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MINIMUM DISTANCE REGRESSION MODEL CHECKING
WITH BERKSON MEASUREMENT ERRORS

BY HIRA L. KOUL1 AND WEIXING SONG

Michigan State University and Kansas State University

Lack-of-fit testing of a regression model with Berkson measurement er-
ror has not been discussed in the literature to date. To fill this void, we pro-
pose a class of tests based on minimized integrated square distances between
a nonparametric regression function estimator and the parametric model be-
ing fitted. We prove asymptotic normality of these test statistics under the
null hypothesis and that of the corresponding minimum distance estimators
under minimal conditions on the model being fitted. We also prove consis-
tency of the proposed tests against a class of fixed alternatives and obtain
their asymptotic power against a class of local alternatives orthogonal to the
null hypothesis. These latter results are new even when there is no measure-
ment error. A simulation that is included shows very desirable finite sample
behavior of the proposed inference procedures.

1. Introduction. A classical problem in statistics is to use a vector X of d-
dimensional variables, d ≥ 1, to explain the one-dimensional response Y. As is the
practice, this is often done in terms of the regression function μ(x) := E(Y |X =
x), x ∈ R

d , assuming it exists. Usually, in practice the predictor vector X is as-
sumed to be observable. But in many experiments, it is expensive or impossible
to observe X. Instead, a proxy or a manifest Z of X can be measured. As an
example, consider the herbicide study of Rudemo, Ruppert and Streibig [16] in
which a nominal measured amount Z of herbicide was applied to a plant but the
actual amount absorbed X by the plant is unobservable. As another example, from
Wang [20], an epidemiologist studies the severity of a lung disease, Y , among the
residents in a city in relation to the amount of certain air pollutants, X. The amount
of the air pollutants Z can be measured at certain observation stations in the city,
but the actual exposure of the residents to the pollutants, X, is unobservable and
may vary randomly from the Z-values. In both cases, X can be expressed as Z plus
a random error. There are many similar examples in agricultural or medical stud-
ies; see, for example, Carroll, Ruppert and Stefanski [5] and Fuller [10], among
others. All these examples can be formalized into the so-called Berkson model

Y = μ(X) + ε, X = Z + η,(1.1)
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where η and ε are random errors with Eε = 0, η is d-dimensional and Z is the
observable d-dimensional control variable. All three r.v.’s ε, η and Z are assumed
to be mutually independent.

Let M := {mθ(x) :x ∈ R
d, θ ∈ � ⊂ R

q}, q ≥ 1, be a class of known functions.
The parametric Berkson regression model where μ ∈ M has been the focus of nu-
merous authors. Cheng and Van Ness [6] and Fuller [10], among others, discuss
the estimation in the linear Berkson model. For nonlinear models, [5] and refer-
ences therein consider the estimation problem by using a regression calibration
method. Huwang and Huang [13] study the estimation problem when mθ(x) is a
polynomial in x of a known order and show that the least square estimators based
on the first two conditional moments of Y , given Z, are consistent. Similar results
are obtained in [19] and [20] for a class of nonlinear Berkson models.

But literature appears to be scant on the lack-of-fit testing problem in this im-
portant model. This paper makes an attempt in filling this void. To be precise, with
(Z,Y ) obeying the model (1.1), the problem of interest here is to test the hypoth-
esis

H0 :μ(x) = mθ0(x) for some θ0 ∈ � and for all x ∈ I;
H1 :H0 is not true,

based on a random sample (Zi, Yi),1 ≤ i ≤ n, from the distribution of (Z,Y ),
where � and I are compact subsets of R

q and R
d , respectively.

Interesting and profound results, on the contrary, are available for regression
model checking in the absence of errors in independent variables; see, for example,
[1, 11, 12] and references therein, [17, 18], among others. Koul and Ni [14] use
the minimum distance methodology to propose tests of lack-of-fit of a parametric
regression model in the classical regression setup. In a finite sample comparison
of these tests with some other existing tests, they noted that a member of this class
preserves the asymptotic level and has relatively very high power against some
alternatives. The present paper extends this methodology to the above Berkson
model.

To be specific, Koul and Ni considered the following tests of H0 where the
design is random and observable, and the errors are heteroscedastic. For any
density kernel K , let Kh(x) := K(x/h)/hd , h > 0, x ∈ R

d . Define f̃w(x) :=
1
n

∑n
j=1 K∗

w(x − Xj),w = wn ∼ (logn/n)1/(d+4),

Tn(θ) :=
∫
C

[
1

n

n∑
j=1

Kh(x − Xj)
(
Yj − mθ(Xj )

)]2
dḠ(x)

f̃ 2
w(x)

and θ̃n := arg min{Tn(θ), θ ∈ �}, where K,K∗ are density kernel functions, possi-
bly different, h = hn and w = wn are the window widths, depending on the sample
size n, C is a compact subset of R

d and Ḡ is a σ -finite measure on C. They proved
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consistency and asymptotic normality of this estimator, and that the asymptotic
null distribution of Dn := nh

d/2
n (Tn(θ̃n) − C̃n)/�̃

1/2
n is standard normal, where

C̃n := n−2
n∑

i=1

∫
C

K2
h(x − Xi)ε

2
i f̃

−2
w (x) dḠ(x), ε̂i = Yi − mθ̃n

(Xi),

�̃n := hdn−2
n∑

i �=j=1

(∫
C

Kh(x − Xi)Kh(x − Xj)ε̂i ε̂j f̃
−2
w (x) dḠ(x)

)2

.

These results were made feasible by recognizing to use an optimal window
width wn for the estimation of the denominator and a different window width hn

for the estimation of the numerator in the kernel-type nonparametric estimator of
the regression function. A consequence of the above asymptotic normality result
is that at least for large samples one does not need to use any resampling method
to implement these tests.

These findings thus motivate one to look for tests of lack-of-fit in the Berkson
model based on the above minimized distances. Since the predictors in Berkson
models are unobservable, clearly the above procedures need some modifications.

Let fε , fX , fη, fZ denote the density functions of the r.v.’s in their sub-scripts
and σ 2

ε denote the variance of ε. In linear regression models if one is interested
in making inference about the coefficient parameters only, these density functions
need not be known. Berkson [3] pointed out that the ordinary least square esti-
mators are unbiased and consistent in these models and one can simply ignore
the measurement error η. But if the regression model is nonlinear or if there are
other parameters in the Berkson model that need to be estimated, then extra in-
formation about these densities should be supplied to ensure the identifiability.
A standard assumption in the literature is to assume that fη is known or unknown
up to a Euclidean parameter; compare [5, 13, 20], among others. For the sake of
relative transparency of the exposition we assume that fη is known.

To adopt the Koul and Ni (K–N) procedure to the current setup, we first need
to obtain a nonparametric estimator of μ. Note that in the model (1.1), fX(x) =∫

fZ(z)fη(x−z) dz. For any kernel density K , let Khi(z) := Kh(z−Zi), f̂Zh(z) =∑n
i=1 Khi(z)/n and K̄h(x, z) := ∫

Kh(z − y)fη(x − y)dy, for x, z ∈ R
d . It is then

natural to estimate fX(x) and μ(x) by

f̂X(x) := 1

n

n∑
i=1

K̄h(x,Zi), Ĵn(x) :=
∑n

i=1 K̄h(x,Zi)Yi∑n
i=1 K̄h(x,Zi)

.

A routine argument, however, shows that Ĵn(x) is a consistent estimator of J (x) :=
E[H(Z)|X = x], where H(z) := E[μ(X)|Z = z], but not of μ(x).

We include the following simulation study to illustrate this point. Consider the
model Y = X2 + ε, X = Z + η, where ε and η are Gaussian r.v.’s with means
zero and variances 0.01 and 0.05, respectively, and Z is a standard Gaussian r.v.
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FIG. 1.

Then J (x) = 0.0976+0.907x2. We generated 500 samples from this model, calcu-
lated Ĵn and then put all three graphs, Ĵn(x), μ(x) = x2, J (x) = 0.0976+0.907x2

into one plot in Figure 1. The curves with solid, dash-dot and dot lines are those of
Ĵn, J (x) and μ(x) = x2, respectively.

