefore,

F̃n(x)− F0(x) = [F̂n(x+(Ỹ −μ))−F0(x+(Ỹ −μ))]+[F0(x+(Ỹ −μ))−F0(x)]
= − f0(x + (Ỹ − μ))X̄ + f0(x)(Ỹ − μ)+op(X̄)

= f0(x)(Ỹ − μ− X̄)+ op(X̄), uniformly in x .

In other words, in the case of centering by the empirical mean Ȳ , the term f0(x)(Ȳ −
μ) = f0(x)X̄ (coming from Taylor’s expansion of F0) completely cancels with the
main expansion term − f0(x)X̄ of the empirical process F̂n − F0. On the other hand,
in the case of the partial centring, such a cancelation need not occur, leading to the
main term f0(x)(Ỹ − μ − X̄) = f0(x)W , which has a non-degenerate Gaussian
limit. Indeed, since partial sums of {X j }, normalized by nd−1/2, approach fractional
Brownian motion κ(θ)Bd+1/2; see Theorem 2 in Davydov (1970), the distribution of
n1/2−d(Ỹ −μ− X̄) in the above example tends to Gaussian limit κ(θ)(2Bd+1/2(1/2)−
Bd+1/2(1)) ∼ N (0, ν2(θ)), with ν2(θ) given in (2.12).

Remark 2.3 It is of interest to contrast the result of Corollary 2.1 with what is avail-
able under independence. When observations are i.i.d., Bickel and Rosenblatt (1973)
proved, under H0 and the second order differentiability of f0, that

n
√

h
(

Tn − 1

nh

∫
K 2(t)dt

)
→D N (0, τ 2),

τ 2 := 2
∫

f 2
0 (x)
∫ ( ∫

K (x − u)K (u)du
)2

dx .

Bachmann and Dette (2005) proved this result requiring f0 to be only continuous and
square integrable.

The first thing one notices missing under long memory is the centering of Tn . Under
long memory there is no asymptotic bias in Tn . Secondly, the normalization n1−2d does
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not depend on the window width. Under long memory the role of n1/2 is played by
n1/2−d , so one sees the normalization is simply square of this. Finally, unlike in the
i.i.d. case, asymptotic variance of standardized Tn does not depend on K in the present
set up. Of course to implement the test under long memory, one has to have consistent
and log(n)-consistent estimators of c and d, respectively. But under fairly general
conditions local Whittle estimators of c and d are known to satisfy these constraints.
See, Dalla et al. (2006).

Typically if one uses h ∝ n−a , then (2.5) will be satisfied as long a/2 < d <

(1 − a)/2. For example, if a = 1/5, then (2.9) holds for all 0.1 < d < 0.4.

The case ϕ ≡ 0 leads to Ỹ = Ȳ and the trivial limit in (2.11). In this case the
limit distribution of T̃n is obtained from the second order expansion of the empirical
distribution function in KS as described in the following theorem.

Theorem 2.3 Assume the same conditions as in Theorem 2.2, with exception of (2.5),
and let ϕ ≡ 0. Moreover, assume 1/4 < d < 1/2 and

h → 0, min(n4d−1h, n1−2d h) → ∞, as n → ∞. (2.13)

Then, n2(1−2d)T̃n →D ‖ f ′′
0 ‖2
{

Z (2) − 2−1(Z (1))2
}2
, where the r.v.’s Z (2) and Z (1) as

defined in (4.11) below have a Rosenblatt and a Gaussian distribution, respectively.

2.2 Consistency and asymptotic power of Tn-test

Here we shall study the consistency and asymptotic power of the test based on Tn

against some alternatives. Let f be a density of X0 satisfying (1.5). Assume that the
corresponding innovations in (1.1) satisfy (2.2) so that f also satisfies (2.3). Recall
the definition of 
 from (1.6) and m(h) from (1.7). Also, define

τ := 2κ(θ)
.

