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NONPARAMETRIC MODEL CHECKS FOR TIME SERIES

By Hira L. Koul1 and Winfried Stute

Michigan State University and Justus-Liebig-University of Giessen

This paper studies a class of tests useful for testing the goodness-of-fit
of an autoregressive model. These tests are based on a class of empiri-
cal processes marked by certain residuals. The paper first gives their large
sample behavior under null hypotheses. Then a martingale transformation
of the underlying process is given that makes tests based on it asymptoti-
cally distribution free. Consistency of these tests is also discussed briefly.

1. Introduction and summary. This paper studies some general meth-
ods for testing the goodness-of-fit of a parametric model for a real-valued sta-
tionary Markovian time series Xi, i = 0�±1�±2� � � � � Much of the existing
literature is concerned with the parametric modeling in terms of the condi-
tional mean function µ of Xi, given Xi−1. That is, one assumes the existence
of a parametric family

� = �m�·� θ�� θ ∈ �

of functions and then proceeds to estimate θ or test the hypothesis µ ∈ � ,
that is, µ�·� = m�·� θ0� for some θ0 in �� where � is a proper subset of the q-
dimensional Euclidean space R

q. One of the reasons for this is that parametric
models continue to be attractive among practitioners because the parameter
θ together with the functional form of m�·� θ� describes, in a concise way, the
impact of the past observations on the predicted variable. Since there may
be several competing models, in order to prevent wrong conclusions, every
statistical inference which is based on a model � should be accompanied by
a proper model check, that is, by a test for the hypothesis µ ∈ � . The best
known example is the usual linear autoregressive model where m�x� θ� = xθ.
The proposed classical tests are based on the least squares residuals. For a
discussion of these types of tests, see, for example, Tong (1990), Chapter 5,
and MacKinnon (1992) and references therein.

Robinson (1983), Roussas and Tran (1992), Truong and Stone (1992), among
others, provide various types of nonparametric estimates of µ which in turn
can be used to construct tests of the hypothesis µ ∈ � . This has been done, for
example, in McKeague and Zhang (1994) and Hjellvik and Tjøstheim (1995,
1996). This approach requires smoothing of the data in addition to the estima-
tion of the finite-dimensional parameter vector and leads to less precise fits.

The use of the conditional mean function as an autoregressive function
is justified partly for historical reasons and partly for convenience. In the
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presence of non-Gaussian innovations it is desirable to look for other disper-
sions that would lead to different autoregressive functions and which may
well be equally appropriate to model the dynamics of the underlying process.
For example, if the innovations are believed to form a white noise from a dou-
ble exponential distribution, then the conditional median function would be
a proper autoregressive function. The present paper discusses a class of tests
for testing goodness-of-fit hypotheses pertaining to a class of implicitly defined
autoregressive functions. The proposed approach avoids smoothing methodol-
ogy and leads to tests that are consistent against a broad class of alternatives.
Even though many of our results are extendable to higher order autoregres-
sion, our discussion is confined to the first-order autoregression partly for the
sake of clarity of the exposition and partly for some technical reasons. See
Remark 2.4 below.

Now, to describe these procedures, let ψ be a nondecreasing real-valued
function such that E�ψ�X1 − r�� < ∞� for each r ∈ R. Define the ψ-
autoregressive function mψ by the requirement that

Eψ�X1 −mψ�X0���X0� = 0 a.s.(1.1)

and the corresponding marked empirical process, based on a sample of size
n+ 1, by

Vn�ψ�x� �= n−1/2
n∑
i=1

ψ�Xi −mψ�Xi−1��I�Xi−1 ≤ x�� x ∈ R�

The marks, or weights at Xi−1, of the process Vn�ψ are given by the ψ-
innovations ψ�Xi − mψ�Xi−1��, 1 ≤ i ≤ n. The process Vn�ψ is uniquely
determined by these marks and the variables �Xi−1
 and vice versa.

Observe that, if ψ�x� ≡ x, then mψ = µ, and if ψ�x� ≡ I�x > 0� − �1 − α�
for a 0 < α < 1, then mψ�x� ≡ mα�x�� the αth quantile of the conditional
distribution of X1, given X0 = x. The choice of ψ is up to the practitioner.
If the desire is to have a goodness-of-fit procedure that is less sensitive to
outliers in the innovations Xi −mψ�Xi−1�, then one may choose a bounded
ψ. The motivation for the above definition of mψ comes from Huber (1981).
Its existence for a general ψ and its kernel type estimators in the time series
context have been discussed by Robinson (1984). In the sequel, mψ is assumed
to exist uniquely.

The process Vn�ψ takes its value in the Skorokhod space D�−∞�∞�. Extend
it continuously to ±∞ by putting

Vn�ψ�−∞� = 0 and Vn�ψ�+∞� = n−1/2
n∑
i=1

ψ�Xi −mψ�Xi−1���

Then Vn�ψ becomes a process in D−∞�∞� which, modulo a continuous trans-
formation, is the same as the more familiar D0�1�. Throughout we shall as-
sume that the underlying process is ergodic, the stationary distribution (d.f.)
G of the X’s is continuous and that

Eψ2�X1 −mψ�X0�� < ∞�(1.2)
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It readily follows from (1.1) and (1.2) that Vn�ψ�x� is a mean zero square
integrable martingale for each x ∈ R. Thus one obtains from the martingale
central limit theorem [Hall and Heyde (1980), Corollary 3.1] and the Cramér–
Wold device that all finite-dimensional distributions of Vn�ψ converge weakly
to a multivariate normal distribution with mean vector zero and covariance
matrix given by the covariance function

Kψ�x�y� = Eψ2�X1 −mψ�X0��I�X0 ≤ x ∧ y�� x� y ∈ R�

Under some additional assumptions, Theorem 2.1 below establishes the weak
convergence of Vn�ψ to a continuous Gaussian process Vψ with the covariance
function Kψ. Since the function

τ2
ψ�x� �= Kψ�x� x� = Eψ2�X1 −mψ�X0��I�X0 ≤ x�

is nondecreasing and nonnegative, Vψ admits a representation

Vψ�x� = B�τ2
ψ�x�� in distribution�(1.3)

where B is a standard Brownian motion on the positive real line. Note that the
continuity of the stationary d.f. G implies that of τψ and hence that of B�τ2

ψ�.
The representation (1.3), Theorem 2.1 and the continuous mapping theorem
yield

sup
x∈R

�Vn�ψ�x�� ⇒ sup
0≤t≤τ2

ψ�∞�
�B�t�� = τψ�∞� sup

0≤t≤1
�B�t�� in law�

Here and in the sequel, ⇒ denotes the convergence in distribution.
The above observations are useful for testing the simple hypothesis

H̃0� mψ = m0, where m0 is a known function. Estimate (under mψ = m0) the
variance τ2

ψ�x� by

τ2
n�ψ�x� �= n−1

n∑
i=1

ψ2�Xi −m0�Xi−1��I�Xi−1 ≤ x�� x ∈ R�

and replace mψ by m0 in the definition of Vn�ψ. Write s2
n�ψ for τ2

n�ψ�∞�. Then,
for example, the Kolmogorov–Smirnov (K–S) test based on Vn�ψ of the given
asymptotic level would reject the hypothesis H̃0 if sup�s−1

n�ψ�Vn�ψ�x��� x ∈ R

exceeds an appropriate critical value obtained from the boundary crossing
probabilities of a Brownian motion which are readily available on the unit
interval. More generally, in view of Remark 4.1 below, the asymptotic level
of any test based on a continuous function of s−1

n�ψVn�ψ��τ2
n�ψ�−1� can be ob-

tained from the distribution of the corresponding function of B on 0�1�, where
�τ2

n�ψ�−1�t� �= inf�x ∈ R� τ2
n�ψ�x� ≥ t
, t ≥ 0�

Theorem 2.1 is useful for testing the simple hypothesis H̃0; for testing a
composite parametric hypothesis, the process Vn�ψ requires some modification.
Consider the null hypothesis

H0� mψ�·� = m�·� θ0� for some θ0 ∈ ��
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Let θn be a consistent estimator of θ0 under H0 based on �Xi� 0 ≤ i ≤ n
.
Define

V1
n�ψ�x� = n−1/2

n∑
i=1

ψ�Xi −m�Xi−1� θn��I�Xi−1 ≤ x�� x ∈ R�

The process V1
n�ψ is a marked empirical process, where the marks, or the

weights at Xi−1, are now given by the ψ-residuals ψ�Xi −m�Xi−1� θn��. It is
uniquely determined by the �Xi−1
 and these residuals and vice versa. Tests
for H0 can be based on an appropriately scaled discrepancy of this process.
For example, an analogue of the K–S test would reject H0 in favor of H1
if sup�σ−1

n�ψ�V1
n�ψ�x��� x ∈ R
 is too large, where σ2

n�ψ �= n−1∑n
i=1 ψ

2�Xi −
m�Xi−1� θn��. These tests, however, are not generally asymptotically distribu-
tion free (ADF).

