
Model Checking in Partial Linear Regression Models

with Berkson Measurement Errors

Hira L. Koul1 and Weixing Song

Michigan State University & Kansas State University

Abstract

This paper discusses the problem of fitting a parametric model to the nonparametric

component in partially linear regression models when covariates in parametric and

nonparametric parts are subject to Berkson measurement errors. The proposed test is

based on the supremum of a martingale transform of a certain partial sum process of

calibrated residuals. Asymptotic null distribution of this transformed process is shown

to be the same as that of a time transformed standard Brownian motion. Consistency of

this sequence of tests against some fixed alternatives and asymptotic power under some

local nonparametric alternatives are also discussed. A simulation study is conducted

to assess the finite sample performance of the proposed test. A Monte Carlo power

comparison with some of the existing tests shows some superiority of the proposed test

at the chosen alternatives.

1 Introduction

In this paper, we are interested in developing a lack-of-fit test for checking if the nonpara-

metric component takes on a parametric form in the partially linear regression model with

Berkson measurement errors. More precisely, in the model under consideration one observes

(S, Z, Y ) obeying the relations

Y = β ′X + g(T ) + ε, X = Z + ξ, T = S + η, (1.1)

where X is a p-dimensional random vector, T is a scaler random variable, β is an unknown

p-dimensional vector of regression parameters, and g is an unknown real valued measurable

function. The random variables (r.v.’s) ξ, η are p-dimensional and 1-dimensional measure-

ment errors, respectively. All r.v.’s ε, (Z, S), ξ, η are assumed to be mutually independent,

with ε, η having zero means, finite variances, and ξ having zero mean and known covariance

matrix Σξ. The distributions of ε and ξ are assumed to be unknown otherwise while that of

η is assumed to be known. Under these assumptions, the above model is identifiable and the

covariance of X and T is the same as that of Z and S. See Hu and Schennach (2008) for more
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on identifiability in Berkson and other nonclassical measurement error models. A discussion

on the availability of density function or covariance matrices of measurement errors can be

found in Delaigle, Hall and Qiu (2006).

Traditionally, in some cases, the variables Z and S are called controlled variables as their

values are deterministic. But as in Delaigle, et al. (2006), we also treat these variables

as random. These authors cite many examples where the controlled variables are genuinely

random, rather than deterministic, cf. Reeves et al. (1998), Thomas et al. (1999), Raaschou-

Nielsen et al. (2001), Stram et al. (2002) and Lubin et al. (2005). See also Huwang and

Huang (2000) and Wang (2004) for more on this point.

Here, we are interested in testing whether g in (1.1) is of a parametric form or not, i.e.,

given a parametric family of functions {gγ; γ ∈ Γ}, where Γ is a subset of R
q with q being

a known positive integer, one is interested in testing H0 : g(t) = gγ(t), for some γ ∈ Γ, and

for all t ∈ R, versus H1 : H0 is not true. This problem is of interest because knowing g is

parametric would lead to more accurate inference about the underlying parameters. As is

well known a nonparametric function g is relatively more difficult to estimate and consistency

rate of its estimators is much slower than those of a parametric function.

Lack-of-fit testing in other regression models without measurement errors has been widely

studied in the literature, cf. Hart (1997), Stute, Thies and Zhu (1998), Stute and Zhu (2002,

2005), Zhu and Ng (2003), Liang (2006) and Khmaladze and Koul (2004).

In this paper, we provide a test for H0 based on a martingale transform a la Khmaladze

(1979) and Stute, Thies and Zhu (1998) (STZ) of the marked empirical process of calibrated

residuals. A similar idea is used to construct lack-of-tests in purely nonparametric regression

set up with Berkson measurement error in Koul and Song (2008), but its extension to the

above partial linear model set up is far from trivial. It is not a priori clear how the presence

of linear component in the model affects asymptotic properties of the martingale transformed

process. In particular, the key lemma used in the purely nonparametric case obviously needs

to be modified to account for the multidimensional covariates X, as is done in Lemma 5.2

below. We also have to deal with the additional difficulty that the linear part has to be

estimated prior to constructing the test. Moreover, for similar reasons, some quantities,

such as the conditional variances of the residuals, are more complicated than in the purely

nonparametric setup.

Upon choosing Σξ = 0 and σ2
η = 0, where σ2

η is the variance of η, we see that the pro-

posed test is also applicable in the partial linear regression model with no measurement

error. For such a model, Zhu and Ng (2003) have developed a procedure to test the hypothe-

sis E(Y |X = x, T = t) = β ′x+g(t), for some β and g. But if we do know X is linearly related

to the response, then this test will be less efficient than our test. Moreover, their test is not

asymptotically distribution free. They propose a variant of wild bootstrap approximation to

implement their test. Liang (2006) developed two tests based on a residual-marked empiri-

cal process and a linear mixed effect framework for checking linearity of the non-parametric

component. Again, because of the complicated limiting distributions, Liang uses bootstrap
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methodology to implement these tests. In contrast, the transformed marked residual empiri-

cal process discussed in this paper converges weakly to a time transformed Brownian motion

in uniform metric. Consequently, any test based on a continuous functional of this process

will be asymptotically distribution free (ADF) and can be implemented at least for moderate

to large samples without necessarily resorting to a resampling method.

The rest of the paper is organized as follows. The marked residual empirical process

and its asymptotic null distribution is discussed in Section 2 under quite broad assumptions.

Consistency and asymptotic power against n−1/2-local nonparametric alternatives of the test

based on the supremum of this process are discussed in Section 3. Section 4 contains a

simulation study and a Monte Carlo power comparison of the proposed test with the two

tests of Liang. All proofs are deferred to Section 5. In the sequel, B denotes standard

Brownian motion on [0,∞), and for any r.v. U , FU and fU denote its distribution and

density function, respectively.

2 Main Results

The first subsection below discusses a test for a simple hypothesis while testing for H0 is

discussed in the next subsection.

2.1 Testing for a simple hypothesis

Let g0 be a known real valued function with Eg2
0(T ) <∞. Consider the simple hypothesis

H10 : g(t) = g0(t), ∀ t ∈ R; versus H11 : H10 is not true.

The discussion about this simple case sheds some light on the more general hypothesis H0

to be discussed later on.

Let µ(s) := E(g(T )|S = s), s ∈ R. Under the model assumptions, E(Y |Z = z, S = s) =

E(β ′X + g(T ) + ε|Z = z, S = s) = β ′z + µ(s). We are thus led to the calibrated partial

linear regression model Y = β ′Z + µ(S) + ζ, where the error variable ζ satisfies E(ζ |Z =

z, S = s) = 0, and hence is uncorrelated with (Z, S). This technique of transforming the

regression function of Y on (X, T ) to the regression function of Y on (Z, S) is known as

regression calibration, and is widely used when dealing with measurement error models, see,

e.g., Carroll, Ruppert and Stefansky (1995).

Let µ0(s) := E(g0(T )|S = s), s ∈ R. Since fη is known, µ0(s) = E(g0(S + η)|S = s) =∫
g0(s+ v)fη(v)dv is known. Thus, a test of H10 can be carried out by testing

H20 : µ(s) = µ0(s), ∀s ∈ R, versus H21 : H20 is not true.

The two hypotheses H10 and H20 are not equivalent in general. Clearly, H10 implies H20.

The converse is not true in general, since
∫
g0(v)fη(v − s)dv ≡

∫
g1(v)fη(v − s)dv need not

3



imply g0 = g1. But, if the family of densities {fη(· − s), s ∈ R} is complete, then g0 = g1

almost everywhere.

To proceed further, let τ 2
0 (s) = E[(g0(T ) − µ0(S))2|S = s] and σ2

ε := E(ε2). The

conditional variance of ζ , given (Z, S), is

σ2
ζ,β(z, s) := E(ζ2|Z = z, S = s) = σ2

ε + βTΣξβ + τ 2
0 (s).

Since σ2
ζ,β(z, s) does not depend on z, write σ2

ζ,β(s) for σ2
ζ,β(z, s). Extend the definitions of

µ0, τ
2
0 to R̄ := [−∞,∞] by assigning the value 0 to these functions at ±∞. This convention

will apply also to the analogs of these functions in the sequel. Note that σ2
ζ,β(s) ≥ σ2

ε > 0,

for all s ∈ R̄.

Under H20 one has the regression model where the ‘response’ variable is Y − β ′Z, the

design variable is S and the error ζ is uncorrelated with S and heteroscedastic with the

conditional variance function σ2
ζ,β(S). Thus if β were known then one could adapt the STZ

testing procedure to this regression set up. In the case of the more realistic situation where

β is unknown, this procedure is modified as follows.

Let β̂n be a n1/2-consistent estimator of β under H10, ζi = Yi − β ′Zi − µ0(Si) and ζ̂i =

Yi− β̂ ′
nZi− µ0(Si). Because E(ζ2) = σ2

ε + βTΣξβ +Eτ 2
0 (S), consistent estimators of σ2

ε and

σ2
ζ,β(s) are given, respectively, by

σ̂2
2ε =

∣∣∣ 1
n

n∑

i=1

ζ̂2
i − β̂ ′

nΣξβ̂n −
1

n

n∑

i=1

τ 2
0 (Si)

∣∣∣, σ̂2
2(s) = σ̂2

2ε + β̂TnΣξβ̂n + τ 2
0 (s).