Then, we have the following

Theorem 2.4 Suppose (1.1), (1.2), (2.1)–(2.5) hold with density f of X0 satifying
(1.5). Then, n1/2−d(Tn − m(h)) →D N (0, τ 2).

This theorem is useful for discussing the consistency of the Tn-test. Consider the
case 
 �= 0. Let PA denoting the probability measure under the alternative (1.5).
Then,

PA

(
n1−2d̂ Tn > σ 2(θ̂ )kα

)
= PA

(n1/2−d̂ Tn

|τ | >
σ 2(θ̂ )kα

n1/2−d̂ |τ |
)

= PA

(n1/2−d̂(Tn − m(h))

|τ | >
σ 2(θ̂ )kα

n1/2−d̂ |τ | −
n1/2−d̂m(h)

|τ |
)
.

(2.14)
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214 H. L. Koul et al.

Clearly, the log(n)-consistency of d̂ for d and consistency of ĉ for c implies
n2(d−d̂) →p 1, σ (θ̂ )/σ (θ) →p 1, and by Theorem 2.4, n1/2−d̂(Tn − m(h))/|τ | →D

Z . From these facts and the above relation, it readily follows that for every fixed f
satisfying (1.5), n1/2−d̂ |τ | →p ∞, n1/2−d̂m(h)/|τ | →p ∞, and hence, the power of
the asymptotic level α Tn-test tends to 1.

Next, consider the case 
 = 0. Then, by Theorem 2.4, and arguing as above,

PA

(
n1−2d̂ Tn>σ

2(θ̂)kα
)

= PA

(
n1/2−d̂(Tn −m(h))>nd̂−1/2σ 2(θ̂)kα − n1/2−d̂m(h)

)

≈ PA

(
0 > −n1/2−d̂m(h)

)
→ 1

since n1/2−d̂m(h) →p ∞, for all those f satisfying (1.5).
Summarizing, under the conditions of Theorem 2.4, the Tn-test is consistent against

all those differentiable f ’s for which m > 0.
Next, we give a theorem that describes asymptotic distribution of Tn under certain

sequences of local alternatives.

Theorem 2.5 Let fn, n ≥ 1,be a sequence of densities on R. Suppose X j ≡ X j,n =∑∞
i=0 biζ j−i,n, j ∈ Z, is a sequence of stationary MA processes with the coefficients

b j as in (1.2) and having marginal density fn. Assume also that {ζs,n, s ∈ Z} are
standardized i.i.d. innovations satisfying (2.2) and (2.1) for each n with C, δ indepen-
dent of n. Let ψ be a real valued square integrable and differentiable function on R

satisfying

∫
| f ′

0(x)ψ(x)|dx < ∞, n1−2dmn(h) → ‖ψ‖2, (2.15)

n1/2−d
n → 
0 :=
∫

f ′
0(x)ψ(x)dx, ‖ f ′

n‖2 → ‖ f ′
0‖2.

where mn(h),
n are defined as in (1.6), (1.7), respectively, with f replaced by fn.
Assume also (2.4) and (2.5) hold. Then,

n1−2d(Tn − mn(h)) →D −2Zκ2(θ)
0 + Z2σ 2(θ).

Recall σ 2(θ) = κ2(θ)‖ f ′
0‖2. Suppose ĉ, d̂ continue to be consistent and log(n)-

consistent estimators of c, d under fn . Then, from the above theorem asymptotic power
of the asymptotic α-level Tn-test against the above sequence of alternative densities
fn is

P

(
−2Z


0

‖ f ′
0‖2 + Z2 > kα − ‖ψ‖2

σ 2(θ)

)
.

Clearly, if 
0 = 0, then this power is equal to 1 − G(kα − ‖ψ‖2/σ 2(θ)), where G is
the d.f. of a χ2

1 r.v.
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Remark 2.4 Another test Suppose one bases test of H0 on the integrated square
difference

T̂n :=
∫ (

f̂n(x)− f0(x)
)2

dx .