To overcome this difficulty, one way to proceed is as follows. Define

Hθ(z) := E[mθ(X)|Z = z], Jθ (x) := E[Hθ(Z)|X = x],

Q̃n(θ) =
∫
C

[
1

nf̂X(x)

n∑
i=1

K̄h(x,Zi)Yi − Jθ (x)

]2

dḠ(x),(1.2)

Qn(θ) =
∫
C

[
1

nf̂X(x)

n∑
i=1

K̄h(x,Zi)[Yi − Hθ(Zi)]
]2

dḠ(x)

and θ̃n = arg minθ∈� Q̃n(θ), θn = arg minθ∈� Qn(θ).
Under some conditions, we can show that θn, θ̃n are consistent for θ and as-

ymptotic null distribution of a suitably standardized Qn(θn) is the same as that
of a degenerate U -statistic, whose asymptotic distribution in turn is the same as
that of an infinite sum of weighted centered chi-square random variables. Since
the kernel function in the degenerate U -statistic is complicated, computation of its
eigenvalues and eigenfunctions is not easy and hence this test is hard to implement
in practice.

An alternative way to proceed is to use regression calibration as follows. Be-
cause E(Y |Z) = H(Z), one considers the new regression model Y = H(Z) + ζ ,
where the error ζ satisfies E(ζ |Z) = 0. The problem of testing for H0 is now
transformed to that of testing for H(z) = Hθ0(z). This motivates the following
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modification of the K–N procedure that adjusts for not observing the design vari-
able. Let

f̂Zw(z) := 1

n

n∑
i=1

K∗
wi(z), Ĥn(z) :=

∑n
i=1 Khi(z)Yi

nf̂Zw(z)
, z ∈ R

d .

Note that Ĥn is an estimator of H(z) = E(μ(X)|Z = z). Define

M∗
n(θ) =

∫
I

[
1

nf̂Zw(z)

n∑
i=1

Khi(z)Yi − Hθ(z)

]2

dG(z),

Mn(θ) =
∫
I

[
1

nf̂Zw(z)

n∑
i=1

Khi(z)[Yi − Hθ(Zi)]
]2

dG(z),(1.3)

θ∗
n = arg min

θ∈�

M∗
n(θ), θ̂n = arg min

θ∈�

Mn(θ),

where G is a σ -finite measure supported on I. We consider Mn to be the right
analog of the above Tn for the Berkson model. This paper establishes consistency
of θ∗

n and θ̂n for θ0 and asymptotic normality of
√

n(θ̂n − θ0), under H0. Addition-
ally, we prove that the asymptotic null distribution of the normalized test statistic
D̂n := nhd/2�̂

−1/2
n (Mn(θ̂n) − Ĉn) is standard normal, which, unlike the modifica-

tion (1.2), can be easily used to implement this testing procedure, at least for the
large samples. Here,

dψ̂(z) := dG(z)

f̂ 2
Zw(z)

, ζ̂i := Yi − H
θ̂n

(Zi), 1 ≤ i ≤ n,

Ĉn := 1

n2

n∑
i=1

∫
K2

hi(z)ζ̂
2
i dψ̂(z),(1.4)

�̂n := 2hd

n2

∑
i �=j

(∫
Khi(z)Khj (z)ζ̂i ζ̂j dψ̂(z)

)2

.

We note that a factor of 2 is missing in the analog of �̂n in K–N.
Even though K–N conducted some convincing simulations to demonstrate the

finite sample power properties of the Dn-tests, they did not discuss any theoret-
ical power properties of their tests. In contrast, we prove consistency of the pro-
posed minimum distance (MD) tests against a large class of fixed alternatives and
obtain their asymptotic power under a class of local alternatives. Let L2(G) de-
note the class of real-valued square integrable functions on R

d with respect to G,
ρ(ν1, ν2) := ∫ [ν1 − ν2]2 dG,ν1, ν2 ∈ L2(G) and

T (ν) := arg min
θ∈�

ρ(ν,Hθ), ν ∈ L2(G).(1.5)

Let m ∈ L2(G) be a given function. Consider the problem of testing H0 against
the alternative H1 :μ = m, m /∈ M. Under assumption (m2) below and H0,
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T (Hθ0) = θ0, while under H1, T (H) �= θ0, where now H(z) = E(m(X)|Z = z).
Consistency of the D̂n-test requires consistency of θ̂n for T (H) only, while its as-
ymptotic power properties against the local alternatives H1n :μ = mθ0 + r/nhd/2

requires that n1/2(θ̂n − θ0) = Op(1), under H1n. Here r is a continuously dif-
ferentiable function with R(z) := E(r(X)|Z = z) such that R ∈ L2(G) and∫

HθR dG = 0 for all θ ∈ �. Under assumptions of Section 2 below, we show
that under H1, θ̂n → T (H), in probability, and under H1n, both n1/2(θ̂n − θ0)

and D̂n are asymptotically normally distributed.
The paper is organized as follows. The needed assumptions are stated in the

next section. All limits are taken as n → ∞, unless mentioned otherwise. Sec-
tion 3 contains the proofs of consistency of θ∗

n and θ̂n while Section 4 discusses
asymptotic normality of θ̂n and D̂n, under H0. The power of the MD-test for fixed
and local alternatives is discussed in Section 5. The simulation results in Section 6
show little bias in the estimator θ̂n for all chosen sample sizes. The finite sample
level approximates the nominal level well for larger sample sizes and the empiri-
cal power is high (above 0.9) for moderate to large sample sizes against the chosen
alternatives.

Finally, we mention that closely related to the Berkson model is the so-called
errors-in-variable regression model in which Z = X + u. In this case also one can
use the above MD method to test H0, although we do not deal with this here. The
biggest challenge is to construct nonparametric estimators of fX and Hθ . The de-
convolution estimators discussed in Fan [7, 8], Fan and Truong [9], among others,
may be found useful here.

2. Assumptions. Here we shall state the needed assumptions in this paper. In
the assumptions below θ0 denotes the true parameter value under H0. About the
errors, the underlying design and G we assume the following:

(e1) {(Zi, Yi) :Zi ∈ R
d, i = 1,2, . . . , n} are i.i.d. with H(z) := E(Y |Z = z)

satisfying
∫

H 2 dG < ∞, where G is a σ -finite measure on I.
(e2) 0 < σ 2

ε < ∞, Em2
θ0

(X) < ∞ and the function τ 2(z) = E[(mθ0(X) −
Hθ0(Z))2|Z = z] is a.s. (G) continuous on I.

(e3) E|ε|2+δ < ∞, E|mθ0(X) − Hθ0(Z)|2+δ < ∞, for some δ > 0.
(e4) E|ε|4 < ∞, E|mθ0(X) − Hθ0(Z)|4 < ∞.
(f1) fZ is uniformly continuous and bounded from below on I.
(f2) fZ is twice continuously differentiable.
(g) G has a continuous Lebesgue density g on I.

About the bandwidth hn we shall make the following assumptions:

(h1) hn → 0.
(h2) nh2d

n → ∞.
(h3) hn ∼ n−a , where 0 < a < min(1/2d,4/(d(d + 4))).

About the kernel functions K and K∗ we shall assume the following:
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(k) The kernel functions K , K∗ are positive symmetric square integrable den-
sities on [−1,1]d . In addition, K∗ satisfies a Lipschitz condition.

About the parametric family {mθ } we assume the following:

(m1) For each θ , mθ(x) is a.e. continuous in x w.r.t. the Lebesgue measure.
(m2) The function Hθ(z) is identifiable w.r.t. θ , that is, if Hθ1(z) = Hθ2(z) for

almost all z(G), then θ1 = θ2.
(m3) For some positive continuous function � on I and for some 0 < β ≤ 1,

|Hθ2(z) − Hθ1(z)| ≤ ‖θ2 − θ1‖β�(z), ∀θ1, θ2 ∈ �,z ∈ I.