Tests of H20 can be based on the marked residual process

W2n(s) :=
1√
n

n∑

i=1

ζ̂i
σ̂2(Si)

I(Si ≤ s), s ∈ R̄.

Tests of lack-of-fit based on analogs of this process have a long history beginning with von

Neuman (1941). See An and Cheng (1991), Hart (1997), STZ and Khmaladze and Koul

(2004) for more on basing tests of lack-of-fit on these types of marked empirical processes.

Asymptotic null distribution of the process {W2n(s), s ∈ R̄} generally depends on the

estimator β̂n and the joint d.f. of (Z, S), and hence is not known. We shall next describe a

transform of this process that converges to a time transformed Brownian motion. Because

of the known parametric structure of the error variance σ2
ζ,β(s), unlike in STZ, we do not

use the split sample technique to construct a consistent estimator of σ2
ζ,β(s).

Let FZ,S denote the joint d.f. of (Z, S) and set

ei =
ζi

σζ,β(Si)
, e =

ζ

σζ,β(S)
, Cs = E

ZZ ′I(S ≥ s)

σ2
ζ,β(S)

, s ∈ R.

Assume Cs is positive definite for all s ∈ R and let

K(s) := e
[
I(S ≤ s)−

∫

y≤s

∫
x′

σζ,β(y)
C−1
y I(S ≥ y)dFZ,S(x, y)

Z

σζ,β(S)

]
.
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One can verify that EK(s) ≡ 0 and EK(s)K(t) = FS(s ∧ t), s, t ∈ R. Let Ki(s) de-

note K(s) when the r.v.’s e, Z, and S are replaced by ei, Zi and Si, respectively. Define

Wβ,FZ,S
(s) = n−1/2

∑n
i=1Ki(s). From the classical CLT, we readily obtain that all finite di-

mensional distributions of Wβ,FZ,S
converge weakly to those of B ◦ FS. But this transform

is not useful as it depends on the unknown β and FZ,S.

Let F̂Z,S denote the empirical d.f. of (Zi, Si), 1 ≤ i ≤ n, Ĉy denote the Cy with FZ,S
and σζ,β replaced by F̂Z,S and σ̂2, and let K̂i denote the transform K when e, Z, S, Cy and

FZ,S are replaced by êi := ζ̂i/σ̂2(Si), Zi, Si, Ĉy and F̂Z,S in there, respectively. Then, the

transformed process on which the proposed test will be based on takes the form Ŵn(s) =

n−1/2
∑n

i=1 K̂i(s). Under some regularity conditions, we can show that Ŵn ⇒ B ◦ FS in

D([−∞, s]), for every s < ∞, and in uniform metric. Details of the proof here are similar

to those given for the general case in the next section and hence omitted. A computational

formula for Ŵn(s) is

Ŵn(s) =
1√
n

n∑

i=1

êi

{
I(Si ≤ s)− 1

n

n∑

j=1

Z ′
j

σ̂2(Sj)
Ĉ−1
Sj
I(Sj ≤ s ∧ Si)

Zi
σ̂2(Si)

}
,

ĈSj
:=

1

n

n∑

k=1

ZkZ
′
k

σ̂2
2(Sk)

I(Sk ≥ Sj).

2.2 Tests for H0

Let µγ(s) = E(gγ(T )|S = s) =
∫
gγ(s + v)fη(v)dv. Under H0, by regression calibration, we

obtain the calibrated partial linear regression model Y = β ′Z + µγ(S) + ζ , where ζ is still

used to denote the regression error. Thus to test H0 vs. H1, it suffices to test the hypothesis

H30 : µ(S) = µγ(S) for some γ ∈ Γ, versus H31 : H30 is not true.

Let β0 denote the true value of β, γ0 denote the true value of γ under H0, assumed to

be in the interior of Γ, and let θ′ = (β ′
0, γ

′
0). To proceed further, we need the following

additional assumptions.

(e) Eε4 + E‖ξ‖4 + E‖Z‖4 + Eg4
γ0(T ) <∞.

(g1) For some positive continuous function r(t) with Er4(T ) <∞,

|gγ1(t)− gγ2(t)| ≤ ‖γ1 − γ2‖r(t), ∀ γ1, γ2 ∈ Γ, t ∈ R.

(g2) For every t ∈ R, gγ(t) is differentiable in γ in a neighborhood of γ0 with the vector of

derivatives ġγ(t), such that E‖ġγ0(T )‖2 <∞, and for every 0 < k <∞,

sup
t∈R,

√
n‖γ−γ0‖≤k

√
n|gγ(t)− gγ0(t)− (γ − γ0)

′ġγ0(t)| = o(1).
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(g3) Let µ̇γ(s) :=
∫
ġγ(s + y)fη(y)dy. For some q × q square matrix µ̈γ0(s) and a non-

negative function kγ0(s), both measurable in the s coordinate, the following holds:

E‖µ̈γ0(S)‖2 <∞, E‖µ̈γ0(S)‖‖µ̇γ0(S)‖j <∞, E‖µ̈γ0(S)‖jkγ0(S) <∞, j = 0, 1, and for

all δ > 0, there exists an η > 0 such that ‖γ − γ0‖ ≤ η implies

‖µ̇γ(s)− µ̇γ0(s)− µ̈γ0(s)(γ − γ0)‖ ≤ δkγ0(s)‖γ − γ0‖, a.s. (FS).

(m) E‖µ̇γ0(S)‖2 <∞, and with ℓ(z, s) := (z, µ̇γ0(s))
′/σζ,θ(s),

My := Eℓ(Z, S)ℓ(Z, S)′I(S ≥ y) is positive definite for all y ∈ R.

The moments condition (e) is needed to bound some quantities when deriving their

asymptotics. Conditions (g1)–(g3) require certain smoothness of gγ as a function of γ. These

conditions are satisfied if either gγ(t), as a function of γ, has bounded second derivative, or

the r.v. T has a compact support. Condition (m) is a technical assumption to ensure that

certain matrices used in the martingale transformation are invertible.

Now, let τ 2
γ (s) := E[(gγ(T ) − µγ(S))2|S = s], s ∈ R. The analogs of τ 2 and σ2

ζ,β of the

previous sub-section, respectively, are τ 2
γ0

and σ2
ζ,θ(s) = σ2

ε + β ′
0Σξβ0 + τ 2

γ0
(s).

To estimate these entities, let β̂n, γ̂n be any
√
n-consistent estimators for β0, γ0, under

H0, respectively. Let ζ̃i := Yi−β̂ ′
nZi−µγ̂n

(Si). Because µγ is continuous in γ at γ0, consistent

estimators of σ2
ε and σ2

ζ,θ(s), respectively, are

σ̂2
3ε =

∣∣∣ 1
n

n∑

i=1

ζ̃2
i − β̂ ′

nΣξβ̂n −
1

n

n∑

i=1

τ 2
γ̂n

(Si)
∣∣∣, σ̃2

3(s) = σ̂2
3ε + β̂ ′

nΣξβ̂n + τ 2
γ̂n

(s).

Let Ŵ3n(s) = 1√
n

∑n
i=1 ζ̃iI(Si ≤ s)/σ̃3(Si). As in the simple hypothesis case, lack-of-fit

tests based on Ŵ3n are not ADF, but the ones based on its martingale transform are. To

describe this transform, let M̂y denote the estimate of My obtained by the plug in method

where all parameters are replaced by their estimates:

M̂y =

∫∫

s≥y

( zz′ zµ̇′
γ̂n

(s)

µ̇γ̂n
(s)z′ µ̇γ̂n

(s)µ̇′
γ̂n

(s)

) 1

σ̃2
3(s)

dF̂Z,S(z, s).

Under assumptions (e), (g1), (g2) and under H0, supy ‖M̂y −My‖ = op(1). Consequently,

with arbitrarily large probability, M̂−1
y will exist for all y < ∞ and for all sufficiently large

n. Let ℓ̂(z, s) denote the ℓ(z, s) where γ0 and σζ,θ are replaced by γ̂n, and σ̃3, respectively.

Define ẽi := ζ̃i/σ̃3(Si), and

K̃i(s) := ẽi

[
I(Si ≤ s)−

∫

y≤s

∫
ℓ̂(x, y)′M̂−1

y I(Si ≥ y) dF̂Z,S(x, y) ℓ̂(Zi, Si)
]
.
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The proposed test is to be based on the process

Wn(s) := n−1/2
n∑

i=1

K̃i(s)

=
1√
n

n∑

i=1

ẽi

{
I(Si ≤ s)− 1

n

n∑

j=1

ℓ̂(Zj , Sj)
′M̂−1

Sj
I(Si ∧ s ≥ Sj) ℓ̂(Zi, Si)

}
,

M̂s :=
1

n

n∑

i=1

ℓ̂(Zi, Si)ℓ̂(Zi, Si)
′I(Si ≥ s).

The following theorem gives the needed weak convergence result.

Theorem 2.1 Suppose, in addition to (1.1) and H0, the conditions (e), (g1)-(g3), and (m)

hold, and β̂n, γ̂n satisfy

√
n‖β̂n − β0‖ = Op(1),

√
n‖γ̂n − γ0‖ = Op(1), (H0). (2.1)

Then, for every s0 <∞, Wn ⇒ B ◦ FS, in D([−∞, s0]) and uniform metric.