Here we give sufficient conditions under which this test is equivalent to the test based
on Tn under H0. To begin with note that

T̂n = Tn +
∫ (

E0 f̂n(x)− f0(x)
)2

dx+2
∫ (

f̂n(x)−E0 f̂n(x)
)
(E0 f̂n(x)− f0(x)

)
dx,

is a sum of Tn , bias term, and the cross product term.
Consider the bias term. Taylor expansion and symmetry of K with mean 0 imply

E0 f̂n(x)− f0(x) =
∫

K (z) f0(x − zh)dz − f0(x)

=
∫

K (z)
[

f0(x)+ f ′
0(x)(−zh)+2−1 f ′′

0 (x−ξ zh)(zh)2
]
dz− f0(x)

= (1/2)h2
∫

K (z) f ′′
0 (x − ξ zh)z2dz,

where 0 < ξ < 1. Therefore, by the continuity and square integrability of f ′′,

n1−2d
∫ (

E0 f̂n(x)− f0(x)
)2

dx

= (1/4) n1−2d h4
∫ ( ∫

f ′′
0 (x − ξ zh)z2 K (z)dz

)2
dx

= (1/4) n1−2d h4
∫ ∫ ∫

f ′′
0 (x − ξ zh) f ′′

0 (x − ξsh)s2z2 K (s)K (z)dsdzdx

∼ (1/4) n1−2d h4
∫ (

f ′′(x)
)2

dx → 0,

provided n1−2d h4 → 0 holds. By the Cauchy-Schwarz inequality, this implies that
n1−2d times the cross term also tends to zero in probability. We summarize all this in
the following

Corollary 2.2 Suppose assumptions of Corollary 2.1(i) hold and n1−2d h4 → 0. Then,
under H0, n1−2d |T̂n − Tn| = op(1).

Consequently, T̂n has the same asymptotic null distribution as Tn .

3 Simulation

This section shows results of a simulation study that demonstrate the finite sample
behavior of the D̃n-test, using autoregressive fractionally integrated moving average
(ARFIMA) process.
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Table 1 Empirical size of the test based on D̃n when asymptotic size of the test is 0.05 and 0.1

α n d

0.1 0.15 0.2 0.25 0.3 0.35 0.4

0.05 100 0.387 0.327 0.290 0.230 0.210 0.209 0.248

250 0.304 0.231 0.171 0.138 0.116 0.115 0.170

500 0.259 0.180 0.127 0.103 0.081 0.082 0.123

1,000 0.209 0.142 0.099 0.079 0.066 0.066 0.083

2,000 0.185 0.112 0.081 0.070 0.055 0.054 0.066

5,000 0.155 0.101 0.065 0.053 0.049 0.049 0.054

0.1 100 0.587 0.504 0.453 0.393 0.367 0.362 0.404

250 0.481 0.381 0.298 0.262 0.229 0.239 0.297

500 0.414 0.312 0.235 0.206 0.169 0.179 0.234

1,000 0.352 0.257 0.198 0.164 0.141 0.145 0.182

2,000 0.313 0.219 0.162 0.144 0.122 0.117 0.155

5,000 0.276 0.191 0.138 0.116 0.099 0.101 0.133

Using the fracdiff package of Revolution R software, the Xi ’s were taken to be ARF-
IMA (0, d, 0) process with standard normal innovations and for d = 0.1, 0.15, 0.2,
0.25, 0.3, 0.35, and 0.4. The Yi ’s were generated by using the location model equa-
tion Yi = μ + Xi , where the true mean μ = 10. As in Remark 2.2, μ̂ was taken
to be the sample mean of the first half of the process, and the test statistic D̃n was
based on the entire set of the residuals using this estimator. Parameters c and d were
estimated using MLE based on the residuals. Sample size n was varied as 100, 250,
500, 1,000, 2,000, and 5,000, with the burn-in period of 10,000. This very long burn-in
period was necessary to ensure the accuracy of marginal distribution of the simulated
process because the fracdiff package uses truncated moving averages. The procedure
was repeated 10,000 times for each sample size.