The main focus of the present paper is to construct a transform of the V1
n�ψ

process whose limiting distribution is known so that tests based on it will be
ADF. To do this, one first needs to establish the weak convergence of these
processes. As indicated earlier, Theorem 2.1 below obtains the weak conver-
gence of Vn�ψ, for a general ψ, to a continuous Brownian motion with respect
to the time τ2

ψ, under some moment assumptions on ψ�X1 −mψ�X0�� and X1
and under the assumption that the conditional d.f.’s Fy of X1−mψ�X0�, given
X0 = y, have uniformly bounded Lebesgue densities. Theorem 2.2 and Corol-
lary 2.1 present similar results for the V1

n�ψ processes when H0 is satisfied,
under the same moment condition and under some additional conditions on
� and ψ. For technical reasons, the cases of an absolutely continuous ψ and
a general bounded ψ are handled separately. The estimator θn is assumed to
be asymptotically linear.

Now assume that σ2
ψ�x� �= Eψ2�X1 −m�X0� θ0���X0 = x� ≡ σ2

ψ does not
depend on x. In this case τ2

ψ�x� ≡ σ2
ψ G�x�, for all real x. Using ideas of

Khmaladze (1981), a linear transformation T of the underlying processes is
then constructed so that for a general ψ, TVψ�·�/σψ is a transformed Brown-
ian motion B ◦G and TV1

n�ψ/σn�ψ converges in distribution to TVψ/σψ. This
is done in Theorem 2.3 below. Informally speaking, T maps V1

n�ψ into the
(approximate) martingale part of its Doob–Meyer decomposition.

The transformation T depends on the unknown entities θ0 and G. An esti-
mator Tn of T is then constructed and it is shown that TnV

1
n�ψ�·�/σn�ψ also

converges in distribution to the process B ◦ G. This is done in Theorem 2.4.
Because the transformation is generally unstable in the extreme right tails,
this weak convergence can be proved only in D−∞� x0�, for an x0 < ∞. Con-
sequently, the tests based on the transformed process Tn�V1

n�ψ/σn�ψ�/Gn�x0�
are ADF for testing that mψ�x� = m�x� θ0�, −∞ < x ≤ x0, where Gn is the
empirical d.f. based on �X0�X1� � � � �Xn−1
. A similar approach has been also
used in an analogous problem that arises in model checking for a regression
model by Stute, Thies and Zhu (1998). The restriction of the testing domain to
the interval �−∞� x0� is not a serious constraint from the applications point of
view. Often one tests the more restrictive hypothesis that mψ�x� = m�x� θ0��
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for all x in a bounded interval a� b� of R. Modification of the above tests for
this problem is given in Remark 2.3 below. They continue to be ADF.

None of the proofs require the underlying process �Xi
 to have any type
of mixing property. Rather our arguments are based on a general invariance
principle for marked empirical processes, which may be of interest on its own
and which is formulated and proved in Section 3. The other proofs are deferred
to Section 4.

We now summarize our results for the two interesting ψ’s, namely, ψ�x� ≡ x
and ψ�x� ≡ I�x > 0�−�1−α� in the case the innovations �εi �= Xi−mψ�Xi−1�

are assumed to be i.i.d. according to some d.f. having a uniformly bounded
Lebesgue density. Let Vn�I�V1

n� I� and Vn�α�V1
n�α� denote the corresponding

Vn�ψ�V1
n�ψ� processes, respectively. Then, Eε

4�1+δ�
1 < ∞ and EX

2�1+δ�
0 < ∞, for

some δ > 0, suffice for the weak convergence of Vn�I while E�X0�1+δ < ∞,
for some δ > 0, suffices for that of Vn�α. See also Theorem 2.1(ii) and Re-
mark 2.1 for some alternate conditions for the latter result. Moreover, if θn is
taken to be the least square estimator, then any test based on a continuous
function of Tn�V1

n� I�/�σn�IGn�x0�
 is ADF for testing that the first-order au-
toregressive mean function is m�·� θ0� on the interval �−∞� x0�. Similarly, tests
based on Tn�V1

n�0�5�/�σn�0�5Gn�x0�
 with θn equal to the least absolute devia-
tion estimator are ADF for testing that the first-order autoregressive median
function is m�·� θ0� on the interval �−∞� x0�. Of course, all these results hold
under some additional smoothness conditions on � as given in Theorem 2.4
below.

We end this section with some historical remarks. An and Bing (1991) have
proposed the K–S test based on V1

n� I and a half sample splitting technique a
la Rao (1972) and Durbin (1973) to make it ADF for testing that a time series
is linear autoregressive. This method typically leads to a loss of power. Su and
Wei (1991) proposed the K–S test based on the V1

n� I-process to test for fitting a
generalized linear regression model. Delgado (1993) constructed two sample-
type tests based on the Vn�I for comparing two regression models. Diebolt
(1995) has obtained the Hungarian-type strong approximation result for the
analogue of Vn�I in a special regression setting. Stute (1997) has investigated
the large sample theory of the analogue of V1

n� I for model checking in a general
regression setting. He also gave a nonparametric principal component analysis
of the limiting process in a linear regression setup similar to the one given by
Durbin, Knott and Taylor (1975) in the one-sample setting.

2. Main results. This section discusses the asymptotic behavior of the
processes introduced in the previous section. Then a transformation T and
its estimate Tn are given so that the processes TV1

n�ψ and TnV
1
n�ψ have the

same weak limit with a known distribution. Consequently, the tests based on
the processes TnV

1
n�ψ are ADF. This section also discusses some applications

and provides an argument for the consistency of the proposed tests. Recall
that

Fy�x� �= P�X1 −mψ�X0� ≤ x �X0 = y�� x� y ∈ R�
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Let εi �= Xi −mψ�Xi−1�� i = 0�±1�±2� � � � � We are ready to state our first
result.

Theorem 2.1. Assume that (1.1) and (1.2) hold. Then all finite-dimensional
distributions of Vn�ψ converge weakly to those of a centered continuous Gaus-
sian process Vψ with the covariance function Kψ.

(i) Suppose, in addition, that for some η > 0, δ > 0,

�2�1��a� Eψ4�ε1� < ∞�

�2�1��b� Eψ4�ε1��X0�1+η < ∞�

�2�1��c� E�ψ2�ε2�ψ2�ε1��X1�
1+δ < ∞
and that the family of d.f.’s �Fy� y ∈ R
 have Lebesgue densities �fy� y ∈ R

that are uniformly bounded,

sup
x�y

fy�x� < ∞�(2.2)

Then

Vn�ψ ⇒ Vψ in the space D−∞�∞��(2.3)

(ii) Instead of (2.1) and (2.2), suppose that ψ is bounded and the family of
d.f.’s �Fy� y ∈ R
 have Lebesgue densities �fy� y ∈ R
 satisfying∫ [

E
{
f1+δ
X0

�x−mψ�X0��
}]1/�1+δ�

dx < ∞�(2.4)

for some δ > 0. Then also (2.3) holds.

Remark 2.1. Conditions (2.1) and (2.2) are needed to ensure the uniform
tightness in the space D−∞�∞� for a general ψ while (2.4) suffices for a
bounded ψ. Condition (2.1) is satisfied when, as is assumed in most standard
time series models, the innovations are independent of the past, and when for
some δ > 0, Eψ4�1+δ��ε1� and EX

2�1+δ�
1 are finite. Moreover, in this situation the

conditional distributions do not depend on y, so that (2.2) amounts to assuming
that the density of ε1 is bounded. In the case of bounded ψ, E�X1�1+δ < ∞, for
some δ > 0� implies (2.1).

Now consider the assumption (2.4). Note that the stationary distribution
G has Lebesgue density g�x� ≡ EfX0

�x −mψ�X0��� This fact together with
(2.2) implies that the left-hand side of (2.4) is bounded from the above by a
constant C �= supx�y fy�x��δ/�1+δ� times∫ [

EfX0
�x−mψ�X0��

]1/�1+δ�
dx =

∫
g1/�1+δ��x�dx�

Thus, (2.4) is implied by assuming∫
g1/�1+δ��x�dx < ∞�
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Alternately, suppose mψ is bounded and that fy�x� ≤ f�x�� ∀ x�y ∈ R,
where f is a bounded and unimodal Lebesgue density on R. Then also the
left-hand side of (2.4) is finite. One thus sees that in the particular case of the
i.i.d. errors, (2.4) is satisfied for either all bounded error densities and for all
stationary densities that have an exponential tail or for all bounded unimodal
error densities in the case of bounded mψ. Summarizing, we see that (2.1),
(2.2) and (2.4) are fulfilled in many models under standard assumptions on
the relevant densities and moments.

We shall now turn to the asymptotic behavior of the V1
n�ψ process under

H0. To that effect, the following minimal additional regularity conditions on
the underlying entities will be needed. The introduced quantities will be part
of the approximating process and its limit covariance and are therefore in-
dispensable. For technical reasons, the case of a smooth ψ [see ()1) below]
and a nonsmooth ψ [see ()2) below] are dealt with separately. All probability
statements in these assumptions are understood to be made under H0. The
d.f. of X0 will be now denoted by Gθ0

.