For every z, Hθ(z) is differentiable in θ in a neighborhood of θ0 with the vector
of derivative Ḣθ (z) satisfying the following three conditions:

(m4) ∀0 < δn → 0

sup
1≤i≤n,‖θ−θ0‖≤δn

|Hθ(Zi) − Hθ0(Zi) − (θ − θ0)
′Ḣθ0(Zi)|

‖θ − θ0‖ = op(1).

(m5) ∀0 < k < ∞
sup

1≤i≤n,
√

nhd
n‖θ−θ0‖≤k

h−d/2
n ‖Ḣθ (Zi) − Ḣθ0(Zi)‖ = op(1).

(m6)
∫ ‖Ḣθ0‖2 dG < ∞ and �0 := ∫

Ḣθ0Ḣ
′
θ0

dG is positive definite.

For later use we note that, under (h2) and (m4), nhd → ∞ and for every 0 <

k < ∞,

sup
1≤i≤n,

√
nhd

n‖θ−θ0‖≤k

|Hθ(Zi) − Hθ0(Zi) − (θ − θ0)
′Ḣθ0(Zi)|

‖θ − θ0‖ = op(1).(2.1)

The above conditions are similar to those imposed in K–N on the model mθ .
Consider the following conditions in terms of the given model:

(m2′) The parametric family of models mθ(x) is identifiable w.r.t. θ , that is, if
mθ1(x) = mθ2(x) for almost all x, then θ1 = θ2.

(m3′) For some positive continuous function L on R
d with EL(X) < ∞ and

for some β > 0, |mθ2(x) − mθ1(x)| ≤ ‖θ2 − θ1‖βL(x), ∀θ1, θ2 ∈ �,x ∈ R
d .

The function mθ(x) is differentiable in θ in a neighborhood of θ0, with the
vector of differential ṁθ0 satisfying the following two conditions:

(m4′) ∀0 < δn → 0

sup
x∈Rd ,‖θ−θ0‖≤δn

|mθ(x) − mθ0(x) − (θ − θ0)
′ṁθ0(x)|

‖θ − θ0‖ → 0.

(m5′) For every 0 < k < ∞
sup

x∈Rd ,
√

nhd
n‖θ−θ0‖≤k

h−d/2
n ‖ṁθ (x) − ṁθ0(x)‖ = o(1).
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In some cases, (m2) and (m2′) are equivalent. For example, if the family of den-
sities {fη(· − z); z ∈ R} is complete, then this holds. Similarly, if mθ(x) = θ ′γ (x)

and
∫

γ (x)fη(x − z) dx �= 0, for all z, then also (m2) and (m2′) are equivalent.
We can also show that (m3′)–(m5′) imply (m3)–(m5), respectively. This fol-

lows because Hθ(z) ≡ ∫
mθ(x)fη(x − z) dx, so that under (m3′), |Hθ2(z) −

Hθ1(z)| ≤ ‖θ2 − θ1‖β
∫

L(x)fη(x − z) dx,∀z ∈ R
d . Hence (m3) holds with �(z) =∫

L(x)fη(x − z) dx. Note that E�(Z) = EL(X) < ∞.
Using the fact that

∫
fη(x − z) dx ≡ 1, the left-hand side of (m4) is bounded

above by supx∈Rd ,‖θ−θ0‖≤δ |mθ(x) − mθ0(x) − (θ − θ0)
′ṁθ0(x)|/‖θ − θ0‖ = o(1),

by (m4′). Similarly, (m5′) implies (m5) and (m1) implies that Hθ(z) is a.s. contin-
uous in z(G).

The conditions (m1)–(m6) are trivially satisfied when mθ(x) = θ ′γ (x) pro-
vided components of E[γ (X)|Z = z] are continuous, nonzero on I and the matrix∫

E[γ (X)γ ′(X)|Z = z]dG(z) is positive definite.
The conditions (e1), (e2), (f1), (k), (m1)–(m3), (h1) and (h2) suffice for con-

sistency of θ̂n, while these plus (e3), (f2), (m4)–(m6) and (h3) are needed for the
asymptotic normality of θ̂n. The asymptotic normality of Mn(θ̂n) needs (e1)–(e4)
and (f1)–(m6) and (h3). Of course, (h3) implies (h1) and (h2).

Let qh1 := fZ/f̂Zh − 1. From [15] we obtain that under (f1), (k), (h1) and (h2),

sup
z∈I

|f̂Zh(z) − fZ(z)| = op(1), sup
z∈I

|f̂Zw(z) − fZ(z)| = op(1),

(2.2)
sup
z∈I

|qh1(z)| = op(1) = sup
z∈I

|qw1(z)|.

These conclusions are often used in the proofs below.
In the sequel, the true parameter θ0 is assumed to be an inner point of � and

ζ := Y − Hθ0(Z). The integrals with respect to G are understood to be over I.
The convergence in distribution is denoted by →d and Np(a,B) denotes the
p-dimensional normal distribution with mean vector a and covariance matrix B ,
p ≥ 1. We shall also need the following notation:

dψ(z) := dG(z)

f 2
Z(z)

, σ 2
ζ (z) := Varθ0(ζ |Z = z) = σ 2

ε + τ 2(z),

ζi := Yi − Hθ0(Zi), 1 ≤ i ≤ n,

C̃n := n−2
n∑

i=1

∫
K2

hiζ
2
i dψ,

(2.3)
K2(v) :=

∫
K(v + u)K(u)du, ‖K2‖2 :=

∫
K2

2 (v) dv,

� := 2‖K2‖2
∫

(σ 2
ζ (z))2g(z) dψ(z),

qn(z) := (
f 2

Z(z)/f̂ 2
Zw(z)

) − 1,
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μn(z, θ) := 1

n

n∑
i=1

Khi(z)Hθ(Zi), μ̇n(z, θ) := 1

n

n∑
i=1

Khi(z)Ḣθ (Zi),

Un(z, θ) := 1

n

n∑
i=1

Khi(z)[Yi − Hθ(Zi)], Un(z) := Un(z, θ0),(2.4)

Zn(z, θ) := 1

n

n∑
i=1

Khi(z)[Hθ(Zi) − Hθ0(Zi)], θ ∈ R
q, z ∈ R

d .

These entities are analogous to the similar entities defined at (3.1) in K–N. The
main difference is that μθ there is replaced by Hθ and Xi’s by Zi’s.

3. Consistency of θ∗
n and θ̂n. Recall (1.5). In this section we first prove con-

sistency of θ∗
n and θ̂n for T (H), where H corresponds to a given regression func-

tion m. Consistency of these estimators for θ0 under H0 follows from this general
result. The following lemma is found useful in the proofs here. Its proof is similar
to that of Theorem 1 in [2].

LEMMA 3.1. Under the conditions (m3), the following hold:
(a) T (ν) always exists, for all ν ∈ L2(G).
(b) If T (ν) is unique, then T is continuous at ν in the sense that for any

sequence of {νn} ∈ L2(G) converging to ν in L2(G), T (νn) → T (ν), that is,
ρ(νn, ν) → 0 implies T (νn) → T (ν).

(c) In addition, if (m2) holds, then T (Hθ) = θ , uniquely for all θ ∈ �.

From now on, we use the convention that for any integral J := ∫
r dψ̂ , J̃ :=∫

r dψ . Also, let γ 2(z) := E[(m(X) − H(Z))2|Z = z], z ∈ R
d . A consequence of

the above lemma is the following.

LEMMA 3.2. Suppose (k), (f1), (m3) hold and m is a given regression function
satisfying the model assumption (1.1), H ∈ L2(G) and T (H) is unique.

(a) In addition, suppose H and γ 2 are a.e. (G) continuous. Then, θ∗
n = T (H)+

op(1).
(b) In addition, suppose m is continuous on I. Then, θ̂n = T (H) + op(1).