Table 1 shows the empirical size of the test for the asymptotic levels 0.05 and 0.1
based on Theorem 2.1. These simulation results show that one needs a fairly large
sample to implement the test at the chosen levels. Empirical distribution of D̃2

n for the
chosen sample sizes together with the χ2 distribution with one degree of freedom are
shown in Fig. 1. The plots show the convergence of the finite sample distributions to
the asymptotic distribution.

4 Proofs

This section contains the proofs of Theorems 2.2 to 2.5. Key point is the bound (4.2)
due to Koul and Surgailis (2002) (KS). For the sake of completeness we reproduce
this bound and another needed result from this reference. Following KS, let

Ri,1(x) := I (Xi ≤ x)− F(x)+ f (x)Xi ,

Ri,2(x) := I (Xi ≤ x)− F(x)+ f (x)Xi + f ′(x)X (2)i , x ∈ R, i ∈ Z,
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Fig. 1 Empirical distribution of D̃2
n for n = 100, 250, 500, and 1,000 (bottom to top) compared with the

χ2(1) (dashed line)

where

X (2)i :=
∑

j2> j1≥0

b j1 b j2ζi− j1ζi− j2 ,

and where the last sum converges in mean square; see KS. Let

a1 :=
{
(3 − 4d)/2, 0 < d < 1/4,

2(1 − 2d), 1/4 < d < 1/2,
, a2 :=

{
3(1 − 2d), 1/3 < d < 1/2,

3(1 − d)/2, 1/4 < d < 1/3.

(4.1)

Note 1 − 2d < a1, 2(1 − 2d) < a2, for the values of d indicated in (4.1). Also, let
g(x) := (1 + |x |)−3/2, x ∈ R. The first needed result of KS is given in the following

Lemma 4.1 (i) For all i, j ∈ Z, x ∈ R,

∣∣∣E
(
(Ri,1(x − uh)− Ri,1(x))(R j,1(x − vh)− R j,1(x))

)∣∣∣

≤ C

⎛

⎝
x−uh∫

x

g(t)dt

x−vh∫

x

g(s)ds

⎞

⎠
1/2

(1 + |i − j |)−a1

≤ C |uv|1/2hg(x)(1 + |i − j |)−a1, 0 < d < 1/2, (4.2)
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∣∣∣E
(
(Ri,2(x − uh)− Ri,2(x))(R j,2(x − vh)− R j,2(x))

)∣∣∣

≤ C |uv|1/2hg(x)(1 + |i − j |)−a2 , 1/4 < d < 1/2. (4.3)

(ii) Let h be a real valued function on R such that for some C > 0, |h(x)| ≤ Cg(x).
Then,

∣∣∣∣∣∣

y∫

0

h(x + w)dw

∣∣∣∣∣∣
≤ Cg(x)

(|y| ∨ |y|3/2), ∀ x, y ∈ R. (4.4)

Proof The inequality (4.4) is (5.12) in KS, p.225. The first inequality in (4.2) is proved
in KS, p. 227. The second inequality in (4.2) follows from (4.4) and |uh|3/2 ≤ |uh|
for |u|, |h| ≤ 1. Inequality (4.3) follows similarly from KS, p. 227.

Now we return to the proof of Theorem 2.2. Recall (1.4). Let

Un := μϕ̄n + X̄ + W̄ , un := μ(ϕ̄n − ϕ̄)+ X̄ + W̄ .