(A1) The estimator θn satisfies

n1/2�θn − θ0� = n−1/2
n∑
i=1

l�Xi−1�Xi� θ0� + oP�1�

for some q-vector valued function l such that E�l�X0�X1� θ0��X0
 = 0 and

L�θ0� �= E
{
l�X0�X1� θ0�lT�X0�X1� θ0�

}
exists and is positive definite.

(A2) There exists a function ṁ from R×� to R
q such that ṁ�·� θ0� is mea-

surable and satisfies the following: for all k < ∞,

sup
1≤i≤n�n1/2�t−θ0�≤k

n1/2
∣∣m�Xi−1� t�−m�Xi−1� θ0�− �t− θ0�Tṁ�Xi−1� θ0�

∣∣
= oP�1�

(2.5)

and

E�ṁ�X0� θ0��2 < ∞�(2.6)

�)1� (Smooth ψ). The function ψ is absolutely continuous with its almost
everywhere derivative ψ̇ bounded and having right and left limits.

�)2� (Nonsmooth ψ). The function ψ is nondecreasing, right continuous,
bounded and such that the function

x �→ E
[
ψ�X1 −m�X0� θ0� + x� − ψ�X1 −m�X0� θ0��

]2
is continuous at 0.

(F) The family of d.f.’s �Fy� y ∈ R
 has Lebesgue densities �fy� y ∈ R

that are equicontinuous: for every α > 0 there exists a δ > 0 such that

sup
y∈R� �x−z�<δ

�fy�x� − fy�z�� ≤ α�
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Note that (2.6) and ()1) or (2.6), ()2) and (F) imply that the vectors of
functions

Ṁ�x� θ0� = �Ṁ1�x� θ0�� � � � � Ṁq�x� θ0��T�
0̇�x� θ0� = �0̇1�x� θ0�� � � � � 0̇q�x� θ0��T�

with

Ṁj�x� θ0� = Eṁj�X0� θ0�ψ̇�X1 −m�X0� θ0��I�X0 ≤ x��

0̇j�x� θ0� = Eṁj�X0� θ0�
∫
fX0

dψI�X0 ≤ x�� 1 ≤ j ≤ q� x ∈ R�

are well defined. We are now ready to formulate an expansion of V1
n�ψ, which

is crucial for the subsequent results.

Theorem 2.2. Assume that (1.1), (A1), (A2) and H0 hold.

(a) If, in addition ()1) holds, then

sup
x∈R

∣∣∣∣V1
n�ψ�x�−Vn�ψ�x�+ ṀT�x� θ0�n−1/2

n∑
i=1

l�Xi−1�Xi� θ0�
∣∣∣∣= oP�1��(2.7)

(b) Assume, in addition, that ()2) and (F) hold and that either E�X0�1+δ <
∞� for some δ > 0 and (2.2) holds or (2.4) holds. Then the conclusion (2.7) with
Ṁ replaced by 0̇ continues to hold.

Remark 2.2. The assumption ()1) covers many interesting ψ’s including
the least square score ψ�x� ≡ x and the Huber score ψ�x� ≡ xI��x� ≤ c� +
c sign�x�I��x� > c�, where c is a real constant, while ()2) covers the α-quantile
score ψ�x� ≡ I�x > 0� − �1 − α�.

The following corollary is an immediate consequence of Theorems 2.1 and
2.2. We shall state it for the smooth ψ-case only. The same holds in the non-
smooth case with Ṁ replaced by 0̇.

Corollary 2.1. Under the assumptions of Theorems 2.1 and 2.2(a),

V1
n�ψ ⇒ V1

ψ in the space D−∞�∞��
where V1

ψ is a centered continuous Gaussian process with the covariance func-
tion

K1
ψ�x�y� = Kψ�x�y� + ṀT�x� θ0�L�θ0�Ṁ�y� θ0�

− ṀT�x� θ0�E�I�X0 ≤ y�ψ�X1 −m�X0� θ0��l�X0�X1� θ0�

− ṀT�y� θ0�E�I�X0 ≤ x�ψ�X1 −m�X0� θ0��l�X0�X1� θ0�
�

The above complicated-looking covariance function can be further simplified
if we choose θn to be related to the function ψ in the following fashion. Recall
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from the previous section that σ2
ψ�x� = Eψ2�ε1��X0 = x� and let, for x ∈ R,

γψ�x� �= Eψ̇�X1 −m�X0� θ0���X0 = x� for smooth ψ,

�=
∫
fx�y�ψ�dy� for nonsmooth ψ.

Assume that

σ2
ψ�x� = σ2

ψ a positive constant in x, a.s.,

γψ�x� = γψ a positive constant in x, a.s.,
(2.8)

and that θn satisfies (A1) with

l�x�y� θ0� = γ−1
ψ �4θ0

�−1ṁ�x� θ0�ψ�y−m�x� θ0��� x� y ∈ R�(2.9)

where 4θ0
�= Eṁ�X0� θ0�ṁT�X0� θ0� so that L�θ0� = τ 4−1

θ0
, with τ �= σ2

ψ/γ
2
ψ�

Then direct calculations show that the above covariance function simplifies to

K1
ψ�x�y� = Eψ2�X1 −m�X0� θ0�� Gθ0

�x ∧ y� − νT�x�4−1
θ0
ν�y���(2.10)

with

ν�x� = Eṁ�X0� θ0�I�X0 ≤ x�� x� y ∈ R�

Suppose �εi = Xi −m�Xi−1� θ0�
 are i.i.d. and εi is independent of Xi−1
for all i. Then (2.8) is satisfied a priori and Koul (1996) gives a set of suffi-
cient conditions on the model � under which a class of M-estimators of θ0
corresponding to a bounded ψ defined by the relation

θn�ψ �= arg min
t

∥∥∥∥n−1/2
n∑
i=1

ṁ�Xi−1� t�ψ�Xi −m�Xi−1� t��
∥∥∥∥

satisfies (2.9). See also Tjøstheim (1986) for a similar result for the least square
estimator.

Unlike (1.3), the structure of K1
ψ given at (2.10) still does not allow for a

simple representation of V1
ψ in terms of a process with known distribution.

The situation is similar to the model checking for the underlying distribution
in the classical i.i.d. setup. We shall now describe a transformation so that the
limiting distribution of the transformed V1

n�ψ-process is known. The exposition
here is based on the ideas of Khmaladze (1981) and Nikabadze and Stute
(1996).

Throughout the rest of the section we shall assume that (2.8) holds. To sim-
plify the exposition further, assume without loss of generality that Eψ2�ε1� =
1. Write ṁ�·� = ṁ�·� θ0�, G = Gθ0

. Set

A�x� =
∫
ṁ�y�ṁT�y� I�y ≥ x�G�dy�� x ∈ R�

Assume that

A�x0� is nonsingular for some x0 < ∞�(2.11)
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This and the nonnegative definiteness of A�y� −A�x0� implies that A�y� is
nonsingular for all y ≤ x0. Write A−1�y� for �A�y��−1� y ≤ x0, and define

Tf�x�=f�x�−
∫ x

−∞
ṁT�y�A−1�y�

[∫
ṁ�z� I�z≥y� f�dz�

]
G�dy�� x≤x0�

We will apply T to functions f which are either of bounded variation or
Brownian motion. In the latter case the inner integral needs to be interpreted
as a stochastic integral. Since T is a linear operator, T�Vψ� is a centered
Gaussian process. Moreover we have the following fact.

Lemma 2.1.

CovTVψ�x��TVψ�y�� = G�x ∧ y�� x� y ∈ R�

that is, TVψ is a Brownian motion with respect to time G.

The proof uses the independence of increments of the Brownian motion Vψ

and properties of stochastic integrals and is similar to that of Lemma 3.1 of
Stute, Thies and Zhu (1998). We are now ready to state our next result.

Theorem 2.3. (a) Assume, in addition to the assumptions of Theorem
2.2(a), that (2.8) and (2.11) hold. Then

sup
x≤x0

∣∣TV1
n�ψ�x� −TVn�ψ�x�

∣∣ = oP�1��(2.12)

If in addition, (1.2), (2.1) and (2.2) hold, then

TVn�ψ ⇒ TVψ and TV1
n�ψ ⇒ TVψ in D−∞� x0��(2.13)

(b) The above claims continue to hold under the assumptions of Theorem
2.2(b), (2.8) and (2.11).