PROOF.
PROOF OF PART (a). We shall use part (b) of Lemma 3.1 with νn = Ĥn and

ν = H . Note that M∗
n(θ) = ρ(Ĥn,Hθ), θ∗

n = T (Ĥn). It thus suffices to prove

ρ(Ĥn,H) = op(1).(3.1)
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Let ξi := Yi − H(Zi), 1 ≤ i ≤ n,

Un(z) := n−1
n∑

i=1

Khi(z)ξi,

H̄ (z) := n−1
n∑

i=1

Khi(z)H(Zi), z ∈ R
d,(3.2)

�n :=
∫

[H̄ − f̂ZwH ]2 dψ̂.

To prove (3.1), plug Yi = ξi + H(Zi) in ρ(Ĥn,H) and expand the quadratic
integrand to obtain that ρ(Ĥn,H) ≤ 2[∫ U2

n dψ̂ + �n]. By Fubini’s theorem and
orthogonality of Zi and ξi ,

E

∫
U2

n (z) dψ(z) = n−1
∫

E
{
K2

h(z − Z)
(
σ 2

ε + γ 2(Z)
)}

dψ(z).(3.3)

By the continuity of fZ [cf. (f1)], by a.e. continuity of γ 2 and by (k), we obtain,
for j = 0,2, that

EK2
h(z − Z)γ j (Z) = 1

hd

∫
K2(y)fZ(z − yh)γ j (z − yh)dy = O

(
1

hd

)
.

These calculations, the bound
∫

U2
n dψ̂ ≤ supz∈I(

fZ(z)

f̂Zw(z)
)2 ∫

U2
n dψ and (2.2) im-

ply that

E

∫
U2

n dψ = O

(
1

nhd

)
and

∫
U2

n dψ̂ = Op

(
1

nhd

)
.(3.4)

Next, we shall show that

�n = op(1).(3.5)

Toward this goal, add and subtract H(z)E(f̂Zw(z)) = H(z)E(K∗
h(z − Z)) and

E(H̄ (z)) = E(Kh(z − Z)H(Z)) in the quadratic term of the integrand in �n,
to obtain �n ≤ 4[�n1 + �n2 + �n3], where �n1 := ∫ [H̄ − E(H̄ )]2 dψ̂,�n2 :=∫ [f̂Zw − E(f̂Zw)]2H 2 dψ̂ , �n3 := ∫ [E(H̄ ) − HE(f̂Zw)]2 dψ̂ .

Fubini’s theorem, (k), (f1) and H being a.e. (G) continuous imply

E�̃n1 ≤ n−1
∫

E[K2
h(z − Z)H 2(Z)]dψ(z)

= (nhd)−1
∫ ∫

K2(w)H 2(z − wh)fZ(z − wh)dw dψ(z)

= O((nhd)−1).

Because �n1 ≤ supz(fZ(z)/f̂Zw(z))2�̃n1, the above bound and (2.2) yield that
�n1 = Op((nhd)−1). Similarly, one shows that �n2 = Op((nhd)−1).
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Next, H being a.e. (G) continuous and (f1) yield

�̃n3 =
∫ [∫

[K(u)H(z − hu) − H(z)K∗(u)]fZ(z − hu)du

]2

dψ(z) → 0.

Hence, by (2.2), �n3 = op(1). This completes the proof of (3.5) and hence that of
part (a).

PROOF OF PART (b). Consistency of θ̂n for θ0 under H0 can be proved by using
the method in [14]. But that method does not yield consistency of θ̂n for T (H)

when μ = m, m /∈ M. The proof in general consists of showing

sup
θ∈�

|Mn(θ) − ρ(H,Hθ)| = op(1).(3.6)

This, (m3) and the continuity of m on I imply that H is continuous and
|ρ(H,Hθ2) − ρ(H,Hθ1)| ≤ C‖θ1 − θ2‖β , ∀θ1, θ2 ∈ �, which in turn implies that
for all ε > 0,

lim
δ→0

lim sup
n

P

(
sup

‖θ1−θ2‖<δ

|Mn(θ1) − Mn(θ2)| > ε

)
= 0.(3.7)

These two facts in turn imply θ̂n = T (H) + op(1). For, suppose θ̂n � T (H), in
probability. Then, by the compactness of �, there is a subsequence {θ̂nk

} of {θ̂n}
and a θ∗ �= T (H) such that θ̂nk

= θ∗ + op(1). Because Mnk
(θ̂nk

) ≤ Mnk
(T (H)),

we obtain

ρ(H,Hθ∗) ≤ ρ
(
H,HT (H)

) + 2 sup
θ

|Mnk
(θ) − ρ(H,Hθ)|

+ |Mnk
(θ∗) − Mnk

(θ̂nk
)|.

By (3.6) and (3.7), the last two summands in the above bound are op(1), so that
ρ(H,Hθ∗) ≤ ρ(H,HT (H)) eventually, with arbitrarily large probability. In view of
the uniqueness of T (H), this is a contradiction unless θ∗ = T (H).

To prove (3.6), use the Cauchy–Schwarz (C–S) inequality to obtain that
|Mn(θ) − ρ(H,Hθ)| is bounded above by the product Qn1(θ)Qn2(θ), where

Qn1(θ) :=
∫ (

[Ĥn(z) − H(z)] −
[
μn(z, θ)

f̂Zw(z)
− Hθ(z)

])2

dG(z),

Qn2(θ) :=
∫ (

[Ĥn(z) + H(z)] −
[
μn(z, θ)

f̂Zw(z)
+ Hθ(z)

])2

dG(z).

But Qn1(θ) is bounded above by 2(ρ(Ĥn,H) + �n(θ)), where �n(θ) is the �n

of (3.2), with H replaced by Hθ . By (3.5), �n(θ) = op(1), for each θ ∈ �.
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Similarly, ∀θ1, θ2 ∈ �, |�n(θ1) − �n(θ2)|2 is bounded above by the product∫ ([
μn(z, θ1)

f̂Zw(z)
− μn(z, θ2)

f̂Zw(z)

]
− [Hθ1(z) − Hθ2(z)]

)2

dG(z)

×
∫ ([

μn(z, θ1)

f̂Zw(z)
+ μn(z, θ2)

f̂Zw(z)

]
− [Hθ1(z) + Hθ2(z)]

)2

dG(z).

By (m3) and (2.2), the first term of this product is bounded above by ‖θ1 −
θ2‖2βOp(1), while the second term is Op(1) by the boundedness of mθ(x)

on I × �. These facts, together with the compactness of �, imply that
supθ∈� Qn1(θ) = op(1) while mθ(x) bounded on I × � implies that
supθ∈� Qn2(θ) = Op(1), thereby completing the proof of (3.6). �

Upon taking m = mθ0 in the above lemma one immediately obtains the follow-
ing.

COROLLARY 3.1. Suppose H0, (e1), (e2), (f1) and (m1)–(m3) hold. Then
θ∗
n → θ0, θ̂n → θ0, in probability.

4. Asymptotic distribution of θ̂n and ̂Dn. In this section, we sketch a proof
of the asymptotic normality of

√
n(θ̂n − θ0) and D̂n, under H0. This proof is

similar to that given in [14]. We indicate only the differences. To begin with we
focus on θ̂n. The first step toward this goal is to show that

nhd‖θ̂n − θ0‖2 = Op(1).(4.1)

Let Dn(θ) = ∫
Z2

n(z, θ) dψ̂(z). Arguing as in K–N, one obtains

nhdDn(θ̂n) = Op(1).(4.2)

Next, we shall show that for any a > 0, there exists an Na such that

P

(
Dn(θ̂n)/‖θ̂n − θ0‖2 ≥ a + inf‖b‖=1

bT �0b

)
> 1 − a ∀n > Na,(4.3)

where �0 is as in (m6). The claim (4.1) then follows from (4.2), (4.3), (m6) and
the fact nhdDn(θ̂n) = nhd‖θ̂n − θ0‖2[Dn(θ̂n)/‖θ̂n − θ0‖2].