Recall F̂n(y) = n−1∑n
i=1 I (Xi ≤ y). Integration by parts yields

f̃n(x)− E f̂n(x + μϕ̄) = 1

h

∫
K
( x + Un − y

h

)
d F̂n(y)

− 1

h

∫
K
( x + μϕ̄ − y

h

)
d F(y)

= 1

h

∫
(F̂n(x + Un − uh)− F(x + μϕ̄ − uh))K ′(u)du

=
5∑

i=1

ψni (x), (4.5)

where

ψn1(x) := 1

h

∫ (
F̂n(x+Un −uh)−F(x+Un −uh)+ f (x+Un −uh)X̄

)
K ′(u)du,

ψn2(x) := 1

h

∫ (
F(x+Un −uh)−F(x+μϕ̄−uh)− f (x+Un −uh)un

)
K ′(u)du,

ψn3(x) := (W̄ +μ(ϕ̄n −ϕ̄))1

h

∫
[ f (x+μϕ̄+un −uh)− f (x+μϕ̄−uh)]K ′(u)du,

ψn4(x) := μ(ϕ̄n −ϕ̄)1

h

∫
f (x+μϕ̄−uh)K ′(u)du,

ψn5(x) := W̄
1

h

∫
f (x+μϕ̄−uh)K ′(u)du.
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With Ri,1(x) as in Lemma 4.1, ψn1(x) = (nh)−1∑n
i=1

∫
Ri,1(x + Un

− uh)K ′(u)du and

∫
ψ2

n1(x)dx =
∫ {

1

nh

n∑

i=1

∫
Ri,1(x + Un − uh)K ′(u)du

}2

dx

=
∫ {

1

nh

n∑

i=1

∫
Ri,1(x − uh)K ′(u)du

}2

dx

=
∫ {

1

nh

n∑

i=1

∫
[Ri,1(x − uh)− Ri,1(x)]K ′(u)du

}2

dx,

where we used the fact that
∫

K ′(u)du = 0. Therefore,

E
∫
ψ2

n1(x)dx = 1

n2h2

n∑

i, j=1

∫ ∫ ∫
E[Ri,1(x − uh)

−Ri,1(x)][R j,1(x − vh)− R j,1(x)]K ′(u)K ′(v)dudvdx .

Hence, using (4.2) we obtain

E
∫
ψ2

n1(x)dx ≤ C1h

n2h2

n∑

i, j=1

(1 + |i − j |)−a1 ≤ C1

n2h

{
n4d , 1/4 < d < 1/2,

n, 0 < d < 1/4,
,

(4.6)

with C1 = C
∫

g(x)dx
( ∫ |u|1/2|K ′(u)|du

)2
< ∞, not depending on n.

Next, consider

F(x + Un − uh)− F(x + μϕ̄ − uh)− f (x + Un − uh)un

= F(x + μϕ̄ + un − uh)− F(x + μϕ̄ − uh)− f (x + μϕ̄ + un − uh)un

= −
un∫

0

dz

un∫

z

f ′(x + μϕ̄ − uh + w)dw.

Then

ψn2(x) = h−1

un∫

0

un∫

z

∫
[ f ′(x + μϕ̄ + w)− f ′(x + μϕ̄ − uh + w)]K ′(u) du dw dz.
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By (2.3), | f ′(x + μϕ̄ + w) − f ′(x + μϕ̄ − uh + w)| ≤ Cg(x + μϕ̄ + w)|uh| and
therefore

|ψn2(x)| ≤ C
∫

|z|≤|un |
dz
∫

|w|≤|un |
g(x + μϕ̄ + w)dw≤C |un|(|un|+|un|3/2)g(x+μϕ̄)

according to (4.4) in Lemma 4.1(ii). By Lemma 2.1, |un| = Op(nd−1/2)+|μ|O(n−1).