The usefulness of the above theorem in statistics is limited because T is
known only in theory. For statistical applications to the goodness-of-fit testing,
one needs to obtain an analogue of the above theorem where T is replaced by
an estimator Tn. Let, for x ∈ R,

Gn�x� �= n−1
n∑
i=1

I�Xi−1 ≤ x�

and

An�x� �=
∫
ṁ�y� θn�ṁT�y� θn� I�y ≥ x� Gn�dy��

Define an estimator of T to be

Tnf�x� = f�x� −
∫ x

−∞
ṁT�y� θn�A−1

n �y�

×
[∫

ṁ�z� θn� I�z ≥ y� f�dz�
]
Gn�dy�� x ≤ x0�
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The next result, one of the main results of the paper, proves the consistency
of TnV

1
n�ψ for TV1

n�ψ under the following additional smoothness condition
on ṁ. For some q × q square matrix m̈�x� θ0� and a nonnegative function
K1�x� θ0�, both measurable in the x-coordinate, the following holds:

E�ṁ�X0� θ0��jK1�X0� θ0� < ∞�

E�m̈�X0� θ0���ṁ�X0� θ0��j < ∞� j = 0�1�
(2.14)

and ∀ ε > 0, there exists a δ > 0 such that �θ− θ0� < δ implies

�ṁ�x� θ� − ṁ�x� θ0� − m̈�x� θ0��θ− θ0��
≤ ε K1�x� θ0� �θ− θ0� for G-almost all x�

Here, and in the sequel, for a q × q real matrix D, �D� �= sup��a′DD′a�1/2�
a ∈ R

q� �a� = 1
. The assumption (2.14) is neccessary because we are now
approximating the entities involving the estimator θn. We are ready to state
the theorem.

Theorem 2.4. (a) Suppose, in addition to the assumptions of Theo-
rem 2.3(a), (2.14) holds and that (2.1) with ψ�ε1�� ψ�ε2� replaced by
�ṁ�X0� θ0�� ψ�ε1�� �ṁ�X1� θ0�� ψ�ε2�, respectively, holds. Then

sup
x≤x0

�TnV
1
n�ψ�x� −TVn�ψ�x�� = oP�1��(2.15)

and consequently,

σ−1
n�ψ TnV

1
n�ψ�·� ⇒ B ◦G in D−∞� x0��(2.16)

(b) The same continues to hold under the assumptions of Theorem 2.3(b)
and (2.14).

Remark 2.3. By (2.11), λ1 �= inf�a′A�x0�a� a ∈ R
q� �a� = 1
 > 0 and

A�x� is positive definite for all x ≤ x0, Hence, �A−1/2�x��2 ≤ λ−1
1 < ∞, for all

x ≤ x0, and (2.6) implies

E�ṁT�X0�A−1�X0��I�X0 ≤ x0� ≤ E�ṁ�X0��λ−1
1 < ∞�(2.17)

This fact is used in the proofs repeatedly.
Now, let a < b be given real numbers and suppose one is interested in

testing the hypothesis

H� mψ�x� = m�x� θ0� for all x ∈ a� b� and for some θ0 ∈ ��

Assume the support of G is R, and A�b� is positive definite. Then, A�x� is
nonsingular for all x ≤ b, continuous on a� b� and A−1�x� is continuous on
a� b� and

E�ṁT�X0�A−1�X0��I�a < X0 ≤ b� < ∞�
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Thus, under the conditions of Theorem 2.4, σ−1
n�ψ TnV

1
n�ψ�·� ⇒ B◦G� in Da� b�

and we obtain

σ−1
n�ψ�TnV

1
n�ψ�·� −TnV

1
n�ψ�a�
 ⇒ B�G�·�� −B�G�a�� in Da� b��

The stationarity of the increments of the Brownian motion then readily implies
that

Dn �= sup
a≤x≤b

�TnV
1
n�ψ�x� −TnV

1
n�ψ�a��

�Gn�b� −Gn�a�
σn�ψ
⇒ sup

0≤u≤1
�B�u���

Hence, any test of H based on Dn is ADF.

Applications. Here we discuss some examples of nonlinear time series to
which the above results may be applied. It may be useful for computational
purposes to rewrite TnV

1
n�ψ as follows: for all x ≤ x0,

TnV
1
n�ψ�x� = n−1/2

n∑
i=1

[
I�Xi−1 ≤ x� − n−1

n∑
j=1

ṁT�Xj−1� θn�

×A−1
n �Xj−1�ṁ�Xi−1� θn�I�Xj−1 ≤ Xi−1 ∧ x�

]

× ψ�Xi −m�Xi−1� θn���

(2.18)

Now, let g1� � � � � gq be known real-valued G-square integrable functions on
R and consider the class of models � with

m�x� θ� = g1�x�θ1 + · · · + gq�x�θq�
Then (A1), (2.14) are trivially satisfied with ṁ�x� θ� ≡ �g1�x�� � � � � gq�x��T and
m̈�x� θ� ≡ 0 ≡ K1�x� θ�� Besides including the first-order linear autoregressive
[AR(1)] model where q = 1, g1�x� ≡ x, this class also includes some nonlinear
autoregressive models. For example, the choice of q = 2, g1�x� = x, g2�x� =
x exp�−x2� gives an exponential-amplitude dependent AR(1) [EXPAR(1)]
model of Ozaki and Oda (1978) [Tong (1990), pages 129 and 130]. In the
following discussion, the innovations εi = Xi −m�Xi−1� θ0� are assumed to
be i.i.d. according to a d.f. F with a bounded Lebesgue density f.

In the linear AR(1) model ṁ�x� θ� ≡ x and A�x� ≡ EX2
0I�X0 ≥ x� is positive

for all real x, uniformly continuous and decreasing on R, and thus trivially
satisfies (2.11). A uniformly a.s. consistent estimator of A is

An�x� ≡ n−1
n∑

k=1

X2
k−1 I�Xk−1 ≥ x��

Thus a test of the hypothesis that the first-order autoregressive mean function
is linear AR(1) on the interval �−∞� x0� can be based on

sup
x≤x0

�TnV
1
n� I�x��/�σn�IGn�x0�
�
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where

TnV
1
n� I�x� = n−1/2

n∑
i=1

[
I�Xi−1 ≤ x�

− n−1
n∑

j=1

Xj−1 Xi−1 I�Xj−1 ≤ Xi−1 ∧ x�
n−1∑n

k=1 X
2
k−1 I�Xk−1 ≥ Xj−1�

]

× �Xi −Xi−1θn��

σ2
n� I = n−1

n∑
i=1

�Xi −Xi−1θn�2�

Similarly, a test of the hypothesis that the first-order autoregressive median
function is AR(1) can be based on supx≤x0

�TnV
1
n�0�5�x��/�σn�0�5Gn�x0�
, where

TnV
1
n�0�5�x� = n−1/2

n∑
i=1

[
I�Xi−1 ≤ x�

− n−1
n∑

j=1

Xj−1 Xi−1 I�Xj−1 ≤ Xi−1 ∧ x�
n−1∑n

k=1 X
2
k−1 I�Xk−1 ≥ Xj−1�

]
× �I�Xi −Xi−1θn > 0� − 0�5


and

σ2
n�0�5 = n−1

n∑
i=1

�I�Xi −Xi−1θn > 0� − 0�5
2�

By Theorem 2.4, both of these tests are ADF as long as the estimator θn
is the least square (LS) estimator in the former test and the least absolute
deviation (LAD) estimator in the latter. For the former test we additionally
require Eε

4�1+δ�
1 < ∞� for some δ > 0, while for the latter test, Eε2

1 < ∞ and f
being uniformly continuous and positive suffice.

In the EXPAR(1) model, ṁ�x� θ0� ≡ �x� x exp�−x2��T and A�x� is the 2 × 2
symmetric matrix

A�x� = EI�X0 ≥ x�
(

X2
0 X2

0 exp�−X2
0�

X2
0 exp�−X2

0� X2
0 exp�−2X2

0�

)
�

From Theorem 4.3 of Tong [(1990), page 128], if Eε4
1 < ∞, f is absolutely

continuous and positive on R, then the above EXPAR(1) process is stationary,
ergodic, the corresponding stationary d.f. G is strictly increasing on R, and
EX4

0 < ∞. Moreover, one can directly verify that EX2
0 < ∞ implies A�x� is

nonsingular for every real x and A−1 and A are continuous on R. The matrix

An�x� = n−1
n∑
i=1

I�Xi−1 ≥ x�
(

X2
i−1 X2

i−1 exp�−X2
i−1�

X2
i−1 exp�−X2

i−1� X2
i−1 exp�−2X2

i−1�

)

provides a uniformly a.s. consistent estimator of A�x�.
Thus one may use supx≤x0

�TnV
1
n� I�x��/�σn�IGn�x0�
 to test the hy-

pothesis that the autoregressive mean function is given by an EXPAR(1)
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function on an interval �−∞� x0�. Similarly, one can use the test statistic
supx≤x0

�TnV
1
n�0�5�x��/�σn�0�5Gn�x0�
 to test the hypothesis that the autore-

gressive median function is given by an EXPAR(1) function. In both cases,
An is as above and one should now use the general formula (2.18) to compute
these statistics. Again, from Theorem 2.4 it readily follows that the asymp-
totic levels of both of these tests can be computed from the distribution of
sup0≤u≤1 �B�u��, provided the estimator θn is taken to be, respectively, the
LS and the LAD. Again one needs the �4 + δ�th moment assumption for the
former test and the uniform continuity of f for the latter test. The relevant
asymptotics of the LS-estimator and a class of M-estimators with bounded
ψ in a class of nonlinear time series models is given in Tjøstheim (1986)
and Koul (1996), respectively. In particular, these papers include the above
EXPAR(1) model.