To prove (4.3), let �n(b) := ∫ [b′μ̇n(z, θ0)]2 dψ̂(z), b ∈ R
q and

un := θ̂n − θ0, dni := H
θ̂n

(Zi) − Hθ0(Zi) − u′
nḢθ0(Zi),

1 ≤ i ≤ n,
(4.4)

Dn1 :=
∫ [

1

n

n∑
i=1

Khi(z)

(
dni

‖un‖
)]2

dψ̂(z),

Dn2 :=
∫ [

u′
n

‖un‖ μ̇n(z, θ0)

]2

dψ̂(z).
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Note that

Dn(θ̂n)

‖θ̂n − θ0‖2
=

∫
Z2

n(z, θ̂n)

‖un‖2 dψ̂(z) ≥ Dn1 + Dn2 − 2D
1/2
n1 D

1/2
n2 .

We remark here that this inequality corrects a typo in [14] in the equation just
above (4.8) on page 120. Assumption (m4) and consistency of θ̂n imply that Dn1 =
op(1). Exactly the same argument as in [14] with obvious modifications proves
that sup‖b‖=1 ‖�n(b) − b′�0b‖ = op(1) and (4.3), thereby concluding the proof
of (4.1). As in [14], this is used to prove the following theorem where

� =
∫ (σ 2

ε + τ 2(u))Ḣθ0(u)Ḣ ′
θ0

(u)g2(u)

fZ(u)
du.

THEOREM 4.1. Assume (e1)–(e3), (f1), (f2), (g), (k), (m1)–(m5) and (h3)
hold. Then under H0, n1/2(θ̂n − θ0) = �−1

0 n1/2Sn + op(1). Consequently, n1/2 ×
(θ̂n − θ0) →d Nq(0,�−1

0 ��−1
0 ), where �0 are defined in (m6).

This theorem shows that asymptotic variance of n1/2(θ̂n − θ0) consists of two
parts. The part involving σ 2

ε reflects the variation in the regression model, while
the part involving τ 2 reflects the variation in the measurement error. This is the
major difference between asymptotic distribution of the MD estimators discussed
for the classical regression model in the K–N paper and for the Berkson model
here. Clearly, the larger the measurement error, the larger τ 2 will be.

Next, we state the asymptotic normality result about D̂n. Its proof is similar to
that of Theorem 5.1 in [14] with obvious modifications and hence no details are
given. Recall the notation in (1.4).

THEOREM 4.2. Suppose (e1), (e2), (e4), (f1), (f2), (g), (k), (m1)–(m5)
and (h3) hold. Then under H0, D̂n →d N1(0,�) and |�̂n�

−1 − 1| = op(1).

Consequently, the test that rejects H0 whenever |D̂n| > zα/2 is of the asymptotic
size α, where zα is the 100(1−α)% percentile of the standard normal distribution.

5. Power of the MD-test. We shall now discuss some theoretical results about
asymptotic power of the proposed tests. We shall show, under some regularity con-
ditions, that |D̂n| → ∞, in probability, under certain fixed alternatives. This in turn
implies consistency of the test that rejects H0 whenever |D̂n| is large against these
alternatives. We shall also discuss asymptotic power of the proposed tests against
certain local alternatives. Accordingly, let m ∈ L2(G) and H(z) := E(m(X)|Z =
z). Also, let ν(z, θ) := Hθ(z) − H(z), eni := Yi − Hθn(Zi), ei := Yi − H(Zi),

where θn is an estimator of T (H) of (1.5). Let, for z ∈ R
d, θ ∈ �,

Vn(z) := 1

n

n∑
i=1

Khi(z)ei, ν̄n(z, θ) := 1

n

n∑
i=1

Khi(z)ν(Zi, θ).
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5.1. Consistency. Let Dn := nhd/2G
−1/2
n (Mn(θn) − Cn), where

Cn := 1

n2

n∑
i=1

∫
K2

hie
2
ni dψ̂, Gn := 2n−2hd

∑
i �=j

(∫
KhiKhjenienj dψ̂

)2

.

If θn = θ̂n, then Cn = Ĉn,Gn = �̂n and Dn = D̂n. The following theorem pro-
vides a set of sufficient conditions under which |Dn| → ∞, in probability, for any
sequence of consistent estimator θn of T (H).

THEOREM 5.1. Suppose (e1), (e2), (e4), (f1), (f2), (g), (k), (m3), (h3) and the
alternative hypothesis H1 :μ(x) = m(x),∀x ∈ I hold with the additional assump-
tion that infθ ρ(H,Hθ) > 0. Then, for any sequence of consistent estimator θn

of T (H), |Dn| → ∞, in probability. Consequently, |D̂n| → ∞, in probability.

PROOF. Subtracting and adding H(Zi) from eni , we obtain Mn(θn) =
Sn1 − 2Sn2 + Sn3, where Sn1 := ∫

V2
n dψ̂ , Sn2 := ∫

Vn(z)ν̄n(z, θn) dψ̂(z) and
Sn3 := ∫

ν̄2
n(z, θn) dψ̂(z). Arguing as in Lemma 5.1 of [14], we can verify

that under the current setup, nhd/2(Sn1 − C∗
n) →d N1(0,�∗), where C∗

n =∑n
i=1

∫
K2

hi(z)e
2
i dψ̂(z)/n2, �∗ = 2

∫
(σ 2∗ (z))2g(z) dψ(z)‖K2‖2 with σ 2∗ (z) =

σ 2
e + γ 2(z), with σ 2

e (z) = E[(Y − H(Z))2|Z = z].
Next, consider Sn3. For convenience write T for T (H). By subtracting and

adding HT (Zi) from ν(Zi, θn), we have Sn3 = Sn31 + 2Sn32 + Sn33, where

Sn31 :=
∫

ν̄2
n(z, T ) dψ̂(z),

Sn32 :=
∫

ν̄n(z, T )[μ̄n(z, θn) − μ̄n(z, T )]dψ̂(z),

Sn33 :=
∫

[μ̄n(z, θn) − μ̄n(z, T )]2 dψ̂(z).

Routine calculations and (2.2) show that Sn31 = ρ(H,HT ) + op(1), under H1.
By (m3), Sn33 ≤ ‖θn − T ‖2β

∫
I[ 1

nf̂Zw(z)

∑n
i=1 Khi(z)|l(Zi)|]2 dG(z) = op(1), by

consistency of θn for T . By the C–S inequality, one obtains that Sn32 = op(1) =
Sn2. Therefore, Sn3 = ρ(H,HT ) + op(1).

Note that

Cn − C∗
n = − 2

n2

n∑
i=1

∫
K2

hi(z)eiν(Zi, θn) dψ̂(z)

+ 1

n2

n∑
i=1

∫
K2

hi(z)ν
2(Zi, θn) dψ̂(z).

Both terms on the right-hand side are of the order op(1).
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We shall next show that Gn → �∗ in probability. Adding and subtracting H(Zi)

and H(Zj ) from eni and enj , respectively, and expanding the square of integral,
one can rewrite Gn = ∑10

j=1 Anj , where

An1 = 2hdn−2
∑
i �=j

(∫
Khi(z)Khj (z)eiej dψ̂(z)

)2

,

An2 = 2hdn−2
∑
i �=j

(∫
Khi(z)Khj (z)eiν(Zj , θn) dψ̂(z)

)2

,

An3 = 2hdn−2
∑
i �=j

(∫
Khi(z)Khj (z)ν(Zi, θn)ej dψ̂(z)

)2

,

An4 = 2hdn−2
∑
i �=j

(∫
Khi(z)Khj (z)ν(Zi, θn)ν(Zj , θn) dψ̂(z)

)2

,

An5 = −4hdn−2
∑
i �=j

(∫
Khi(z)Khj (z)eiej dψ̂(z)

×
∫

Khi(z)Khj (z)eiν(Zj , θn) dψ̂(z)

)
,

An6 = −4hdn−2
∑
i �=j

(∫
Khi(z)Khj (z)eiej dψ̂(z)

×
∫

Khi(z)Khj (z)ν(Zi, θn)ej dψ̂(z)

)
,

An7 = 4hdn−2
∑
i �=j

(∫
Khi(z)Khj (z)eiej dψ̂(z)

×
∫

Khi(z)Khj (z)ν(Zi, θn)ν(Zj , θn) dψ̂(z)

)
,

An8 = 4hdn−2
∑
i �=j

(∫
Khi(z)Khj (z)eiν(Zj , θn) dψ̂(z)

×
∫

Khi(z)Khj (z)ν(Zi, θn)ej dψ̂(z)

)
,

An9 = −4hdn−2
∑
i �=j

(∫
Khi(z)Khj (z)eiν(Zj , θn) dψ̂(z)

×
∫

Khi(z)Khj (z)ν(Zi, , θn)ν(Zj , θn) dψ̂(z)

)
,
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An10 = −4hdn−2
∑
i �=j

(∫
Khi(z)Khj (z)ν(Zi, θn)ej dψ̂(z)

×
∫

Khi(z)Khj (z)ν(Zi, θn)ν(Zj , θn) dψ̂(z)

)
.