We thus obtain
∫
ψ2

n2(x)dx ≤ Cu4
n(1 + |un|)

∫
g2(x)dx = Op(n

4d−2). (4.7)

In a similar way,

| f (x + μϕ̄ + un − uh)− f (x + μϕ̄ − uh)− f (x + μϕ̄ + un)+ f (x + μϕ̄)|

= ∣∣
un∫

0

[ f ′(x + μϕ̄ − uh + z)− f ′(x + μϕ̄ + z)]dz
∣∣

≤ C |uh|
∫

|z|≤|un |
g(x + μϕ̄ + z)dz,

yielding

|ψn3(x)| ≤ C(|W̄ | + |μ|n−1)

∫

|z|≤|un |
g(x + μϕ̄ + z)dz

≤ C(|W̄ | + |μ|n−1)(|un| + |un|3/2)g(x + μϕ̄),

and hence
∫
ψ2

n3(x)dx ≤ C
(
|W̄ | + |μ|n−1

)2(|un| + |un|3/2
)2 = Op

(
n4d−2
)
. (4.8)

The term ψn4(x) = μ(ϕ̄n − ϕ̄) 1
h

∫ [ f (x + μϕ̄ − uh) − f (x + μϕ̄)]K ′(u)du can be
similarly bounded above by |ψn4(x)| ≤ C |μ|n−1g(x + μϕ̄), yielding

∫
ψ2

n4(x)dx ≤ Cμ2n−2. (4.9)

Finally, h−1
∫

f (x +μϕ̄−uh)K ′(u)du = ∫ f ′(x +μϕ̄−uh)K (u)du → f ′(x +μϕ̄)
and therefore, in view of Lemma 2.1,

n1−2d
∫
ψ2

n5(x)dx →D W 2
∫
( f ′(x + μϕ̄))2dx, W ∼ N (0, v2). (4.10)

The claim of Theorem 2.2 follows from decomposition (4.5) and (4.6) to (4.10).
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Proof of Theorem 2.3 Introduce r.v.’s

Z (k) := ck

k!
∫

Rk

⎧
⎨

⎩

1∫

0

k∏

j=1

(u − x j )
d−1+ du

⎫
⎬

⎭W (dx1) · · · W (dxk), (4.11)

which is well-defined for any integer 1 ≤ k < 1/(1 − 2d), as a multiple Wiener–Itô
integral w.r.t. a Gaussian white noise W (dx), EW (dx) = 0, E(W (dx))2 = dx .

Similarly to (4.5), write

f̃n(x)− E f̂n(x) =
3∑

i=1

ψ̃ni (x),

where

ψ̃n1(x) := 1

h

∫ (
F̂n(x + X̄ − uh)− F(x + X̄ − uh)+ f (x + X̄ − uh)X̄

− f ′(x + X̄ − uh)X (2)
)
K ′(u)du,

ψ̃n2(x) := 1

h

∫ (
F(x + X̄ − uh)− F(x − uh)− f (x + X̄ − uh)X̄

+2−1 f ′(x + X̄ − uh)(X̄)2
)
K ′(u)du,

ψ̃n3(x) := (X (2) − 2−1(X̄)2
)1

h

∫
f ′(x + X̄ − uh)K ′(u)du,

where X (2) := n−1∑n
i=1 X (2)i . With Ri,2 as in Lemma 4.1, write

ψ̃n1(x) = (nh)−1
n∑

i=1

∫
[Ri,2(x + X̄ − uh)− Ri,2(x + X̄)]K ′(u)du.

Then using Lemma 4.1, similarly as in the proof of Theorem 2.2, we obtain

E
∫
ψ̃2

n1(x)dx

= 1

n2h2

n∑

i, j=1

∫ ∫ ∫
E[Ri,2(x − uh)− Ri,2(x)][R j,2(x − vh)

−R j,2(x)]K ′(u)K ′(v)dudvdx

≤ Ch

n2h2

n∑

i, j=1

(1 + |i − j |)−a2 ≤ C

n2h

{
n6d−1, 1/3 < d < 1/2,

n, 1/4 < d < 1/3,
. (4.12)
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Next as in the proof of Theorem 2.2,

ψ̃n2(x) = h−1
∫

K ′(u)du

X̄∫

0

dz

X̄∫

z

dw

X̄∫

w

dξ

−uh∫

0

f
′′′
(x + ξ − v)dv

implying |ψ̃n2(x)| ≤ C |X̄ |2(|X̄ | + |X̄ |1/2)g(x) ∫ |uK ′(u)|du and hence

∫
ψ̃2

n2(x)dx ≤ C(|X̄ |6(1 + |X̄ |)
∫

g2(x)dx = Op(n
6d−3). (4.13)