Remark 2.4. Theorems 2.1 and 2.2 can be extended to the case where
Xi−1 is replaced by a q-vector �Xi−1� � � � �Xi−q�T in the definitions of the
Vn�ψ and V1

n�ψ. In this case, the time parameter of these processes is a q-
dimensional vector. The difficulty in transforming such processes to obtain a
limiting process that has a known limiting distribution is similar to that faced
in transforming the multivariate empirical process in the i.i.d. setting. This,
in turn, is related to the difficulty of having a proper definition of a multitime
parameter martingale. See Khmaladze (1988, 1993) for a discussion on the
issues involved. For these reasons, we restricted our attention here to the
one-dimensional case only.

Consistency. Here we shall give sufficient conditions that will imply the
consistency of goodness-of-fit tests based on Vn�ψ for a simple hypothesis mψ =
m0 against the fixed alternative mψ  = m0, where m0 is a known function. By
the statement mψ  = m0 it should be understood that the G-measure of the
set �y ∈ R� mψ�y�  = m0�y�
 is positive. Let λ�y� z� �= E�ψ�X1 −mψ�X0� +
z� �X0 = y
� y� z ∈ R� Note that ψ nondecreasing implies that λ�y� z� is
nondecreasing in z, for each real y. Assume that for every y ∈ R,

λ�y� z� = 0 if and only if z = 0�(2.19)

Let d�x� �= mψ�x� −m0�x�� x ∈ R and

Dn�x� �= n−1/2
n∑
i=1

λ�Xi−1� d�Xi−1��I�Xi−1 ≤ x�� x ∈ R�

An adaptation of the Glivenko–Cantelli arguments known for the i.i.d. case to
the strictly stationary case [see (4.1) below] yields

sup
x∈R

�n−1/2Dn�x� − Eλ�X0� d�X0��I�X0 ≤ x�� → 0 a.s.,

where the E is computed under the alternative mψ. Moreover, by Lemma 3.1
below, we have

Vn�ψ ⇒ a continuous Gaussian process�
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These facts together with the assumption (2.19) and a routine argument yield
the consistency of the K–S and Cramér–von Mises tests based on Vn�ψ.

The study of the asymptotic power of the above tests against a sequence of
alternatives mn�ψ�x� → m0�x� at a n−1/2 rate deserves serious attention and
will be discussed elsewhere.

3. Weak convergence of a marked empirical process. Let Xi, i=0�
±1� � � � be a strictly stationary ergodic Markov process with stationary d.f. G,
and let �i = σ�Xi�Xi−1� � � �� be the σ-field generated by the observations
obtained up to time i. Furthermore, let, for each n ≥ 1, �Zn� i� 1 ≤ i ≤ n
 be
an array of r.v.’s adapted to ��i
 such that �Zn� i�Xi� is strictly stationary in
i, for each n ≥ 1, and satisfying

E�Zn� i��i−1
 = 0� 1 ≤ i ≤ n�(3.1)

Our goal here is to establish the weak convergence of the process

αn�x� = n−1/2
n∑
i=1

Zn� iI�Xi−1 ≤ x�� x ∈ R�(3.2)

The process αn constitutes a marked empirical process of the Xi−1’s, the marks
being given by the martingale difference array �Zn� i
. An example of this
process is the Vn�ψ process where Zn� i ≡ Zi = ψ�Xi −mψ�Xi−1��. Further
examples appear in the proofs in Section 4 below.

We now formulate the assumptions that guarantee the weak convergence
of αn to a continuous limit in D−∞�∞�. To this end, let

Ly�x� �= P�X1 − ϕ�X0� ≤ x�X0 = y�� x� y ∈ R�

where ϕ is a real-valued measurable function. Because of the Markovian as-
sumption, LX0

is the d.f. of X1 − ϕ�X0�, given �0. For example, if �Xi
 is
integrable, we may take ϕ�x� ≡ EXi+1 �Xi = x�� so that εi+1 �= Xi+1−ϕ�Xi�
are just the innovations generating the process �Xi
. As another example, for
the Vn�ψ, we may take ϕ = mψ. In the context of time series analysis the
innovations are often i.i.d., in which case Ly does not depend on y. However,
for our general result of this section, we may let Ly depend on y.

This section contains two lemmas. Lemma 3.1 deals with the general marks
and Lemma 3.2 with the bounded marks. The following assumptions will be
needed in Lemma 3.1.

(A) For some η > 0, δ > 0, K < ∞ and all n sufficiently large,

�a� EZ4
n�1 ≤ K�

�b� EZ4
n�1�X0�1+η ≤ K

and

�c� E
{
Z2

n�2Z
2
n�1�X1�

}1+δ ≤ K�
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(B) There exists a function ϕ from R to R such that the corresponding family
of functions �Ly� y ∈ R
 admit Lebesgue densities ly which are uniformly
bounded,

sup
x�y

ly�x� ≤ K < ∞�

(C) There exists a continuous nondecreasing function τ2 on R to 0�∞� such
that

n−1
n∑
i=1

EZ2
n� i��i−1�I�Xi−1 ≤ x� = τ2�x� + oP�1� ∀ x ∈ −∞�∞��

Assumptions (A) and (B) are needed to guarantee the continuity of the weak
limit and the tightness of the process αn, while (C) is needed to identify the
weak limit. As before, B denotes the Brownian motion on 0�∞��

Lemma 3.1. Under (A)–(C),

αn ⇒ B ◦ τ2 in the space D−∞�∞��(3.3)

where B ◦ τ2 is a continuous Brownian motion on R with respect to time τ2.

Proof. For convenience, we shall not now exhibit the dependence of Zn� i

on n. Apply the CLT for martingales [Hall and Heyde (1980), Corollary 3.1]
to show that the fidis tend to the right limit, under (A)(a) and (C). ✷

As to tightness, fix −∞ ≤ t1 < t2 < t3 ≤ ∞ and assume, without loss of
generality, that the moment bounds of (A) hold for all n ≥ 1 with K ≥ 1. Then
we have

αn�t3� − αn�t2��2αn�t2� − αn�t1��2

= n−2
[ n∑
i=1

ZiI�t2 < Xi−1 ≤ t3�
]2[ n∑

i=1

ZiI�t1 < Xi−1 ≤ t2�
]2

= n−2 ∑
i�j�k�l

UiUjVkVl�

where

Ui = ZiI�t2 < Xi−1 ≤ t3� and Vi = ZiI�t1 < Xi−1 ≤ t2��
Now, if the largest index among i� j� k� l is not matched by any other, then
E�UiUjVkVl
 = 0. Also, since the two intervals �t2� t3� and �t1� t2� are dis-
joint, UiVi ≡ 0. We thus obtain

E

{
n−2 ∑

i� j� k� l

UiUjVkVl

}
= n−2 ∑

i� j<k

E�ViVjU
2
k


+ n−2 ∑
i� j<k

E�UiUjV
2
k
�

(3.4)
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Note that the moment assumption (A)(a) guarantees that the above expecta-
tions exist. In this proof, the constant K is a generic constant, which may vary
from expression to expression but never depends on n or the chosen t’s.

We shall only bound the first sum in (3.4), the second being dealt with
similarly. To this end, fix a 2 ≤ k ≤ n for the time being and write

∑
i� j<k

E�ViVjU
2
k
 = E

{( k−1∑
i=1

Vi

)2

U2
k

}

= E

{( k−1∑
i=1

Vi

)2

E�U2
k��k−1�

}

≤ 2E

{( k−2∑
i=1

Vi

)2

E�U2
k��k−1�

}

+ 2E�V2
k−1E�U2

k��k−1�
�

(3.5)

The first expectation equals

E

{( k−2∑
i=1

Vi

)2

I�t2 < Xk−1 ≤ t3�E�Z2
k��k−1�

}
�(3.6)

Write

E
(
Z2

k��k−1
) = r�Xk−1�Xk−2� � � ��

for an appropriate function r. Note that due to stationarity r is the same for
each k. Condition on �k−2 and use the Markov property and Fubini’s theorem
to show that (3.6) is the same as

E

{( k−2∑
i=1

Vi

)2 ∫ t3

t2

r�x�Xk−2� � � �� lXk−2
�x− ϕ�Xk−2��dx

}

=
∫ t3

t2

E

{( k−2∑
i=1

Vi

)2

r�x�Xk−2� � � �� lXk−2
�x− ϕ�Xk−2��

}
dx

≤
∫ t3

t2

{
E

( k−2∑
i=1

Vi

)4}1/2{
E
(
r�x�Xk−2� � � �� lXk−2

�x− ϕ�Xk−2��
)2}1/2

dx�

where the last inequality follows from the Cauchy–Schwarz inequality. Since
the Vi’s form a centered martingale difference array, Burkholder’s inequality
[Chow and Teicher (1978), page 384] and the moment inequality yield