Although many estimation methods will provide estimators of β0, γ0 satisfying (2.1), in the

Appendix below, we show that under certain mild conditions, the least square estimators of

β0, γ0 satisfy (2.1).

As in STZ, it is recommended to apply the above result with s0 equal to the 99th percentile

of F̂S. Consequently, the test that rejects H0 whenever sups≤s0 |Wn(s)/0.995| > bα will be

of the asymptotic size α, where bα is such that P (sup0≤u≤1 |B(y)| > bα) = α.

3 Consistency and Local Power

In this section we shall show, under some regularity conditions, that the above test is consis-

tent for certain fixed alternatives and has non-trivial asymptotic power against a large class

of n−1/2-local nonparametric alternatives.

3.1 Consistency

Let h be a known real valued function with Eh2(T ) < ∞ and h /∈ {gγ; γ ∈ Γ}. Consider

the alternative Ha : g(t) = h(t), for all t ∈ R. Assume the estimators β̂n, γ̂n used in the test

statistic now satisfy

√
n(β̂n − βa) = Op(1),

√
n(γ̂n − γa) = Op(1) (3.1)

for some βa ∈ R
p, γa ∈ R

q, under the alternative Ha.
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One way to obtain these estimators and parameters is to proceed as follows. Let

(β̂ ′
n, γ̂n)

′ := argminβ,γ
1

n

n∑

i=1

[Yi − β ′Zi − µγ(Si)]2, (3.2)

(β ′
a, γa)

′ := argminβ,γEa[Y − β ′Z − µγ(S)]2. (3.3)

The Appendix section below provides some sufficient conditions under which the above

β̂n, γ̂n, βa, γa satisfy (3.1).

Now, define new random variables

Y a
i = β ′

aXi + gγa
(Ti) + εi, êai =

Y a
i − β̂ ′

nZi − µγ̂n
(Si)

σ̃3(Si)
, i = 1, 2, . . . , n,

where β̂n, γ̂n used in σ̃3(s) are as in (3.2). Also, let ℓ̂i := ℓ̂(Zi, Si), M̂i := M̂Si
, 1 ≤ i ≤ n,

where M̂y is the same as in the previous section with β̂n, γ̂n replaced by the ones defined in

(3.2). Then, ẽi = êai + [(Yi − Y a
i )/σ̃3(Si)] and Wn(s) =Wa

n(s) +Ra
n(s), where

Wa
n(s) :=

1√
n

n∑

i=1

êai

{
I(Si ≤ s)− 1

n

n∑

j=1

ℓ̂′jM̂
−1
j I(Si ∧ s ≥ Sj) ℓ̂i

}
,

Ra
n(s) :=

1√
n

n∑

i=1

Yi − Y a
i

σ̃3(Si)

{
I(Si ≤ s)− 1

n

n∑

j=1

ℓ̂′jM̂
−1
j I(Si ∧ s ≥ Sj) ℓ̂i

}
.

Using (3.1), one can verify that sups∈R̄
|σ̃2

3(s)− σ2
a(s)| = op(1), where

σ2
a(s) :=

∣∣∣σ2
ε + Ea[β

′
0X − β ′

aZ + h(T )− µγa
(S)]2

−β ′
aΣξβa − Ea[gγa

(T )− µγa
(S)]2

∣∣∣ + β ′
aΣξβa + τ 2

γa
(s).

In particular, if X and T can be measured without error, then X = Z, T = S, and σ2
a(s) =

σ2
ε + Ea[(β0 − βa)′X + h(T )− gγa

(T )]2. We can also show that

sup
1≤i≤n

|σ̃2
3(Si)− σ2

a(Si)| = op(1), (Ha), (3.4)

in a similar fashion as showing (5.5) in section 5.

Define

ℓa(z, s) :=
( z

µ̇γa
(s)

) 1

σa(s)
, As := E(la(Z, S)l′a(Z, S)I(S ≥ s)),

D1(s) := E
[(β0 − βa)′X + h(T )− gγa

(T )

σa(S)
I(S ≤ s)

]
.

ρ(y) := E
[(β0 − βa)′X + h(T )− gγa

(T )

σa(S)
ℓa(Z, S)I(S ≥ y)

]
,

D2(s) := E
[
ℓa(Z, S)′A−1

S ρ(S)I(S ≤ s)
]
.

The difference between D1 and D2 measures the discrepancy between the null and the alter-

native hypotheses as is reflected in the following theorem.
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Theorem 3.1 Suppose the conditions (e), (g1)-(g3), (m), and (3.1) hold under the alterna-

tive hypothesis Ha. Also assume the alternative is such that As is positive definite for all s <

∞. Then, for every s0 <∞, the test that rejects H0 whenever sups≤s0 |Wn(s)/

√
F̂S(s0)| > bα

is consistent for Ha, provided sups≤s0 |D1(s)−D2(s)| > 0.

3.2 Local Power

Let δ be a real valued function with Eδ2(T ) <∞. Here we shall study the asymptotic power

of the proposed test against the local alternatives

HLoc : gn(t) = gγ0(t) + n−1/2δ(t), ∀ t ∈ R. (3.5)

Under HLoc, the partial linear regression model becomes Yi = β ′
0Xi + gγ0(Ti) + n−1/2δ(Ti) +

εi, i = 1, 2, · · · , n. Now assume that the estimators β̂n, γ̂n used in the test statistic satisfy

(2.1) under the local alternative (3.5). This in turn, with a similar argument as in showing

(5.5), implies sup1≤i≤n

∣∣∣σ̃2
3(Si)− σ2

ζ,θ(Si)
∣∣∣ = op(1).

By introducing the notation Y L
i = β ′

0Xi + gγ0(Ti) + εi,

êLi =
Y L
i − β̂ ′

nZi − µγ̂n
(Si)

σ̃3(Si)
, i = 1, 2, . . . , n,

the standardized residuals ẽi have the decomposition

ẽi = êLi +
Yi − Y L

i

σ̃3(Si)
= êLi +

δ(Ti)√
nσ̃3(Si)

, i = 1, 2, . . . , n.

Then, Wn(s) =WL
n (s) +RL

n(s), where WL
n (s) has the same form as Wa

n(s) with êai replaced

by êLi , while RL
n(s) is obtained by replacing Yi − Y a

i by δ(Ti)/
√
n in Ra

n(s). Using these

facts, asymptotic distribution of Wn under HLoc can be studied by similar arguments as in

the case of fixed alternative. Define

DL1 (s) := E
[ δ(T )

σζ,θ(S)
I(S ≤ s)

]
, ρ(y) := E

[ δ(T )

σζ,θ(S)
ℓa(Z, S)I(S ≥ y)

]
,

DL2 (s) := E
[
ℓa(Z, S)′M−1

S ρ(S)I(S ≤ s)
]
.

Since δ(t) reflects the deviation of the local alternative from the null hypothesis, so DL1
and DL2 are measures of the difference between these two hypotheses. In fact, we have the

following theorem.

Theorem 3.2 Suppose the local alternatives (3.5) and the conditions (e), (m), (g1)-(g3),

(2.1) hold. Then, for every s0 <∞,

lim
n→∞

P
(

sup
s≤s0

∣∣∣ Wn(s)√
F̂S(s0)

∣∣∣ > bα

)
= P

(
sup
s≤s0

∣∣∣B(FS(s)) +DL1 (s)−DL2 (s)
∣∣∣

√
FS(s0)

> bα

)
.
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Remark 3.1 Unknown fη and Σξ. The structure of the null hypothesis on µ and the test

statistic assume that the density function fη and the covariance matrix Σξ are known. The

necessity of this assumption is mainly due to the identifiability issue, but its feasibility

comes from the fact that in some studies, we do have some prior information on fη and Σξ.

For example, in the real data example of Delaigle et al. (2006), the measurement error in

the digitized aerial photography can be reasonably modeled as having a bi-weight density

function.

If no prior knowledge about these entities is available, but there is a sufficiently large

validation data set, larger than the main data set, in which the observations of both the

true and the surrogate variables are available, then the conclusions of Theorems 2.1, 3.1

and 3.2 still hold after replacing fη, Σξ in Wn by their consistent estimators obtained from

the validation data. Currently nothing is known about asymptotic null distribution of this

modified test when the sample size in the validation data set is smaller than or comparable

to the sample size in the main data set.

4 Simulation

We shall first give a computational formula for Wn(s) which is used in simulation. Let

S(i), i = 1, 2, . . . , n be the order statistics of Si, i = 1, 2, . . . , n. Let ê(i), Z(i), σ̂3(i), µ̇γ̂n(i),

be the sorted sequence of ẽi, Zi, σ̃3(Si), and µ̇γ̂n
(Si) according to Si, i = 1, 2, . . . , n. Let

ν̂ ′(i) := (Z ′
(i), µ̇

′
γ̂n(i))/σ̂3(i). Then, with S(0) := −∞, S(n+1) :=∞,

Wn(s) =
1√
n

l∑

i=1

ê(i)

{
1− 1

n

i∑

j=1

ν̂ ′(j)M̂
−1
(j) ν̂(i)

}
, S(l) ≤ s < S(l+1), l = 1, · · · , n,

M̂(j) =
1

n




n∑

k=j

Z(k)Z
′
(k)/σ̂

2
3(k)

n∑

k=j

Z(k)µ̇
′
γ̂n(k)/σ̂

2
3(k)

n∑

k=j

µ̇γ̂n(k)Z
′
(k)/σ̂

2
3(k)

n∑

k=j

µ̇γ̂n(k)µ̇
′
γ̂n(k)/σ̂

2
3(k)



.