By taking the expectation, using Fubini’s theorem we obtain

hdn−2
∑
i �=j

(∫
Khi(z)Khj (z)|ei ||ej |dψ(z)

)2

= Op(1),(5.1)

hdn−2
∑
i �=j

(∫
Khi(z)Khj (z)|ei |k dψ(z)

)2

= Op(1), k = 0,1.(5.2)

By (2.2) and (5.1) and arguing as in the proof of Lemma 5.5 in K–N, one can

verify that An1 →p �∗
1 := 2

∫
(σ 4

e
g2

f 2
Z

)(z) dz‖K2‖2.

Add and subtract HT (Zj ) from ν(Zj , θn), to obtain

An2 = 2hd

n2

∑
i �=j

(∫
Khi(z)Khj (z)eiν(Zj , θ) dψ̂(z)

)2

+ 4hd

n2

∑
i �=j

(∫
Khi(z)Khj (z)eiν(Zj , θ) dψ̂(z)

×
∫

Khi(z)Khj (z)ei

(
Hθn(Zj ) − HT (Zj )

)
dψ̂(z)

)

+ 2hd

n2

∑
i �=j

(∫
Khi(z)Khj (z)ei

(
Hθn(Zj ) − HT (Zj )

)
dψ̂(z)

)2

.

By (m4), consistency of θn, (2.1), the C–S inequality on the double sum and (5.2),
the last two terms of the above expression are op(1). Arguing, as for An1,
the first term on the right-hand side above converges in probability to �∗

2 :=
2

∫
σ 2

e (z)[H(z) − HT (z)]2 g2(z)

f 2
Z(z)

dz‖K2‖2. Similarly, one can also show An3 → �∗
2

in probability.
Similarly, by adding and subtracting HT (Zi), HT (Zj ) from ν(Zi, θn), ν(Zj ,

θn), respectively, in An4, one obtains An4 = �∗
3 + op(1), where �∗

3 = 2
∫ [H(z) −

HT (z)]4 g2(z)

f 2
Z(z)

dz‖K2‖2. Next, rewrite

An5 = −4hdn−2
∑
i �=j

(∫
Khi(z)Khj (z)eiej dψ̂(z)

×
∫

Khi(z)Khj (z)eiν(Zj , θn) dψ̂(z)

)
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− 4hdn−2
∑
i �=j

(∫
Khi(z)Khj (z)eiej dψ̂(z)

×
∫

Khi(z)Khj (z)ei[Hθn(Zj ) − HT (Zj )]dψ̂(z)

)
= An51 + An52, say.

Clearly, EÃn51 = 0. Argue as for (5.13) in K–N, verify that E(Ã2
n51) =

O((nd)−1). Therefore, Ãn51 = op(1). By the C–S inequality on the double sum,
(2.2), (5.1) and (5.2), we have An51 = Ãn51 + op(1). Hence An51 = op(1). Simi-
larly, one can verify An52 = op(1). These results imply An5 = op(1).

Similarly, one can show that Ani = op(1), i = 6,7,8,9,10. Note that �∗ =
�∗

1 + 2�∗
2 + �∗

3 , so we obtain that Gn → �∗, in probability.
All these results together imply that

Dn = nhd/2�̂−1/2
n (Sn1 − C∗

n) + nhd/2G−1/2
n ρ(H,HT ) + op(nhd/2),

hence the theorem. �

5.2. Power at local alternatives. Here we shall now study the asymptotic
power of the proposed MD-test against some local alternatives. Accordingly,
let r be a known continuously differentiable real-valued function and let R(z) :=
E(r(X)|Z = z). In addition, assume R ∈ L2(G) and∫

HθR dG = 0 ∀θ ∈ �.(5.3)

Consider the sequence of local alternatives

H1n :μ(x) = mθ0(x) + γnr(x), γn = 1/
√

nhd/2.(5.4)

The following theorem gives the asymptotic distribution of θ̂n under H1n.

THEOREM 5.2. Suppose (e1)–(e3), (f1), (f2), (g), (k), (m1)–(m5) and (h3)
hold; then under the local alternative (5.3) and (5.4), n1/2(θ̂n − θ0) →d Nq(0,

�−1
0 ��−1

0 ).

PROOF. The basic idea of the proof is the same as in the null case. We only
stress the differences here. Under H1n, εi ≡ Yi −mθ0(Xi)− γnr(Xi). Let r̄n(z) :=∑n

i=1 Khi(z)r(Xi)/n.
We first note that nhdMn(θ0) = Op(1). In fact, under (5.4), Mn(θ0) can be

bounded above by 2 times the sum of (1/nhd/2)
∫

r̄2
n dψ̂ and∫ [

n∑
i=1

Khi(z)
(
mθ0(Xi) + εi − Hθ0(Zi)

)]2

dψ̂(z).
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Using the variance argument and (2.2), one verifies that this term is of the order
Op(n−1h−d). Note that r̄n is a kernel estimator of R. Hence, R ∈ L2(G) and a
routine argument shows that the former term is Op(n−1h−d/2). This leads to the
conclusion nhdMn(θ0) = Op(1). This fact and an argument similar to the one used
in K–N, together with the fact θ̂n →p θ0, yield nhd‖θ̂n − θ0‖ = Op(1), under H1n.

Note that with Ṁn(θ) := ∂Mn(θ)/∂θ , θ̂n satisfies

Ṁn(θ̂n) = −2
∫

Un(z, θ̂n)μ̇n(z, θ̂n) dψ̂(z) = 0,(5.5)

where Un(z, θ) and μ̇n(z, θ) are defined in (2.4). Adding and subtracting Hθ0(Zi)

from Yi − H
θ̂n

(Zi) in Un(z, θ̂n), we can rewrite (5.5) as∫
Un(z)μ̇n(z, θ̂n) dψ̂(z) =

∫
Zn(z, θ̂n)μ̇n(z, θ̂n) dψ̂(z).(5.6)

The right-hand side of (5.6) involves the error variables only through θ̂n. Since
under H1n we also have n1/2(θ̂n −θ0) = Op(1), its asymptotic behavior under H1n

is the same as in the null case, that is, it equals Rn(θ̂n − θ0) + oP (1),Rn = �0 +
op(1). The left-hand side, under (5.4), can be rewritten as Sn1 + Sn2, where

Sn1 =
∫ 1

n

n∑
i=1

Khi(z)[mθ0(Xi) + εi − Hθ0(Zi)]μ̇n(z, θ̂n) dψ̂(z),

Sn2 = γn

∫
r̄n(z)μ̇n(z, θ̂n) dψ̂(z).

Note that mθ0(Xi)+ εi −Hθ0(Zi) are i.i.d. with mean 0 and finite second moment.
Arguing as in the proofs of Lemmas 4.1 and 4.2 of [14] with εi there replaced by
mθ0(Xi) + εi − Hθ0(Zi) yields that under H1n,

√
nSn1 →d Nq(0,�). Thus, the

theorem will be proved if we can show
√

nSn2 = op(1).
For this purpose, with rh(z) := EKh(z−Z)r(X) = EKh(z−Z)R(Z), we need

the following facts. Arguing as for (3.4) and using differentiability of r , one obtains∫
[r̄n − rh]2 dψ̂ = Op(n−1h−d),

∫
[rh − RfZ]2 dψ = O(h2d),

(5.7) ∫
‖μ̇h − Ḣθ0fZ‖2 dψ = O(h2d).