E

( k−2∑
i=1

Vi

)4

≤ K E

( k−2∑
i=1

V2
i

)2

≤ K �k− 2�2
EV4

1�

We also have

EV4
1 = E

(
Z4

1 I�t1 < X0 ≤ t2�
) = L1�t2� −L1�t1���
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where

L1�t� = EZ4
1I�X0 ≤ t�� −∞ ≤ t ≤ ∞�

Let

L2�t� =
∫ t

−∞

{
E
(
r�x�Xk−2� � � �� lXk−2

�x− ϕ�Xk−2��
)2}1/2

dx� −∞ ≤ t ≤ ∞�

Note that due to stationarity, L2 is the same for each k. It thus follows that
(3.6) is bounded from the above by

K �k− 2� L1�t2� −L1�t1��1/2 L2�t3� −L2�t2���(3.7)

The assumption (A)(a) implies that L1 is a continuous nondecreasing
bounded function on the real line. Clearly, L2 is also nondecreasing and con-
tinuous. We shall now show that L2�∞� is finite. For this, let h be a strictly
positive continuous Lebesgue density on the real line such that h�x� ∼ �x�−1−η

as x → ±∞, where η is as in (A)(b). By Hölder’s inequality,

L2�∞� ≤
[∫ ∞

−∞
E
(
r�x�Xk−2� � � �� lXk−2

�x− ϕ�Xk−2��
)2
h−1�x�dx

]1/2

�

Use the assumption (B) to bound one power of lXk−2
from the above so that

the last integral in turn is less than or equal to

K E
{
r2�Xk−1�Xk−2� � � �� h−1�Xk−1�

} ≤ K E
{
Z4

1 �h−1�X0��
}
�

The finiteness of the last expectation follows, however, from assumption (A)(b).
We now bound the second expectation in (3.5). Since Zk−1 is measurable

w.r.t. �k−1, there exists some function s such that

Z2
k−1 = s�Xk−1�Xk−2� � � ���

Put u = rs with r as before. Then we have, with the δ as in (A)(c),

E
{
V2

k−1E�U2
k��k−1�

}
= E

{
I�t2 < Xk−1 ≤ t3�I�t1 < Xk−2 ≤ t2� u�Xk−1�Xk−2� � � ��

}
=
∫ t3

t2

E
{
I�t1 < Xk−2 ≤ t2� u�x�Xk−2� � � �� lXk−2

�x− ϕ�Xk−2��
}
dx

≤ G�t2� −G�t1��δ/�1+δ�

×
∫ t3

t2

E
1/�1+δ�{u1+δ�x�Xk−2� � � ��l1+δXk−2

�x− ϕ�Xk−2��
}
dx�

Put

L3�t�=
∫ t

−∞
E

1/�1+δ�{u1+δ�x�Xk−2� � � ��l1+δXk−2
�x−ϕ�Xk−2��

}
dx� −∞≤ t≤∞�
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Arguing as above, now let q be a positive continuous Lebesgue density on the
real line such that q�x� ∼ �x�−1−1/δ as x → ±∞. By Hölder’s inequality,

L3�∞� ≤
[∫ ∞

−∞
E�u1+δ�x�Xk−2� � � �� l1+δXk−2

�x− ϕ�Xk−2��
q−δ�x�dx
]1/�1+δ�

≤ K
{
E
(
u1+δ�Xk−1� � � �� q−δ�Xk−1�

)}1/�1+δ�

≤ K
{
E
(
Z

2�1+δ�
2 Z

2�1+δ�
1 q−δ�X1�

)}1/�1+δ�
�

where the last inequality follows from Hölder’s inequality applied to condi-
tional expectations. The last expectation is, however, finite by assumption
(A)(c). Thus L3 is also a nondecreasing continuous bounded function on the
real line and we obtain

E
{
V2

k−1E�U2
k��k−1


} ≤ K G�t2� −G�t1��δ/�1+δ�L3�t3� −L3�t2���

Upon combining this with (3.5) and (3.7) and summing over k = 2 to k = n,
we obtain

n−2 ∑
i� j<k

E�ViVjU
2
k
 ≤ K

{
L1�t2� −L1�t1��1/2 L2�t3� −L2�t2��

+ G�t2� −G�t1��δ/�1+δ� L3�t3� −L3�t2��
}
�

One has a similar bound for the second sum in (3.4). Thus, summarizing,
we see that the sums in (3.4) satisfy Chentsov’s criterion for tightness. For
relevant details see Billingsley (1968), Theorem 15.6. This completes the proof
of Lemma 3.1. ✷

The next lemma covers the case of uniformly bounded �Zn� i
. In this case
we can avoid the moment conditions (A)(b) and (A)(c) and replace the condition
(B) by a weaker condition.

Lemma 3.2. Suppose the r.v.’s �Zn� i
 are uniformly bounded and (C) holds.
In addition, suppose there exists a measurable function ϕ from R to R such
that the corresponding family of functions �Ly� y ∈ R
 has Lebesgue densities
�ly� y ∈ R
 satisfying

∫ [
E l1+δX0

�x− ϕ�X0��
]1/�1+δ�

dx < ∞�(3.8)

for some δ > 0. Then also the conclusion of Lemma 3.1 holds.

Proof. Proceed as in the proof of Lemma 3.1 up to (3.6). Now use the
boundedness of �Zk
 and argue as for (3.7) to conclude that (3.6) is bounded
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from the above by

K
∫ t3

t2

E

{( k−2∑
i=1

Vi

)2

lXk−2
�x− ϕ�Xk−2��

}
dx

≤ K
∫ t3

t2

(
E

∣∣∣∣
k−2∑
i=1

Vi

∣∣∣∣
2��1+δ�/δ�)δ/�1+δ�{

E l1+δX0
�x− ϕ�X0��

}1/�1+δ�
dx

≤ K �k− 2� G�t2� −G�t1��δ/�1+δ� 0�t3� − 0�t2���
with δ as in (3.8). Here

0�t� =
∫ t

−∞

{
E l1+δX0

�x− ϕ�X0��
}1/�1+δ�

dx� −∞ ≤ t ≤ ∞�

Note that (3.8) implies that 0 is strictly increasing continuous and bounded
on R. Similarly,

E
{
V2

k−1E�U2
k��k−1�

} ≤ K E
{
V2

k−1 I�t2 < Xk−1 ≤ t3�
}

= E
{
I�t1 < Xk−2 ≤ t2�E

[
Z2

k−1 I�t2 < Xk−1 ≤ t3�
∣∣�k−2

]}
≤ K E

{
I�t1 < Xk−2 ≤ t2�

[∫ t3

t2

lXk−2
�x− ϕ�Xk−2��dx

]}

= K
∫ t3

t2

E
{
I�t1 < Xk−2 ≤ t2� lXk−2

�x− ϕ�Xk−2��
}
dx

≤ K G�t2� −G�t1��δ/�1+δ� 0�t3� − 0�t2���
Upon combining the above bounds we obtain that (3.5) is bounded from the
above by

K�k− 1�G�t2� −G�t1��δ/�1+δ� 0�t3� − 0�t2���
Summation from k = 2 to k = n thus yields

n−2 ∑
i� j<k

E�ViVjU
2
k
 ≤ K G�t2� −G�t1��δ/�1+δ� 0�t3� − 0�t2���

The rest of the details are as in the proof of Lemma 3.1. ✷

4. Proofs. In this section we present the proofs of various results stated
in Sections 1 and 2.

Proof of Theorem 2.1. Part (i) follows from Lemma 3.1 while part (ii)
follows from Lemma 3.2 upon choosing ϕ = mψ, Zi = ψ�Xi − mψ�Xi−1��,
Ly ≡ Fy and ly = fy in there. ✷

Before proceeding further, we state two facts that will be used below re-
peatedly. Let �ξi
 be r.v.’s with finite first moment such that ��ξi� Xi−1�
 is
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strictly stationary and ergodic and let ζi be stationary square integrable r.v.’s.
Then max1≤i≤n n−1/2�ζi� = oP�1� and

sup
y∈R

∣∣∣∣n−1
n∑
i=1

ξi I�Xi−1 ≤ y� −Eξ1 I�X0 ≤ y�
∣∣∣∣→ 0 a.s.(4.1)

The ET (ergodic theorem) implies the pointwise convergence in (4.1). The uni-
formity is obtained with the aid of the triangle inequality and by decomposing
each ξi into its negative and positive part and applying a Glivenko–Cantelli
type argument to each part.