Let s0 be the 99th percentile of F̂S and Tn ::= sups≤s0 |Wn(s)/0.995|. For an 0 < α <

1, let bα denote (1 − α)th percentile of the distribution of sup0≤u≤1 |B(u)|. From Koul

and Khmaldze (2004) we have bα = 2.24241, 2.49771, 2.80705, for α = 0.05, 0.025, 0.01,

respectively. In the following simulation, Tn was computed 1000 times for every sample size,

and empirical size and power are computed by using #{Tn ≥ bα}/1000.

Simulation: The data were generated from the following models:

Model 0: Yi = βXi + γTi + εi,

Model 1: Yi = βXi + γTi + sin(Ti) + εi. (4.1)

Model 2: Yi = βXi + γTi + 0.1(T 2
i − 4.03) + εi.
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Thus, here the null hypothesis is H0 : g(t) = γt, t ∈ R. Data from Model 0 are used to study

the empirical level, while from models 1 and 2 are used to study the empirical power of the

test. In the simulation, X = Z + ξ, T = S + η, ε ∼ N(0, 1), Z ∼ N(1, 1), ξ ∼ N(0, 0.32),

S ∼ N(1, 1), η ∼ N(0, 0.32) and β0 = 1, γ0 = 2. Under this set up, mθ(z, s) = βz + γs,

τ 2
γ (S) = 0.01γ2. Hence, σ̃2

3(s) does not depend on s. Also, in Model 2, T 2−4.03 is orthogonal

to T . The estimators β̂n, γ̂n are chosen to be the least square estimators based on the new

regression model Y = βZ + γS + ζ . Then σ̃2
3(s) is simply the mean of squared residuals

Yi − β̂nZi − γ̂nSi, not depending on s. Table 1 illustrates the simulation results.

α-level Model\ n 50 100 200 300 500

Model 0 0.041 0.037 0.039 0.046 0.049

0.05 Model 1 0.106 0.182 0.424 0.697 0.973

Model 2 0.210 0.462 0.781 0.915 0.991

Model 0 0.014 0.012 0.019 0.022 0.019

0.025 Model 1 0.073 0.116 0.290 0.535 0.899

Model 2 0.136 0.342 0.684 0.866 0.985

Model 0 0.008 0.002 0.009 0.010 0.009

0.01 Model 1 0.033 0.054 0.168 0.340 0.729

Model 2 0.074 0.201 0.559 0.770 0.968

Table 1: Simulation WITH measurement error

To investigate the effects of the magnitude of measurement errors on level and power

of the proposed test, we also conducted several additional simulations for different choices

of σ2
η and σ2

ξ . Our results also apply to the case in which Σ2
ξ = 0 and σ2

η = 0, that is,

without measurement errors. Given all other distributional assumptions unchanged, we also

generated the data from the above model by setting ξ = 0 and η = 0. All these simulation

results are shown in Tables 2 to 4. From these tables we see that the level of the proposed

test is robust against the variation in measurement errors, while power gets smaller, though

not too drastically, as variances of measurement errors become larger.

We also conduct a simulation study when X has two dimensions. Similar results are

obtained hence not reported here.

To compare the performance of the Tn test with the two tests studied in Liang (2006),

we generated data from the following model without measurement error, which is also used

in Liang (2006), Y = 1.3X1 + 0.45X2 + 2.5T + ε, ε ∼ N(0, σ2
ε ) with T ∼ Uniform(0, 1), and

X from one of the following two cases:

Case 1: (X1, X2) ∼ N2(0, diag(0.32, 0.42)); (X1, X2) and T are independent;

Case 2: Xj = 0.4T + 0.6Uj , j = 1, 2, and U1, U2, i.i.d. Uniform(0,1).

We also used the same alternatives as in Liang (2006),

g(t) = 2.5t+ c[4.25 exp(−3.25t)− 4 exp(−6.5t) + 3 exp(−9.75t)]
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α-level Model\ n 50 100 200 300 500

Model 0 0.045 0.041 0.044 0.045 0.046

0.05 Model 1 0.100 0.173 0.403 0.661 0.956

Model 2 0.200 0.425 0.742 0.886 0.986

Model 0 0.016 0.012 0.021 0.022 0.025

0.025 Model 1 0.069 0.096 0.266 0.486 0.864

Model 2 0.129 0.296 0.628 0.821 0.980

Model 0 0.007 0.003 0.006 0.010 0.009

0.01 Model 1 0.035 0.046 0.149 0.312 0.665

Model 2 0.064 0.179 0.499 0.719 0.949

Table 2: Simulation WITH measurement error, σ
2
η = 0.32

, σ
2
ξ = 0.52

α-level Model\ n 50 100 200 300 500

Model 0 0.040 0.031 0.041 0.044 0.048

0.05 Model 1 0.077 0.098 0.248 0.397 0.719

Model 2 0.162 0.332 0.632 0.804 0.961

Model 0 0.015 0.011 0.016 0.027 0.024

0.025 Model 1 0.049 0.053 0.143 0.256 0.534

Model 2 0.103 0.226 0.514 0.712 0.930

Model 0 0.006 0.003 0.008 0.006 0.012

0.01 Model 1 0.018 0.022 0.081 0.151 0.348

Model 2 0.047 0.128 0.375 0.580 0.871

Table 3: Simulation WITH measurement error, σ
2
η = 0.52

, σ
2
ξ = 0.52

for c = 0.2, 0.4, 0.6, 0.8 and 1. In the simulation, σε is chosen to be 0.1, 0.25, and 0.5. The

sample size n = 100 and nominal level 0.05 are considered for the purpose of illustration.

Figure 1 presents empirical levels and powers of the three tests. The top panel is for case 1

and the bottom panel for case 2. In each plot, the solid line is for the Tn test, the dashed

line is for Liang’s Cramér-von Mises type test and the dotted line for Liang’s likelihood ratio

test. From the figure, one sees that the likelihood ratio test is the most conservative while

the levels of the Tn and Cramér-von Mises type tests are both close to the nominal level

0.05. It is clear that the powers of these three tests increase as the value c becomes larger.

One can also see that the Tn test is comparable to the Cramér-von Mises type test, and

outperforms the likelihood ratio test at all configurations. Finally, Tn test is relatively easy

to compute.

Remark 4.1 Robustness of the test. In the Berkson model, it is usually assumed in the

literature that the Berkson error density and/or variance are known. However, one may ask

that if the test is somewhat robust against the error misspecification. A satisfying answer

to this question would require some theoretical arguments such as finding out the influence

12



α-level Model\ n 50 100 200 300 500

Model 0 0.041 0.040 0.045 0.045 0.049

0.05 Model 1 0.233 0.501 0.825 0.942 0.997

Model 2 0.315 0.608 0.915 0.982 0.999

Model 0 0.017 0.012 0.020 0.025 0.022

0.025 Model 1 0.167 0.387 0.763 0.904 0.993

Model 2 0.218 0.493 0.867 0.971 0.999

Model 0 0.005 0.004 0.005 0.015 0.007

0.01 Model 1 0.101 0.278 0.666 0.862 0.982

Model 2 0.123 0.371 0.786 0.936 0.999

Table 4: Simulation WITHOUT measurement error
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Figure 1: Power curves of three testing procedures

function of the test procedure, but we believe this is beyond the scope of the current paper.

Instead, some simulation studies are conducted here for the purpose of illustration.

We generate the data from models 0 to 2 in (4.1) except now ξ and η are independent

Uniform(−
√

0.27,
√

0.27) r.v.’s. But when computing the test statistic, we assumed that

ξ, η ∼ N(0, 0.32). Note that these two distributions have the same variance. See Table 5

for the simulation results. Table 6 reports another simulation study in which the data are

generated from models 0 to 2 where the true distributions for measurement errors are double

exponential with mean 0, and variance 0.32 but N(0, .32) distribution is used in the test

statistic. Again, note that these distributions have the same variance 0.32.
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From these simulation results we conclude that if the measurement errors distributions

are partially misspecified, i.e., the true and the misspecified measurement errors distributions

are different but have the same variances, then the proposed test is reasonably robust.

We also conducted some simulations when the distributions of measurement errors are

completely misspecified, and when the distribution type is misspecified but the variance is

correctly specified. The results appear to be mixed. At present it is not clear whether the

test will work or not if fη is completely misspecified.