Then the integral in Sn2 can be written as∫
{[r̄n(z) − rh(z)] + [rh(z) − R(z)fZ(z)] + R(z)fZ(z)}

× {[μ̇n(z, θ̂n) − μ̇n(z, θ0)] + [μ̇n(z, θ0) − μ̇h(z)]
+ [μ̇h(z) − Ḣθ0(z)fZ(z)] + Ḣθ0(z)fZ(z)}dψ̂(z).

This can be further expanded into twelve terms. By (m5), (2.2), (5.7) and C–S,
one can show that all of these twelve terms are op(h−d/4) except the term
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RḢθ0f

2
Z dψ̂ = ∫

RḢθ0 dG + ∫
RḢθ0qn dG. But (5.3), (m6), continuity of r(x)

and the compactness of I imply
∫

Ḣθ0R dG = 0. The second term is bounded
above by

sup
z∈I

|qn(z)|
∫

|R|‖Ḣθ0‖dG.(5.8)

By Theorem 2.2, part (2) in Bosq [4] and the choice of w = (
logn

n
)1/(d+4),

(logk n)−1(n/ logn)2/(d+4) supz∈I |f̂Zw(z) − fZ(z)| → 0, almost surely, for all
k > 0. This fact and (h3) readily imply that (5.8) is of the order op(hd/4), so that
n1/2Sn2 = √

n · (√nhd/2)−1 · op(hd/4) = op(1). Hence the theorem. �

The following theorem gives asymptotic power of the MD-test against the local
alternative (5.3) and (5.4).

THEOREM 5.3. Suppose (e1), (e2), (e4), (f1), (f2), (g), (k), (m4), (h3) and the
local alternative hypothesis (5.3) and (5.4) hold. Then, D̂n →d N(�−1/2 ∫

R2 dG,

1), where � is as in (2.3).

PROOF. Rewrite Mn(θ̂n) = Tn1 + 2Tn2 + Tn3, where Tn1 := ∫
U2

n dψ̂ , Tn2 :=∫
Un(z)[μn(z, θ0) − μn(z, θ̂n)]dψ̂ and Tn3 := ∫ [μn(z, θ0) − μn(z, θ̂n)]2 dψ̂ . By

Theorem 5.2,
√

n(θ̂n − θ0) = Op(1). This fact, (m4) and (2.2) imply Tn3 =
Op(n−1).

Next, we shall show that Tn2 = Op(n−1h−d/4). By C–S, T 2
n2 ≤ Tn1Tn3. More-

over, Tn1 = ∫
U2

n dψ + ∫
U2

nqn dψ . But under H1n, Yi = mθ0(Xi) + γnr(Xi) + εi .
Hence,

∫
U2

n dψ is bounded above by 3 times the sum

∫ [
1

nfZ(z)

n∑
i=1

Khi(z)εi

]2

dG(z) +
∫

r̄2
n dψ̂,

+
∫ [

1

nfZ(z)

n∑
i=1

Khi(z)[mθ0(Xi) − Hθ0(Zi)]
]2

dG(z).

Arguing as in Section 2, all of these terms are Op(n−1h−d/2). This fact and (2.2)
imply that the second term in Tn1 is of the order op(n−1h−d/2). Hence Tn1 =
Op(n−1h−d/2) and Tn2 = Op(n−1h−d/4).

We shall now obtain a more precise approximation to Tn1. For this purpose,
write ξi = εi +mθ0(Xi)−Hθ0(Zi) and let Vn(z) := ∑n

i=1 Khi(z)ξi/n. Then, Tn1 =
Tn11 + 2γnTn12 + γ 2

n Tn13, where

Tn11 :=
∫

Vn dψ̂, Tn12 :=
∫

Vnr̄n dψ̂, Tn13 :=
∫

r̄2
n dψ̂.
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Now, we shall show that∫
(R/f̂Zw)Vn dG = op

(
1/

√
nhd/2

)
.(5.9)

In fact, with dψ1 := dG/fZ , the left-hand side equals
∫
(R/fZ)Vn dG +∫

RVnqw1 dψ1. The first term is an average of i.i.d. mean-zero r.v.’s and a variance
calculation shows that it is of the order Op(n−1/2), while by Theorem 2.2, part (2)
in Bosq [4], the second term is of the order op(1/

√
nhd/2), thereby proving (5.9).

Arguing as for (3.4) one obtains that
∫

V 2
n dψ = Op(1/nhd). Next, note that

r̄n/f̂Zw is an estimator of R, so by the C–S inequality again,∫
(Vn/f̂Zw)[(r̄n/f̂Zw) − R]dG = op

(
1/

√
nhd/2

)
.

This fact and (5.9) imply that Tn12 = op(1/
√

nhd/2). A similar and relatively easier
argument yields that Tn13 = ∫

R2 dG + op(1).
Finally, we need to discuss asymptotic behavior of Cn under the local alterna-

tive (5.4). With ζi = Yi −Hθ0(Zi), rewrite Yi −Hθn(Zi) = ζi +Hθ0(Zi)−Hθn(Zi)

in Cn, to obtain

Cn = 1

n2

n∑
i=1

∫
K2

hi(z)ζ
2
i dψ̂(z)

+ 2

n2

n∑
i=1

∫
K2

hi(z)ζi

(
Hθ0(Zi) − Hθn(Zi)

)
dψ̂(z)

+ 1

n2

n∑
i=1

∫
K2

hi(z)
(
Hθ0(Zi) − Hθn(Zi)

)2
dψ̂(z)

= Cn1 + 2Cn2 + Cn3.

But with notation at (4.4),

Cn2 = − 1

n2

n∑
i=1

∫
K2

hi(z)ξidni dψ̂(z) − 1

n2

n∑
i=1

∫
K2

hi(z)r(Xi)dni dψ̂(z)

+ 1

n2

n∑
i=1

∫
K2

hi(z)ξiu
′
nḢθ0(Zi) dψ̂(z)

+ 1

n2

n∑
i=1

∫
K2

hi(z)r(Xi)u
′
nḢθ0(Zi) dψ̂(z).

Recall that γn = 1/
√

nhd/2. Using assumptions (m4), (h2), one can show the first
and the third terms in Cn2 are of the order OP (n−3/2h−d), the second and the
fourth terms are of the order Op(n−2h−3d/2). This implies Cn2 = op(γ 2

n ). Simi-
larly, one can show that Cn3 = Op(n−3/2h−d) = op(γ 2

n ).
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Since Yi − Hθ0(Zi) = ξi + γnr(Xi), if we let Dn = n−2 ∑n
i=1

∫
K2

hiξ
2
i dψ̂ , then

using the similar argument, we can show that Cn1 = Dn + op(γ 2
n ).

To see the asymptotic property of �̂n under the local alternative, adding and
subtracting Hθ0(Zi), Hθ0(Zj ) from eni and eni , respectively, and letting ξi =
mθ0(Xi) − Hθ0(Zi) + εi , we will arrive at

�̂n = 2n−2hd
∑
i �=j

(∫
Khi(z)Khj (z)ξiξj dψ̂(z)

)2

+ ωn.

The first term converges in probability to �. The remainder ωn = op(1) can be
proven by using the C–S inequality on the double sum, consistency of θn, (2.2)
and the following facts:

hd

n2

∑
i �=j

(∫
Khi(z)Khj (z)|ξi ||ξj |dψ(z)

)2

= Op(1),

hd

n2

∑
i �=j

(∫
Khi(z)Khj (z)|ξi |k dψ(z)

)2

= Op(1), k = 0,1.

Therefore, under the local alternative hypothesis (5.4),

nhd/2�̂−1/2
n

(
Mn(θ̂n) − Ĉn

) = nhd/2�̂−1/2
n (Tn11 − Dn) + �̂−1/2

n Tn13 + op(1),

which, together with the fact nhd/2(Tn11 − Dn) →d N1(0,�), Tn13 → ∫
R2 dG

and �̂n → � in probability, implies the theorem. �

6. Simulations. This section contains results of two simulation studies cor-
responding to the following cases: case 1: d = q = 1 and mθ linear; case 2:
d = q = 2 and mθ nonlinear. In each case the Monte Carlo average values of θ̂n,
MSE(θ̂n), empirical levels and powers of the MD test are reported. The asymptotic
level is taken to be 0.05 in all cases.