Remark 4.1. We are now ready to sketch an argument for the weak con-
vergence of Vn�ψ��τ2

n�ψ�−1� to B under the hypothesis mψ = m0. For the sake
of brevity, let bn �= τ2

n�ψ�∞�, b �= τ2
ψ�∞�. First, note that

sup
0≤t≤bn

�τ2
n�ψ��τ2

n�ψ�−1�t�� − t� ≤ max
1≤i≤n

n−1ψ2�Xi −m0�Xi−1�� = oP�1�

by (1.2). Next, fix an ε > 0 and let �n �= �bn − b� ≤ ε� and cε �= 1/1 − ε/b�.
On �n,

1
/[

1 + ε

b

]
≤ b

bn
≤ 1

/[
1 − ε

b

]
= cε

and

sup
0≤t≤b

�τ2
n�ψ��τ2

n�ψ�−1�t�� − t� ≤ sup
0≤t≤bn

�τ2
n�ψ��τ2

n�ψ�−1�t�� − t�

+ sup
bn<t≤bncε

�τ2
n�ψ��τ2

n�ψ�−1�t�� − t��

The second term is further bounded from the above, on �n, by ��b+ε�/�b−ε��ε.
However, by the ET, P��n� → 1� The arbitrariness of ε thus readily implies
that

sup
0≤t≤τ2

ψ�∞�
�τ2
n�ψ��τ2

n�ψ�−1�t�� − t� = oP�1��

We thus obtain, in view of (4.1),

sup
0≤t≤τ2

ψ�∞�
�τ2
ψ��τ2

n�ψ�−1�t�� − t� ≤ sup
x∈R

�τ2
ψ�x� − τ2

n�ψ�x��

+ sup
0≤t≤τ2

ψ�∞�
�τ2
n�ψ��τ2

n�ψ�−1�t�� − t�

= oP�1��
These observations together with the continuity of the weak limit of Vn�ψ

imply that

sup
0≤t≤τ2

ψ�∞�∨τ2
n�ψ�∞�

�Vn�ψ��τ2
n�ψ�−1�t�� −Vn�ψ��τ2

ψ�−1�t��� = oP�1��
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Therefore, by Theorem 2.1, s−1
n�ψVn�ψ��τ2

n�ψ�−1� ⇒ B and the limiting distribu-
tion of any continuous functional of s−1

n�ψVn�ψ��τ2
n�ψ�−1� can be obtained from

the distribution of the corresponding functional of B. In particular, the asymp-
totic level of the test based on the Cramér–von Mises-type statistic

s−2
n�ψ

∫ s2
n�ψ

0
V2

n�ψ��τ2
n�ψ�−1�t��dH�t/s2

n�ψ�

can be obtained from the distribution of
∫ 1

0 B
2 dH, where H is a d.f. function

on 0�1�.
For our next lemma, put εn� i = Xi − m�Xi−1� θn� and recall εi = Xi −

m�Xi� θ0�. Let

�n = n−1/2
n∑
i=1

∣∣ψ�εn� i� − ψ�εi� − �εn� i − εi�ψ̇�εi�
∣∣�r�Xi−1���

where r is a measurable vector-valued function such that

E�r�X0��2 < ∞�(4.2)

Let An = n1/2�θn−θ0� and write m�·�� ṁ�·� for m�·� θ0�� ṁ�·� θ0�, respectively.

Lemma 4.1. Under the assumptions of Theorem 2.2(a) and (4.2), �n =
oP�1��

Proof. Fix an α > 0. Then by assumption (A1) and (2.5) there exists a
large k < ∞ and an integer N such that

P�Bn� > 1 − α for all n > N�

where

Bn =
{
�An� ≤ k�max

i

∣∣m�Xi−1� θn� −m�Xi−1�

− ṁT�Xi−1��θn − θ0�
∣∣ ≤ α/n1/2

}
�

Now, on Bn, we obtain for 1 ≤ i ≤ n, under H0,

�m�Xi−1� θn� −m�Xi−1�� ≤ n−1/2α+ k�ṁ�Xi−1��� =� n−1/2h�Xi−1��
From (2.6) and the stationarity of the process �Xi
,

max
1≤i≤n

n−1/2h�Xi−1� = oP�1��

Furthermore, by the absolute continuity of ψ, on Bn,

�n ≤ n−1/2
n∑
i=1

�r�Xi−1��
∫ h�Xi−1�/n1/2

−h�Xi−1�/n1/2
�ψ̇�εi − z� − ψ̇�εi��dz�
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Assuming for the moment that ψ̇ is uniformly continuous, we obtain uniformly
in 1 ≤ i ≤ n,

∫ h�Xi−1�/n1/2

−h�Xi−1�/n1/2
�ψ̇�εi − z� − ψ̇�εi��dz = n−1/2h�Xi−1� × oP�1�

so that by (2.6), (4.2) and the ET, the lemma holds.
For an arbitrary ψ̇ satisfying �)1�, we shall use the fact that continuous

functions with compact support are dense in L1�µ�, where µ may be any finite
Borel measure [Wheeden and Zygmund (1977), Problem 27, page 192]. In our
case µ�A� �= E�r�X0�� h�X0�I�ε1 ∈ A�, for any Borel subset A of R. Again,
by (2.6) and (4.2), this is a finite measure. Accordingly, given γ > 0, there is a
continuous function g with compact support such that∫

�r�X0��h�X0�
[�ψ̇−g��ε1�+ �ψ̇−g��ε1−�+ �ψ̇−g��ε1+�]dP≤γ�(4.3)

We also have

�n ≤ n−1/2
n∑
i=1

�r�Xi−1��

×
{ ∫ h�Xi−1�/n1/2

−h�Xi−1�/n1/2
�g�εi − z� − g�εi��dz

+
∫ h�Xi−1�/n1/2

−h�Xi−1�/n1/2
�ψ̇�εi − z� − g�εi − z��dz

}

+ n−1
n∑
i=1

�r�Xi−1��h�Xi−1��ψ̇�εi� − g�εi���

The uniform continuity of g implies that the first term is oP�1� while by the
ET and (4.3), the third term is OP�γ�. It remains to bound the second term.
Its expectation equals Efn�ε1�X0�, where

fn�ε1�X0� �= n1/2�r�X0��
∫ ε1+h�X0�/n1/2

ε1−h�X0�/n1/2
�g�z� − ψ̇�z��dz�

Since g and ψ̇ are bounded, fn�ε1�X0� ≤ C�r�X0��h�X0�, which is integrable
by (2.6) and (4.2). Moreover, we also have that for each value of �ε1�X0�,

fn�ε1�X0� → �r�X0��h�X0���g − ψ̇��ε1+� + �g − ψ̇��ε1−�

so that by (4.3) and the dominated convergence theorem Efn�ε1�X0� = O�γ�.
This concludes the proof of Lemma 4.1. ✷

Proof of Theorem 2.2. Put

Rn�x� �= V1
n�x� −Vn�x� = n−1/2

n∑
i=1

ψ�εn� i� − ψ�εi��I�Xi−1 ≤ x�� x ∈ R�
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Decompose Rn as

Rn�x� = n−1/2
n∑
i=1

ψ�εn� i� − ψ�εi� − �εn�i − εi�ψ̇�εi��I�Xi−1 ≤ x�

− n−1/2
n∑
i=1

m�Xi−1� θn� −m�Xi−1� − ṁT�Xi−1� �θn − θ0��

× ψ̇�εi�I�Xi−1 ≤ x�

− n−1/2
n∑
i=1

ṁT�Xi−1� ψ̇�εi�I�Xi−1 ≤ x� �θn − θ0�

= Rn1�x� +Rn2�x� +Rn3�x�n1/2�θn − θ0� say�

The term Rn3�x� is equal to

n−1
n∑
i=1

ṁT�Xi−1� ψ̇�εi�I�Xi−1 ≤ x��

By an application of (4.1) we readily obtain that

sup
x∈R

�Rn3�x� − ṀT�x� θ0�� = oP�1��

Due to (A1), it thus remains to show that Rn1 and Rn2 tend to zero in proba-
bility uniformly in x. The assertion for Rn1 follows immediately from Lemma
4.1, because it is uniformly bounded by the �n with r ≡ 1. As to Rn2, recall
the event Bn from the proof of Lemma 4.1 and note that on Bn�

sup
x

�Rn2�x�� ≤ αn−1
n∑
i=1

�ψ̇�εi�� = O�α� a.s.�

by the ET. Since α > 0 is arbitrarily chosen, this completes the proof of part (a).
As to the proof of part (b), put

dn� i�t� �= m�Xi−1� θ0 + n−1/2t� −m�Xi−1� θ0��
γn� i �= n−1/2�2α+ δ�ṁ�Xi−1� θ0���� α > 0� δ > 0�

µn�Xi−1� t� a� �= Eψ�εi − dn� i�t� + aγn� i� �Xi−1�� 1 ≤ i ≤ n� t ∈ R
q�

Define, for a� x ∈ R and t ∈ R
q�

Dn�x� t� a� �= n−1/2
n∑
i=1

[
ψ�εi − dn� i�t� + aγn� i�

− µn�Xi−1� t� a� − ψ�εi�
]
I�Xi−1 ≤ x��

Write Dn�x� t� and µn�Xi−1� t� for Dn�x� t�0� and µn�Xi−1� t�0�, respectively.
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Note that the summands in Dn�x� t� a� form mean zero bounded martingale
differences, for each x� t and a. Thus

Var�Dn�x� t� a�� ≤ Eψ�ε1 − dn�1�t� + aγn�1� − µn�X0� t� a� − ψ�ε1��2

≤ Eψ�ε1 − dn�1�t� + aγn�1� − ψ�ε1��2 → 0�

by assumption (A2) and ()2). Upon an application of Lemma 3.2 with Zn� i =
ψ�εi − dn� i�t� + aγn� i� − µn�Xi−1� t� a� − ψ�εi� we readily obtain that

sup
x∈R

�Dn�x� t� a�� = oP�1� ∀ a ∈ R� t ∈ R
q�(4.4)

The assumption (C) of Lemma 3.2 with these �Zn� i
 and τ2 ≡ 0 is implied by
()2) while (2.4) implies (3.8) here.