Finally, n1−2d
(
X (2) − 2−1(X̄)2

) →D
(
Z (2) − 2−1(Z (1))2

)
, see Koul and Surgailis

(2010, (5.3)) and
∫ ( 1

h

∫
f ′(x + X̄ − uh)K ′(u)du

)2
dx →p ‖ f ′′‖2. These facts

together with (4.12), (4.13) and (2.13) imply the statement of Theorem 2.3.

Proof of Theorem 2.4 We shall prove that

Tn = m(h)− 2X̄
+ (X̄)2‖ f ′‖2

+Op
(
(nh)−1/2)+ Op

(
n2d−1h−1/2)+ Op(n

d−1/2h2). (4.14)

To this end, write Tn = ∫ (tn1(x)− X̄ tn2(x)+ tn3(x))2dx, where

tn1(x) := 1

h

∫ [
F̂n(x − uh)− F(x − uh)+ f (x − uh)X̄

]
K ′(u)du,

tn2(x) := 1

h

∫
f (x − uh)K ′(u)du =

∫
f ′(x − uh)K (u)du,

tn3(x) := 1

h

∫
[F(x − uh)− F0(x − uh)

]
K ′(u)du

=
∫ [

f (x − uh)− f0(x − uh)
]
K (u)du,

∫
t2
n3(x)dx = m(h).

Hence, with Bi j := ∫ tni (x)tn j (x)dx, i, j = 1, 2, 3,

Tn = m(h)− 2X̄ B23 + 2B13 + B11 − 2X̄ B12 + (X̄)2 B22, (4.15)

From the proof of Theorem 2.2,

B11 = Op((hn)−1 + h−1n4d−2), B22 = ‖ f ′‖2 + O(h2),

B23 = 
+ O(h2), |B1i | ≤ B1/2
11 B1/2

i i ≤ C B1/2
11 , i = 2, 3. (4.16)

Relations (4.15) and (4.16) imply (4.14).
By (2.5), n1/2−d(nh)−1/2 → 0, n1/2−dn−1+2d h−1/2 → 0, and n1/2−dnd−1/2h2

= h2 → 0. Hence, by (4.14),

n1/2−d(Tn − m(h)) = −2n1/2−d X̄
+ n1/2−d(X̄)2‖ f ′‖2 + op(1).
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This in turn together with the first fact in (2.6) and the Ergodic Theorem that guarantees
X̄ → E X0 = 0 imply n1/2−d(Tn − m(h)) →D N (0, 4κ2(θ)
2). ��
Proof of Theorem 2.5 Arguing as in the proof of the previous theorem, we have an
analog of (4.15) for f = fn , viz.,

Tn = mn(h)− 2X̄ B23,n + 2B13,n + B11,n − 2X̄ B12,n + (X̄)2 B22,n, (4.17)

with Bi j,n defined similarly as above with f replaced by fn . From the conditions of
Theorem 2.5 we easily obtain that

B11,n = Op((hn)−1 + h−1n4d−2), B22,n = ‖ f ′
0‖2 + o(1), (4.18)

n1/2−d B23,n → 
0, n1/2−d |B12,n| ≤ Cn1/2−d B1/2
11,n = o(1),

n1/2−d |B13,n| ≤ C B1/2
11,n

(
n1−2dmn(h)

)1/2 = o(1).

From (4.17)–(4.18) we obtain, with Zn = n1/2−d X̄ ,

n1−2d(Tn − mn(h)) = −2Zn
0 + Z2
n‖ f ′

0‖2 + op(1).

Therefore, the claim of the theorem readily follows from (2.6).

Acknowledgments Authors are grateful to the two dedicated anonymous referees whose critical reading
of the manuscript helped to improve the presentation.
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