α-level Model\ n 50 100 200 300 500

Model 0 0.040 0.042 0.044 0.046 0.040

0.05 Model 1 0.111 0.246 0.503 0.733 0.970

Model 2 0.250 0.535 0.853 0.961 0.999

Model 0 0.017 0.018 0.021 0.023 0.016

0.025 Model 1 0.059 0.154 0.358 0.580 0.904

Model 2 0.156 0.412 0.760 0.932 0.999

Model 0 0.008 0.006 0.007 0.015 0.007

0.01 Model 1 0.028 0.090 0.232 0.409 0.755

Model 2 0.074 0.288 0.661 0.871 0.995

Table 5: Uniform distribution misspecified as Normal distribution

α-level Model\ n 50 100 200 300 500

Model 0 0.027 0.041 0.044 0.042 0.054

0.05 Model 1 0.092 0.250 0.503 0.731 0.972

Model 2 0.269 0.496 0.862 0.967 0.999

Model 0 0.010 0.02 0.025 0.014 0.024

0.025 Model 1 0.062 0.168 0.37 0.574 0.902

Model 2 0.153 0.396 0.771 0.933 0.993

Model 0 0.004 0.007 0.005 0.006 0.011

0.01 Model 1 0.029 0.095 0.231 0.409 0.752

Model 2 0.080 0.292 0.664 0.882 0.988

Table 6: Double exponential distribution misspecified as Normal distribution

5 Proof of Theorems

To begin with we state a

Lemma 5.1 Suppose U and V are random variables with E(U |V ) = 0, 0 ≤ E(U2) < ∞.

Let σ2(v) = E(U2|V = v), L(v) = Eσ2(V )I(V ≤ v), v ∈ R̄. Let (Ui, Vi), 1 ≤ i ≤ n be i.i.d.

copies of (U, V ), and define
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Un(v) =
1√
n

n∑

i=1

UiI(Vi ≤ v), v ∈ R̄ = [−∞,∞].

Assume L to be continuous. Then, Un ⇒ B ◦ L, in D(R̄) and uniform metric.

The proof of this lemma uses Theorem 12.6 in Billingsley (1968). Details are similar to those

appearing in STZ.

To state the next lemma, let U be a continuous random vector of length p, V be a

continuous r.v. with d.f. G and let F (u, v) denote their joint d.f. Let ℓ(u, v) be a vector of

q functions with E‖ℓ(U, V )‖2 < ∞. Assume the matrix Cv := Eℓ(U, V )ℓ(U, V )′I(V ≥ v) is

positive definite for all v ∈ R. For a real valued function ψ ∈ L2(R, G) define the transforms

Tψ(u, v) :=

∫

y≤v

∫
ψ(y)ℓ(x, y)′C−1

y dF (x, y) ℓ(u, v),

Kψ(u, v) := ψ(v)− Tψ(u, v).

The following lemma is an extension of Proposition 4.1 of Khamaladze and Koul (2004)

and Lemma 9.1 of Koul (2006). Its proof is similar to that of these results, and hence not

presented for the sake of brevity.

Lemma 5.2 For the above defined entities, we have

EKψ(U, V )ℓ(U, V )′ = 0, ∀ ψ ∈ L2(R, F ) (5.1)

EKψ1
(U, V )Kψ2

(U, V ) = Eψ1(V )ψ2(V ), ∀ ψ1, ψ2 ∈ L2(R, F ). (5.2)

Remark 5.1 Let ξ be a r.v. such that E(ξ|U, V ) = 0, Eξ2 < ∞, τ 2(u, v) := E(ξ2|U =

u, V = v) > 0, for all u, v. Then the covariance function of the process

Wψ(ξ, U, V ) := [ξ/τ(U, V )]{ψ(V )− Tψ(U, V )},

as a process in ψ ∈ L2(R, G), is like that of Bψ(G), where Bψ is a Brownian motion in ψ.

Hence, if (ξi, Ui, Vi), 1 ≤ i ≤ n, are i.i.d. copies of (ξ, U, V ), then by the classical CLT, the

finite dimensional distributions of n−1/2
∑n

i=1Wψ(ξi, Ui, Vi), as ψ varies, will converge weakly

to those of Bψ(G).

To prove Theorem 2.1, recall θ := (β ′
0, γ

′
0)

′, ei = ζi/σζ,θ(Si) and let

Wθ,FZ,S
(s) :=

1√
n

n∑

i=1

ei

{
I(Si ≤ s)−

∫

y≤s

∫
ℓ(x, y)′M−1

y I(Si ≥ y) dFZ,S(x, y) ℓ(Zi, Si)
}
.

Proof of Theorem 2.1. The proof consists of the following two steps.

(a) For every s0 <∞, Wθ,FZ,S
⇒ B ◦ FS, in D([−∞, s0]) and in uniform metric.

(b) sups≤s0 |Wn(s)−Wθ,FZ,S
(s)| = op(1), (H0).
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Proof of Part (a). Upon applying Lemma 5.2 and Remark 5.1 to ξ = e = ζ/σζ,θ, U =

Z, V = S and to the family of indicator functions ψ(v) = I(v ≤ x), x ∈ R, we readily obtain

that all finite dimensional distributions ofWθ,FZ,S
converge weakly to those of B ◦FS. Thus,

the claim (a) would follow if we prove the tightness of Wθ,FZ,S
. Towards this goal let

W3n(s) :=
1√
n

n∑

i=1

eiI(Si ≤ s),

Qn(s) :=
1√
n

n∑

i=1

ei

∫

y≤s

∫
ℓ(x, y)′M−1

y ℓ(Zi, Si)I(Si ≥ y)dFZ,S(x, y), s ∈ R.

Then we can rewrite Wθ,FZ,S
(s) := W3n(s) − Qn(s). Lemma 5.1 applied to U = e, V = S,

yields the tightness of W3n(s), s ∈ R̄, in uniform metric.

Next, to prove the tightness ofQn process, let ϕ(s) :=
∫
y≤s

∫
‖ℓ(z, y)′M−1

y ‖dFZ,S(z, y), s ∈
R. Note that ϕ is nondecreasing, non-negative and because of assumption (m), ϕ(s) < ∞,

for all s ∈ R. Moreover, E(e|Z, S) = 0, E(e2|Z, S) = 1, and ‖M‖∞ := sups∈R
‖Ms‖ ≤

E‖ℓ(Z, S)‖2 < ∞, imply E[Qn(t) − Qn(s)]
2 ≤ ‖M‖∞[ϕ(t) − ϕ(s)]2, ∀ s ≤ t. This bound

together with Theorem 15.6 of Billingsley (1968), imply that for every s0 < ∞, Qn(s) is

tight in uniform metric on (−∞, s0]. This completes the proof of part (a).

Proof of Part (b). Let ℓi := ℓ(Zi, Si), ℓ̂i := ℓ̂(Zi, Si), and let

Ũn(y) :=
1√
n

n∑

i=1

ẽi ℓ̂i I(Si ≥ y), Un(y) :=
1√
n

n∑

i=1

ei ℓi I(Si ≥ y).

Then Wn(s) and Wθ,FZ,S
(s) can be written as

Wn(s) = Ŵ3n(s)−
∫

y≤s

∫
ℓ̂(x, y)′M̂−1

y Ũn(y)dF̂Z,S(x, y), (5.3)

Wθ,FZ,S
(s) = W3n(s)−

∫

y≤s

∫
ℓ(x, y)′M−1

y Un(y)dFZ,S(x, y). (5.4)

Let bn := β̂n − β0. We can rewrite Ŵ3n as the sum of the following six terms,

In1(s) =
1√
n

n∑

i=1

eiI(Si ≤ s), In2(s) = b′n
1√
n

n∑

i=1

Zi
σζ,θ(Si)

I(Si ≤ s),

In3(s) =
1√
n

n∑

i=1

µγ̂n
(Si)− µγ0(Si)
σζ,θ(Si)

I(Si ≤ s),

In4(s) =
1√
n

n∑

i=1

ei

(σζ,θ(Si)
σ̃3(Si)

− 1
)
I(Si ≤ s),

In5(s) = b′n
1√
n

n∑

i=1

Zi
σζ,θ(Si)

(σζ,θ(Si)
σ̃3(Si)

− 1
)
I(Si ≤ s),

In6(s) =
1√
n

n∑

i=1

µγ̂n
(Si)− µγ0(Si)
σζ,θ(Si)

(σζ,θ(Si)
σ̃3(Si)

− 1
)
I(Si ≤ s).
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The term In1 simply is W3n. We can show that sups∈R̄
|Inj(s)| = op(1), j = 4, 5, 6. Because

the most of the arguments are similar, for the sake of brevity, we give details only for the

case j = 4. First we shall show that

max
1≤i≤n

|σ̃2
3(Si)− σ2

ζ,θ(Si)| = op(1). (5.5)

By definition, σ̃2
3(Si)− σ2

ζ,θ(Si) = σ̂2
3ε + β̂ ′

nΣζ β̂n + τ 2
γ̂n

(Si)− σ2
ε − β ′

0Σζβ0 − τ 2
γ0

(Si). Since

σ̂2
3ε − σ2

ε = op(1), β̂ ′Σζ β̂n − β ′
0Σζβ0 = op(1), it suffices to show that

max
1≤i≤n

|τ 2
γ̂n

(Si)− τ 2
γ0

(Si)| = op(1). (5.6)

Note that for all s ∈ R,

|τ 2
γ̂n

(s)− τ 2
γ0

(s)| ≤
∣∣∣
∫

[g2
γ̂(s+ y)− g2

γ0
(s+ y)]fη(y)dy

∣∣∣

+
∣∣∣
[ ∫

gγ̂n
(s+ y)fη(y)dy

]2

−
[ ∫

gγ0(s+ y)fη(y)dy
]2∣∣∣

= An(s) +Bn(s), say.

Let δn := γ̂n − γ0. By condition (g1), for all s ∈ R,
∫ (

gγ̂n
(s+ y)− gγ0(s+ y)

)2

fη(y)dy ≤ ‖δn‖2
∫
r2(s+ y)fη(y)dy.