In the first case {Zi}ni=1 are obtained as a random sample from the uniform
distribution on [−1,1] and {εi}ni=1 and {ηi}ni=1 are obtained as two independent
random samples from N1(0, (0.1)2). Then (Xi, Yi) are generated using the model
Yi = μ(Xi) + εi,Xi = Zi + ηi, i = 1,2, . . . , n.

The kernel functions and the bandwidths used in the simulation are

K(z) = K∗(z) = 3
4(1 − z2)I (|z| ≤ 1), h = a

n1/3 , w = b

(
logn

n

)1/5

,

with some choices for a and b. The integrating measure G is taken to be the uni-
form measure on [−1,1].



BERKSON MODEL DIAGNOSTICS 153

The parametric model is taken to be mθ(x) = θx, x, θ ∈ R, θ0 = 1. Then,
Hθ(z) = θz. In this case various calculations simplify as follows. By taking the
derivative of Mn(θ) in θ and solving the equation of ∂Mn(θ)/∂θ = 0, we obtain
θ̂n = An/Bn, where

An =
∫ 1

−1

[
n∑

i=1

Khi(z)Yi

][
n∑

i=1

Khi(z)Zi

][
n∑

i=1

Kwi(z)

]−2

dz,

Bn =
∫ 1

−1

[
n∑

i=1

Khi(z)Zi

]2[
n∑

i=1

Kwi(z)

]−2

dz.

Then, with ε̂i := Yi − θ̂nZi ,

Mn(θ̂n) =
∫ 1

−1

(
n∑

i=1

Khi(z)ε̂i

)2(
n∑

i=1

Kwi(z)

)−2

dz,

Ĉn =
∫ 1

−1

(
n∑

i=1

K2
hi(z)ε̂

2
i

)(
n∑

i=1

Kwi(z)

)−2

dz.

Table 1 reports the Monte Carlo mean and MSE(θ̂n) under H0 for the sample
sizes 50,100,200,500, each repeated 1000 times. One can see there appears to be
little bias in θ̂n for all chosen sample sizes and as expected, the MSE decreases as
the sample size increases.

To assess the level and power behavior of the D̂n-test, we chose the following
four models to simulate data from; in each of these cases Xi = Zi + ηi :

Model 0: Yi = Xi + εi,

Model 1: Yi = Xi + 0.3X2
i + εi,

Model 2: Yi = Xi + 1.4 exp(−0.2X2
i ) + εi,

Model 3: Yi = XiI (Xi ≥ 0.2) + εi .

To assess the effect of the choice of (a, b) that appear in the bandwidths on
the level and power, we ran simulations for numerous choices of (a, b), rang-
ing from 0.2 to 1. Table 2 reports these simulation results pertaining to D̂n for

TABLE 1
Mean and MSE of θ̂n

Sample size 50 100 200 500

Mean 1.0003 0.9987 1.0006 0.9998
MSE 0.0012 0.0006 0.0003 0.0001
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TABLE 2
Levels and powers of the minimum distance test

Sample size

Model a, b 50 100 200 500

0.3, 0.2 0.007 0.026 0.028 0.048
Model 0 0.5, 0.5 0.014 0.022 0.040 0.051

1.0, 1.0 0.021 0.020 0.031 0.043

0.3, 0.2 0.754 0.987 1.000 1.000
Model 1 0.5, 0.5 0.945 1.000 1.000 1.000

1.0, 1.0 1.000 1.000 1.000 1.000

0.3, 0.2 0.857 0.996 1.000 1.000
Model 2 0.5, 0.5 0.999 1.000 1.000 1.000

1.0, 1.0 1.000 1.000 1.000 1.000

0.3, 0.2 0.874 0.993 1.000 1.000
Model 3 0.5, 0.5 1.000 1.000 1.000 1.000

1.0, 1.0 1.000 1.000 1.000 1.000

three choices of (a, b). Simulation results for the other choices were similar to
those reported here. Data from Model 0 in this table are used to study empir-
ical sizes and data from Models 1 to 3 are used to study empirical powers of
the test. These entities are obtained by computing #{|D̂n| ≥ 1.96}/1000, where
D̂n := nhd/2�̂

−1/2
n (Mn(θ̂n) − Ĉn).

From Table 2, one sees that empirical level is sensitive to the choice of (a, b)

for moderate sample sizes (n ≤ 200) but gets closer to the asymptotic level of 0.05
with the increase in the sample size and hence is stable over the chosen values of
(a, b) for large sample sizes. On the other hand the empirical power appears to be
far less sensitive to the values of (a, b) for the sample sizes of 100 and more. Even
though the theory of the present paper is not applicable to Model 3, it was included
here to see the effect of the discontinuity in the regression function on the power
of the minimum distance test. In our simulation, the discontinuity of the regression
has little effect on the power of the minimum distance test.

Now consider the case 2 where d = 2, q = 2 and mθ(x) = θ1x1 +exp(θ2x2), θ =
(θ1, θ2)

′ ∈ R
2, x1, x2 ∈ R. Accordingly, here Hθ(z) = θ1z1 + exp(θ2z2 +0.005θ2

2 ).
The true θ0 = (1,2)′ was used in these simulations.

In all models below, {Zi = (Z1i ,Z2i)
′}ni=1 are obtained as a random sample

from the uniform distribution on [−1,1]2, {εi}ni=1 are obtained from N1(0, (0.1)2)

and {ηi = (η1i , η2i)
′}ni=1 are obtained from the bivariate normal distribution with

mean vector 0 and the diagonal covariance matrix with both diagonal entries equal
to (0.1)2. We simulated data from the following four models, where Xi = Zi + ηi :

Model 0: Yi = X1i + exp(2X2i ) + εi,
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TABLE 3
Mean and MSE of θ̂n

Sample size 50 100 200 300

Mean of θ̂n1 0.9978 0.9973 0.9974 0.9988
MSE of θ̂n1 0.0190 0.0095 0.0053 0.0034

Mean of θ̂n2 1.9962 1.9965 2.0013 2.0004
MSE of θ̂n2 0.0063 0.0028 0.0014 0.0010

Model 1: Yi = X1i + exp(2X2i ) + 1.4X2
1i + 1 + εi,

Model 2: Yi = X1i + exp(2X2i ) + 1.4X2
1iX

2
2i + εi,

Model 3: Yi = X1i + exp(2X2i ) + 1.4
(
exp(−0.2X1i ) + exp(0.7X2

2i )
) + εi .

Bandwidths and kernel function used in the simulation were taken to be h =
n−1/4.5,w = n−1/6(logn)1/6 and

K(z) = K∗(z) = 9
16(1 − z2

1)(1 − z2
2)I (|z1| ≤ 1, |z2| ≤ 1).

The sample sizes chosen are 50,100,200 and 300, each repeated 1000 times.
Table 3 lists means and MSE of θ̂n = (θ̂n1, θ̂n2)

′ obtained by minimizing Mn(θ)

and employing the Newton–Raphson algorithm. As in case 1, one sees little bias
in the estimator for all chosen sample sizes.

Table 4 gives the empirical sizes and powers of the D̂n-test for testing Model 0
against Models 1–3. From this table one sees that this test is conservative when
sample sizes are small, while empirical levels increase with the sample sizes and
indeed preserve the nominal size 0.05. It also shows that the MD test performs
well for sample sizes 200 and larger at all alternatives.

Acknowledgment. Authors would like to thank the two referees and Jianqing
Fan for constructive comments.

TABLE 4
Levels and powers of the minimum distance test in case 2

Sample size 50 100 200 300

Model 0 0.003 0.019 0.049 0.052
Model 1 0.158 0.843 0.979 0.996
Model 2 0.165 0.840 0.976 0.992
Model 3 0.044 0.608 0.954 0.997
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