Assumption Er4(T ) < ∞ implies E(
∫
r2(S + y)fη(y)dy)

2 < ∞. Hence, max1≤i≤n
∫
r2(Si +

y)fη(y)dy = op(
√
n), and in view of (2.1),

max
1≤i≤n

n1/2

∫ (
gγ̂n

(Si + y)− gγ0(Si + y)
)2

fη(y)dy = op(1).

This fact and a routine argument now shows that max1≤i≤nAn(Si) = op(1), max1≤i≤nBn(Si)

= op(1), thereby completing the proof of (5.6), and hence that of (5.5).

Let Dn := σ2
ε − σ̂2

3ε + β ′
0Σζβ − β̂ ′

nΣζ β̂
′
n. Then In4(s) can be written as the sum of the

following two terms

In41(s) = Dn
1√
n

n∑

i=1

ei

[ 1

σ̃3(Si)(σ̂3(Si) + σζ,θ(Si))

]
I(Si ≤ s),

In42(s) =
1√
n

n∑

i=1

ei

[ τ 2
0 (Si)− τ 2

γ̂n
(Si)

σ̃3(Si)(σ̃3(Si) + σζ,θ(Si))

]
I(Si ≤ s).

Subtracting and adding 1/2σ2
ζ,θ(Si), In41 can be written as the sum:

√
nDn ·

1

n

n∑

i=1

ei

[ 1

σ̃3(Si)(σ̃3(Si) + σζ,θ(Si))
− 1

2σ2
ζ,θ(Si)

]
I(Si ≤ s)

+Dn ·
1√
n

n∑

i=1

ei
2σ2

ζ,θ(Si)
I(Si ≤ s).

17



By (5.5), and the fact σ2
ζ,θ ≥ σ2

ε > 0,

max
1≤i≤n

∣∣∣ 1

σ̃3(Si)(σ̃3(Si) + σζ,θ(Si))
− 1

2σ2
ζ,θ(Si)

∣∣∣ = op(1). (5.7)

By Lemma 5.1, we obtain

sup
s∈R̄

∣∣∣ 1√
n

n∑

i=1

ei
2σ2

ζ,θ(Si)
I(Si ≤ s)

∣∣∣ = Op(1).

These facts, together with
√
n(σ2

ε − σ̂2
3ε) = Op(1),

√
n(β ′

0Σζβ0 − β̂ ′
nΣζ β̂

′
n) = Op(1), and∑n

i=1 |ei|/n = Op(1), imply that sups∈R̄
In41(s) = op(1).

Next, we shall sketch an argument for proving sups∈R̄
In42(s) = op(1). For this purpose,

we need a refined analysis of τ 2
γ̂n

(Si)− τ 2
0 (Si). By definition,

τ 2
γ̂n

(Si)− τ 2
0 (Si) =

∫
[gγ̂n

(Si + y)− gγ0(Si + y)]2fη(y)dy

+2

∫
gγ0(Si + y)[gγ̂n

(Si + y)− gγ0(Si + y)]fη(y)dy

−
[ ∫

[gγ̂n
(Si + y)− gγ0(Si + y)]fη(y)dy

]2

−2

∫
gγ0(Si + y)fη(y)dy

∫
[gγ̂n

(Si + y)− gγ0(Si + y)]fη(y)dy.

Let ∆ni(y) = gγ̂n
(Si+y)−gγ0(Si+y)−δ′nġγ0(Si+y). Subtracting and adding δ′nġγ0(Si+η)

to the difference gγ̂n
(Si + y) − gγ0(Si + y) in the above integrals, and expanding various

quadratics yields that τ 2
γ̂n

(Si)− τ 2
0 (Si) equals to the sum of the following ten terms.

Ai,1 :=

∫
∆2
ni(y)fη(y)dy, Ai,2 = 2δ′n

∫
ġγ0(Si + y)∆ni(y)fη(y)dy,

Ai,3 := δ′n

∫
ġγ0(Si + y)ġ′γ0(Si + y)fη(y)dy δn,

Ai,4 := 2

∫
gγ0(Si + y)∆ni(y)fη(y)dy,

Ai,5 := 2δ′n

∫
gγ0(Si + y)ġγ0(Si + y)fη(y)dy, Ai,6 := −

[ ∫
∆ni(y)fη(y)dy

]2

,

Ai,7 := −2δ′n

∫
gγ0(Si + y)fη(y)dy ·

∫
∆ni(y)fη(y)dy,

Ai,8 := −δ′n
∫
ġγ0(Si + y)fη(y)dy ·

∫
ġ′γ0(Si + η)fη(y)dy δn

Ai,9 := −2

∫
gγ0(Si + y)fη(y)dy ·

∫
∆ni(y)fη(y)dy

Ai,10 := −δ′n
∫
gγ0(Si + y)fη(y)dy ·

∫
ġγ0(Si + η)fη(y)dy.
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From (g2), (g3), (2.1), for j = 1, 2, . . . , 10, we can obtain that

sup
s∈R̄

∣∣∣ 1√
n

n∑

i=1

eiAi,j
σ̃3(Si)(σ̃3(Si) + σζ,θ(Si))

I(Si ≤ s)
∣∣∣ = op(1). (5.8)

These will imply that sups∈R̄
In42(s) = op(1). Here we shall present the proof of (5.8) for

j = 4 only, as the proof for the other cases is similar.

The l.h.s. of (5.8) for j = 4 is bounded above by

2 sup
1≤i≤n, y∈R

n1/2|∆ni(y)| ·
1

n

n∑

i=1

∣∣∣ei
∫
gγ0(Si + y)fη(y)dy

∣∣∣
σ̃3(Si)(σ̃3(Si) + σζ,θ(Si))

.

By (g2) and (2.1), the first factor of this bound is op(1). The square integrability of ei,

gγ0(Ti) together with (5.7) and the Law of Large Numbers imply that the second factor of

the above bound is Op(1). Hence (5.8) holds for j = 4.

In summary, we obtain

sup
s∈R̄

∣∣∣Ŵ3n(s)−W3n(s) + E
[
ℓ(Z, S)′I(S ≤ s)

]√
n
( bn
δn

)∣∣∣ = op(1). (5.9)

Next, consider the difference Ũn(y) − Un(y). Let αi := µγ̂n
(Si) − µγ0(Si), and α̇i :=

µ̇γ̂n
(Si) − µ̇γ0(Si). By replacing 1/σ̃2

3(Si) by [σ2
ζ,θ(Si)/σ̃

2
3(Si) − 1 + 1]/σ2

ζ,θ(Si), subtracting

and adding β0 from β̂n, µγ0(Si) from µγ̂n
(Si), and µ̇γ0(Si) from µ̇γ̂n

(Si), Ũn(y)− Un(y) can

be rewritten as the sum of Dn1(y), Dn2(y) and a remainder term Rn(y), where

Dn1(y) = −b′n
1√
n

n∑

i=1

Zi
σζ,θ(Si)

ℓi I(Si ≥ y),

Dn2(y) = − 1√
n

n∑

i=1

αi
σζ,θ(Si)

ℓi I(Si ≥ y).

By conditions (g2), (g3), (m) and (2.1) one can show supy∈R̄
|Rn(y)| = op(1).

Subtract and add δ′nµ̇γ0(Si) to µγ̂n
(Si)− µγ0(Si), to rewrite −Dn2 as the sum

1√
n

n∑

i=1

µγ̂n
(Si)− µγ0(Si)− δ′nµ̇γ0(Si)

σ2
ζ,θ(Si)

ℓi I(Si ≥ y) +
δ′n√
n

n∑

i=1

µ̇γ0(Si)

σ2
ζ,θ(Si)

ℓi I(Si ≥ y).

In view of assumption (g2), the first term of this sum is bounded from the above by

√
n max

1≤i≤n
|µγ̂n

(Si)− µγ0(Si)− δ′nµ̇γ0(Si)|
1

nσ2
ε

n∑

i=1

‖ℓi‖ = op(1).

Hence, with θn :=
√
n(b′n, δ

′
n)

′, supy≤s0

∥∥∥Ũn(y)− Un(y) + M̃yθn

∥∥∥ = op(1), where
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M̃y =




1

n

n∑

k=1

I(Sk ≥ y)ZkZ
′
k

σ2
ζ,θ(Sk)

1

n

n∑

k=1

I(Sk ≥ y)Zkµ̇
′
γ0

(Sk)

σ2
ζ,θ(Sk)

1

n

n∑

k=1

I(Sk ≥ y)µ̇γ0(Sk)Z
′
k

σ2
ζ,θ(Sk)

1

n

n∑

k=1

I(Sk ≥ y)µ̇γ0(Sk)µ̇
′
γ0

(Sk)

σ2
ζ,θ(Sk)



.

By a Glivenko-Cantelli argument, one can show that

sup
y∈R̄

‖M̃y −My‖ = op(1). (5.10)

This in turn implies that supy≤s0
∥∥Ũn(y) − Un(y) + Myθn

∥∥ = op(1). Routine arguments,

together with the conditions (e), (m) and (g3), lead to supy≤s0 ‖M̂−1
y −M−1

y ‖ = op(1), by

the positive definiteness of My for all y ∈ R.

For convenience, denote Pn(s) as the the second term on the right hand side of (5.3),

and P0(s) as the the second term on the right hand side of (5.4). Note that

Pn(s) =

∫

y≤s

∫
(x′, µ̇′

γ̂n
(y)− µ̇′

γ0
(y) + µ̇′

γ0
(y))

σζ,θ(y)

[σζ,θ(y)
σ̃3(y)

− 1 + 1
]
·

[M̂−1
y −M−1

y +M−1
y ] · [Ũn(y)− Un(y) + Un(y)]dF̂Z,S(x, y)

which can be written as the sum of

Bn1(s) =

∫

y≤s

∫
(x′, µ̇′

γ0(y))

σζ,θ(y)
M−1

y Un(y)dF̂Z,S(x, y),

Bn2(s) =

∫

y≤s

∫
(x′, µ̇′

γ0
(y))

σζ,θ(y)
M−1

y [Ũn(y)− Un(y)]dF̂Z,S(x, y)

and a remainder term Rn(s), say. In view of (g3), (5.5), one verifies that

Bn1(s) = P0(s) + up(1), Bn2(s) = −E
[(Z ′, µ̇′

γ0
(S))

σζ,θ(S)
I(S ≤ s)

]
θn + up(1).

and sups≤s0 |Rn(s)| = op(1). The claim (a) follows from these results, (5.9) and the fact

Wn(s)−Wθ0,FZ,S
(s) = [Ŵ3n(s)−W3n(s)]− [Pn(s)− P0(s)]. 2

Proof of Theorem 3.1. Fix an s0 < ∞. By a similar argument as in the null

hypothesis case, we obtain

Wa
n(s) =⇒ B ◦ ψ in D([−∞, s0]) and uniform metric, (5.11)

where ψ(s) = E(σ̃2
a(S)I[S ≤ s]/σ2

a(s)), and σ̃2
a(s) = σ2

ε +β ′
aΣξβa+Ea([gγa

(T ) −µγa
(S)]2|S =

s).
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Now, consider Ra
n(s). Write Ra

n(s) = Ra
n1(s)−Ra

n2(s), where

n−1/2Ra
n1(s) =

1

n

n∑

i=1

β ′
0Xi + h(Ti)− β ′

aXi − gγa
(Ti)

σa(Si)
I(Si ≤ s)

+
1

n

n∑

i=1

β ′
0Xi + h(Ti)− β ′

aXi − gγa
(Ti)

σa(Si)

[σa(Si)
σ̃3(Si)

− 1
]
I(Si ≤ s).

A Glivenko-Cantelli type argument, together with (3.4), implies that

sup
s∈R̄

∣∣∣n−1/2Ra
n1(s)−D1(s)

∣∣∣ = op(1). (5.12)

Let

V̂n(y) :=
1

n

n∑

i=1

Yi − Y a
i

σ̃3(Si)
ℓ̂(Zi, Si)I(Si ≥ y).

Then

n−1/2Ra
n2(s) =

∫

y≤s

∫
ℓ̂(x, y)′M̂−1

y V̂n(y)dF̂Z,S(x, y).

Subtracting and adding µ̇γa
(Si) from µ̇γ̂a

(Si), replacing 1/σ̂2
ζ (Si) with (σ2

a(Si)/σ̂
2
3ζ(Si)−

1 + 1)/σ2
a(Si), V̂n(y) can be written as the sum of the following four terms,

V̂n1(y) =
1

n

n∑

i=1

Yi − Y a
i

σa(Si)

[σ2
a(Si)

σ̃2
3(Si)

− 1
]
ℓ(Zi, Si)I(Si ≥ y),

V̂n2(y) =
1

n

n∑

i=1

Yi − Y a
i

σa(Si)
ℓ(Zi, Si)I(Si ≥ y),

V̂n3(y) =
1

n

n∑

i=1

Yi − Y a
i

σ2
a(Si)

[σ2
a(Si)

σ̃2
3(Si)

− 1
]( 0

µ̇γ̂n
(Si)− µ̇γa

(Si)

)
I(Si ≥ y),

V̂n4(y) =
1

n

n∑

i=1

Yi − Y a
i

σ2
a(Si)

( 0

µ̇γ̂n
(Si)− µ̇γa

(Si)

)
I(Si ≥ y).

Condition (g3), (3.4), and the additional assumption Ea

[
(Y − Y a)/σ2

a(S)
]2

< ∞, imply

supy∈R̄

∣∣V̂nj(y)
∣∣ = op(1), for j = 1, 3, 4. As for V̂n2(y), a Glivenko-Cantelli type argument

yields supy∈R̄ |V̂n2(y)− ρ(y)| = op(1). These facts in turn imply

sup
y∈R̄
|V̂n(y)− ρ(y)| = op(1). (5.13)

Using exactly the same argument as in the null case, one can verify that under the

alternative Ha, supy≤s0

∣∣∣M̂−1
y − A−1

y

∣∣∣ = op(1). Rewrite n−1/2Ra
n2(s) as
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n−1/2Ra
n2(s) =

∫

y≤s

∫
(x′, µ̇′

γ̂n
(y)− µ̇′

γa
(y) + µ̇′

γa
(y))

σa(y)

[σa(y)
σ̃3(y)

− 1 + 1
]

·[M̂−1
y −A−1

y + A−1
y ] · [V̂n(y)− ρ(y) + ρ(y)]dF̂Z,S(x, y)

=

∫

y≤s

∫
(x′, µ̇′

γa
(y))

σa(y)
A−1
y ρ(y)dF̂Z,S(x, y) +Rn(s).

Under conditions (g3), (3.4), one can show that sups≤s0 |Rn(s)| = op(1). Using a Glivenko-

Cantelli type argument, one further concludes that

∫

y≤s

∫
(x′, µ̇′

γa
(y))

σa(y)
A−1
y ρ(y)dF̂Z,S(x, y) = D2(s) + up(1).

In fact, let hy = E(Z|S = y), D2(s) has a simpler expression

D2(s) =

∫

y≤s

(h′y, µ̇
′
γa

(y))

σa(y)
A−1
y ρ(y)dFS(y).

So we have shown that

sup
s≤s0

∣∣∣n−1/2Ra
n2(s)−D2(s)

∣∣∣ = op(1), (Ha). (5.14)

Then (5.12) and (5.14) jointly implies

sup
s≤s0

∣∣∣n−1/2Ra
n(s)− [D1(s)−D2(s)]

∣∣∣ = op(1). (5.15)

Finally, the consistency is derived by combining (5.11), (5.15), the inequality

sup
s≤s0

∣∣∣Wa
n(s) +Ra

n(s)
∣∣∣ ≥ sup

s≤s0

∣∣∣Ra
n(s)

∣∣∣− sup
s≤s0

∣∣∣Wa
n(s)

∣∣∣

and the condition d = sups≤s0 |D1(s)−D2(s)| > 0. 2

Proof of Theorem 3.2. Details of the proof of this theorem are similar to that of

Theorem 3.1 with obvious modifications. 2

6 Appendix:
√
n-Consistency of the LSE

The validity of Theorem 2.1, 3.1 and 3.2 requires the
√
n-consistency of β̂n and γ̂n under all

three hypotheses H0, Ha and HLoc. Under some regularity conditions, we can show that the

least square procedure can provide such estimators.

The argument provided below is only for the case of Ha, but the adaption to both H0

and HLoc cases is straightforward.

To be specific, let h(·) and Ha be as in section 3.1 and recall the definition (3.2). Assume
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C1: L(β, γ) := Ea[Y −β ′Z−µγ(S)]2 exists for all β, γ and takes unique minimum at (β ′
a, γ

′
a)

′

which is an interior point of Θ.

C2: Σ := E(ZZ ′) is positive definite.

C3: The parameter space Γ ∈ R
q is convex and compact;

C4: Eh2(T ) <∞, E supγ |gγ(T )|2 <∞.

C5: E supγ |ġγ(T )|2 <∞, E supγ ‖g̈γa
(T )‖2 <∞.

Note that the Lipschitz condition (g1) implies E supγ |gγ(T )|2 <∞. Note that the Lipschitz

condition (g1) implies E supγ |gγ(T )|2 <∞.

The existence condition (C1) guarantees the validity of the least square procedures while

(C2) ensures the uniqueness of the least square estimator for β, which is a very common

assumption, even in the simple linear regression models. Conditions (C3)-(C5) are the

usual assumptions needed for proving consistency of the least square estimators in nonlinear

regression models.

Now, for a fixed γ ∈ Γ, the equation ∂L(β, γ)/∂β = −2Ea(Y −β ′Z−µγ(S))Z = 0, yields

β(γ) := Σ−1EaZ(Y − µγ(s)) = Σ−1Ea[ZY ]− Σ−1E[Zµγ(S)]. (6.1)

Therefore, L(β(γ), γ) ≤ L(β, γ), for all β, γ. Let γ̃a be a solution of ∂L(β(γ), γ)/∂γ = 0, or

equivalently, a solution of

Ea[Y − b′Z + h(γ)′Z − µγ(S)] · [ḣ(γ)Z − µ̇γ(S)] = 0, (6.2)

where b = Σ−1E(Y Z), h(γ) = Σ−1E[Zµγ(S)]. Then we must have

L(β(γ̃a), γ̃a) ≤ L(β(γ), γ) ≤ L(β, γ), ∀ β, γ.

Under (C1), (C2), γ̃a must be unique and βa = β(γ̃a), γa = γ̃a.

Now, consider the empirical version of L: Ln(β, γ) = n−1
∑n

i=1[Yi − β ′Zi − µγ(Si)]2. For

any fixed γ ∈ Γ, the equation ∂Ln(β, γ)/∂β = 0 yields

βn(γ) = Σ−1
n [ZY − Zµγ(S)], (6.3)

where

Σn =
1

n

n∑

i=1

ZiZ
′
i, ZY =

1

n

n∑

i=1

ZiYi, Zµγ(S) =
1

n

n∑

i=1

Ziµγ(Si).

Therefore, Ln(βn(γ), γ) ≤ Ln(β, γ), for all β, γ ∈ Γ. Let γ̃n be a the solution of the equation

∂Ln(βn(γ), γ)/∂γ = 0, or

1

n

n∑

i=1

[Yi − β ′
n(γ)Zi − µγ(Si)] [β̇n(γ)Zi − µ̇γ(Si)] = 0,

where β̇n(γ) := Σ−1
n [ZY − Zµ̇γ(S)]. Then we must have Ln(βn(γ̃n), γ̃n) ≤ Ln(βn(γ), γ) ≤

L(β, γ), ∀ β, γ. In other words, βn(γ̃n), γ̃n is a minimizer of the nonlinear least square solution

of (3.3). Denote these estimators simply by β̂n, γ̂n.
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6.1 Consistency of β̂n, γ̂n

Notice that

Ln(βn(γ), γ) =
1

n

n∑

i=1

[Yi − Σ−1
n {(ZY )− Zµγ(S))}′Zi − µγ(Si)]2,

L(β(γ), γ) = Ea[Y − Σ−1{Ea(ZY )− E(Zµγ(S))}′Z − µγ(S)]2,

as functions of γ, are defined on a compact subset of R
q, then under some conditions, we

can show that

Ln(βn(γ), γ)→ L(β(γ), γ) uniformly for γ. (6.4)

For this purpose, we need the following lemma.

Lemma 6.1 (Jennrich,1969) Let g be a function on X × Θ where X is a Euclidean space

and Θ is a compact subset of a Euclidean space. Let g(x, θ) be a continuous function of θ for

each x and a measurable function of x for each θ. Assume also that g(x, θ) ≤ h(x) for all

x and θ, where h is integrable with respect to a probability distribution function F on X. If

X1, X2, . . . is a random sample from F then n−1
∑n

i=1 g(Xi, θ)→ E(g(X, θ)), a.s. uniformly

for all θ in Θ.

Expanding Ln(βn(γ), γ), one can see, to show (6.4), it suffices to show that, almost surely,

Y µγ(S)→ Ea(Y µγ(S)), Zµγ(S)→ E(Zµγ(S)), µ2
γ(S)→ E(µ2

γ(S))

uniformly in γ ∈ Γ. But these can be fulfilled by letting h(·) = supγ |Y µγ(S)|, supγ |Zµγ(S)|,
and supγ |µ2

γ(S)|, and using assumption (e), (c2), (C3) and Lemma 6.1. Therefore, γ̂n → γa
almost surely. For suppose there are a subsequence of γ̂n, say γ̂nk

, which converges to γ1

almost surely, then the following inequality

L(β(γ1), γ1)← Lnk
(βnk

(γ̂nk
), γ̂nk

) ≤ Lnk
(βnk

(γa), γa)→ L(β(γa), γa)

and uniqueness of γa imply the desired strong consistency. Finally, β̂n → βa almost surely

follows from the fact βn(γ)→ β(γ) uniformly for γ ∈ Γ and the consistency of γ̂n to γa.

6.2 Convergence Rates of β̂n, γ̂n

By Taylor expansion

∂Ln(βn(γ), γ)

∂γ
=
∂Ln(βn(γ), γ)

∂γ

∣∣∣∣∣
γ=γa

+
∂2Ln(βn(γ), γ)

∂γ∂γ′

∣∣∣∣∣
γ=γ∗

(γ − γa).

Evaluate both sides at γ = γ̂n, then

0 =
∂Ln(βn(γ), γ)

∂γ

∣∣∣∣∣
γ=γa

+
∂2Ln(βn(γ), γ)

∂γ∂γ′

∣∣∣∣∣
γ=γ∗n

(γ̂n − γa) (6.5)

=: Tn1 + Tn2(γ̂n − γa),
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where γ∗n lies between γ̂n and γa. The convexity of Γ implies γ∗n ∈ Γ. By subtracting and

adding β(γa), β̇(γa) from βn(γa) and β̇n(γa), respectively, Tn1 can be written as the sum of

the following four terms:

Tn11 =
1

n

n∑

i=1

[Yi − β ′(γa)Zi − µγa
(Si)][β̇(γa)Zi − µ̇γa

(Si)],

Tn12 = (β̇n(γa)− β̇(γa))
1

n

n∑

i=1

[Yi − β ′(γa)Zi − µγa
(Si)]Zi,

Tn13 = (βn(γa)− β(γa))
′ 1

n

n∑

i=1

Zi[β̇(γa)Zi − µ̇γa
(Si)],

Tn14 = (βn(γa)− β(γa))
′ 1

n

n∑

i=1

Zi(β̇n(γa)− β̇(γa))Zi.

We shall first consider asymptotic behavior of βn(γa). From (6.1) and (6.3), we obtain

βn(γa)− β(γa) = Σ−1
n [ZY − Zµγa

(S)]− Σ−1[Ea(ZY )− E(Zµγa
(S))] (6.6)

= (Σ−1
n − Σ−1)[ZY − Zµγa

(S)]

+Σ−1[ZY − Zµγa
(S)− Ea(ZY ) + E(Zµγa

(S))].

By the LLN, ZY − Zµγa
(S)→ Ea(ZY )− E(Zµγa

(S)). Let

∆ = Ea(ZY )− E(Zµγa
(S)), ZZ ′ = (Bjk)p×p, E(ZZ ′) = (bjk)p×p,

and B∗
jk be the cofactor of Bjk and b∗jk be the cofactor of bjk. Then,

√
n(Σ−1

n − Σ−1)∆ =
√
n

(
(B∗

jk)p×p

|ZZ ′|
−

(b∗jk)p×p

|E(ZZ ′)|

)
∆

= −
√
n(|ZZ ′| − |E(ZZ ′)|)

(B∗
jk)p×p∆

|ZZ ′| · |E(ZZ ′)|
+

√
n(B∗

jk − b∗jk)p×p∆
|E(ZZ ′)| , (6.7)

where |A| denotes the determinant of the square matrix A. Using the fact
√
n(B∗

jk − b∗jk) =

Op(1), one can show both terms in (6.7) are Op(1). Also, it is easy to see that the second

term in (6.6) has the same order. This then implies
√
n(βn(γa)−β(γa)) = Op(1). Therefore,

√
nTn13 =

1

n

n∑

i=1

[β̇(γa)Zi − µ̇γa
(Si)]Z

′
i

√
n(βn(γa)− β(γa))

= E[β̇(γa)ZZ
′ − µ̇γa

(S)Z ′]
√
n(βn(γa)− β(γa)) + op(1) = Op(1).

Similarly, by considering each row in the matrix β̇n(γa) − β̇(γa), we can show that, under

assumption (C4),
√
nTn12 = Op(1),

√
nTn14 = op(1). Use the fact (6.2) implies Ea[Y −

β ′(γa)Z − µγa
(S)][β̇(γa)Z − µ̇γa

(S)] = 0, to show that
√
nTn11 = Op(1). Hence,

√
nTn1 =

Op(1).
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Now, consider the matrix Tn2 in (6.5). Manipulating the derivatives of matrix, one obtains

Tn2 =
1

n

n∑

i=1

[β̇n(γ
∗
n)Zi − µ̇γ∗n(Si)][β̇n(γ

∗
n)Zi − µ̇γ∗n(Si)]

′

−1

n

n∑

i=1

[Yi − β ′
n(γ

∗
n)Zi − µγ∗n(Si)][Bn(Iq×q ⊗ Zi)− µ̈γ∗n(Si)],

where Bn = [β̈n1(γ
∗
n), β̈n2(γ

∗
n), · · · , β̈nq(γ∗n)]q×pq, and β̈nj(γ

∗
n) is the derivative of the j-th row

of β̇n(γ) with respect to γ then evaluated at γ = γ∗n, ⊗ denotes the Kronecker product.

Since γ̂n is strongly consistent for γ, so is γ∗n. By assumptions (e), (C3), (C4), (C5) using

Lemma 6.1, we can show that Tn2 equals to Π + op(1) asymptotically, where

Π := E[β̇(γa)Z − µ̇γa
(S)][β̇(γa)Z − µ̇γa

(S)]′

−E[Y − β(γa)Z − µγa
(S)][B(Iq×q ⊗ Z)− µ̈γa

(S)],

with B = [β̈1(γa), β̈2(γa), · · · , β̈q(γa)]q×pq, and β̈j(γa) is the derivative of the j-th row of

β̇(γ) with respect to γ then evaluated at γ = γa. Finally, if Π is nonsingular, we can get√
n(γ̂n − γa) = Op(1). The claim

√
n(β̂n − βa) = Op(1) then can be obtained by replacing γ

with γ̂n in (6.3) and using a routine argument.
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