Let �b �= �t ∈ R
q� �t� ≤ b
� 0 < b < ∞. We need to prove that for every

b < ∞,

sup
x∈R� t∈�b

�Dn�x� t�� = oP�1��(4.5)

To that effect, let Cn �= �supt∈Nb
�dn� i�t�� ≤ n−1/2�α+b�ṁ�Xi−1���� 1 ≤ i ≤ n
,

and for an s ∈ �b� let

An �=
{

sup
t∈�b� �t−s�≤δ

�dn� i�t� − dn� i�s�� ≤ γn� i� 1 ≤ i ≤ n
}
∩Cn�

By assumption (A2), there is an N < ∞, depending only on α, such that
∀ b < ∞ and ∀ s ∈ �b,

P�An� > 1 − α ∀ n > N�(4.6)

Now, by the monotonicity of ψ one obtains that on An, for each fixed s ∈ �b

and ∀ t ∈ �b with �t− s� ≤ δ,

�Dn�x� t�� ≤ �Dn�x� s�1�� + �Dn�x� s�−1��

+
∣∣∣∣n−1/2

n∑
i=1

µn�Xi−1� s�1� − µn�Xi−1� s�−1��I�Xi−1 ≤ x�
∣∣∣∣�

By (4.4), the first two terms converge to zero uniformly in x, in probability,
while the last term is bounded above by

n−1/2
n∑
i=1

∫ ∞

−∞
�FXi−1

�y+ dn� i�s� + γn� i� −FXi−1
�y+ dn� i�s� − γn� i��ψ�dy��

Observe that for every s ∈ �b, on An, �dn� i�s�� + γn� i ≤ an, for all 1 ≤ i ≤ n,
where an �= max1≤i≤n n−1/23α+�b+ δ��ṁ�Xi−1���� By ()2), the above bound
in turn is bounded from above by

n−1/2
n∑
i=1

γn� i

[
sup

y∈R� �x−z�≤an
�fy�x� − fy�z�� + 2

∫ ∞

−∞
fXi−1

�y�ψ�dy�
]
�(4.7)
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Now, by the ET, (2.6) and (F),

n−1/2
n∑
i=1

γn� i = n−1
n∑
i=1

�2α+ δ�ṁ�Xi−1� θ0��� = OP�1�

and

n−1/2
n∑
i=1

γn� i

∫ ∞

−∞
fXi−1

�y�ψ�dy�

→ 2α
∫ ∞

−∞
EfX0

�y�ψ�dy� + δ
∫ ∞

−∞
E�ṁ�X0��fX0

�y�ψ�dy��

Observe that, by (2.6), the functions qj�y� �= E�ṁ�X0��jfX0
�y�� j = 0�1�

y ∈ R� are Lebesgue integrable on R. By (F), they are also uniformly contin-
uous and hence bounded on R so that

∫∞
−∞ qj�y�ψ�dy� < ∞ for j = 0�1. We

thus obtain that the bound in (4.7) converges in probability to

4α
∫ ∞

−∞
q0�y�ψ�dy� + 2 δ

∫ ∞

−∞
q1�y�ψ�dy��

which can be made less than δ by the choice of α. This together with (4.4)
applied with a = 0 and the compactness of �b proves (4.5).

Next, by (1.1) and Fubini’s theorem, we have

n−1/2
n∑
i=1

µn�Xi−1� t�I�Xi−1 ≤ x�

= n−1/2
n∑
i=1

[
µn�Xi−1� t� − µn�Xi−1�0�]I�Xi−1 ≤ x�

= −n−1/2
n∑
i=1

I�Xi−1 ≤ x�
∫ ∞

−∞

[
FXi−1

�y+ dn� i�t�� −FXi−1
�y�]ψ�dy�

= −n−1
n∑
i=1

ṁT�Xi−1� θ0� t I�Xi−1 ≤ x�
∫ ∞

−∞
fXi−1

�y�ψ�dy� + oP�1�

= −EṁT�X0� θ0�I�X0 ≤ x�
∫ ∞

−∞
fX0

�y�ψ�dy� t+ oP�1��

uniformly in x ∈ R and t ∈ �b. In the above, the last equality follows from
(4.1) while the one before that follows from the assumptions (A2), ()2) and
(F). This together with (4.5), (4.6) and the assumption (A1) proves (2.7) and
hence the part (b) of Theorem 2.2. ✷

Proof of Theorem 2.3. Details will be given for part (a) only, being simi-
lar to part (b). We shall first prove (2.12). From the definitions of T� we obtain
that

TV1
n�ψ�x� = V1

n�ψ�x�−
∫ x

−∞
ṁT�y�A−1�y�

[∫ ∞

y
ṁ�t�V1

n�ψ�dt�
]
G�dy��(4.8)
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TVn�ψ�x� = Vn�ψ�x�−
∫ x

−∞
ṁT�y�A−1�y�

[∫ ∞

y
ṁ�t�Vn�dt�

]
G�dy��(4.9)

As before, set An �= n1/2�θn− θ0�. From (2.7) we obtain, uniformly in x ∈ R,

V1
n�ψ�x� = Vn�ψ�x� − γ νT�x�An + oP�1��(4.10)

Recall εn� i �= Xi−m�Xi−1� θn�� 1 ≤ i ≤ n� Then the two integrals in (4.8) and
(4.9) differ by

∫ x

∞
ṁT�y�A−1�y�Dn�y�G�dy��

where

Dn�y� �= n−1/2
n∑
i=1

ṁ�Xi−1� ψ�εi� − ψ�εn� i��I�Xi−1 ≥ y��

This process is similar to the process Rn as studied in the proof of Theorem
2.2(a). Decompose Dn as

Dn�y� = n−1/2
n∑
i=1

ṁ�Xi−1� ψ�εi� − ψ�εn� i� − �εi − εn� i�ψ̇�εi��I�Xi−1 ≥ y�

+ n−1/2
n∑
i=1

ṁ�Xi−1�
[
m�Xi−1� θn� −m�Xi−1�

− ṁT�Xi−1� �θn − θ0�
]
ψ̇�εi�I�Xi−1 ≥ y�

+ n−1/2
n∑
i=1

ṁ�Xi−1� ṁT�Xi−1� ψ̇�εi�I�Xi−1 ≥ y� �θn − θ0�

= Dn1�y� +Dn2�y� +Dn3�y�An say�

(4.11)

Apply Lemma 4.1, with r = ṁ and the triangle inequality to readily obtain

sup
y∈R

�Dn1�y�� = oP�1��

This fact together with (2.17) yields

sup
x≤x0

∣∣∣∣
∫ x

−∞
ṁT�y�A−1�y�Dn1�y�G�dy�

∣∣∣∣ = oP�1��(4.12)

Recall Bn from the proof of Lemma 4.1. Then, on Bn,

sup
y∈R

�Dn2�y�� ≤ αn−1
n∑
i=1

�ṁ�Xi−1�� �ψ̇�εi�� = O�α� a.s.,(4.13)
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by the ET. Arbitrariness of α and (2.17) yield

sup
x≤x0

∣∣∣∣
∫ x

−∞
ṁT�y�A−1�y�Dn2�y�G�dy�

∣∣∣∣ = oP�1��(4.14)

Now consider the third term. We have

Dn3�y� = n−1
n∑
i=1

ṁ�Xi−1� ṁT�Xi−1� ψ̇�εi�I�Xi−1 ≥ y��

An application of (4.1) together with (2.8) yields that supy∈R
�Dn3�y� −

γA�y�� → 0, a.s. This together with the fact �An� = OP�1� entails that

sup
x≤x0

∣∣∣∣
[ ∫ x

−∞
ṁT�y�A−1�y�Dn3�y�G�dy� − γ νT�x�

]
An

∣∣∣∣ = oP�1��(4.15)

The proof of the claim (2.12) is complete upon combining (4.12)–(4.15) with
(4.8)–(4.10).

Next, we turn to the proof of (2.13). In view of (2.12), it suffices to prove
TVn�ψ ⇒ TVψ� To this effect, note that for each real x, TVn�ψ�x� is a mean
zero square integrable martingale. The convergence of the finite-dimensional
distributions thus follows from the martingale CLT.

To verify the tightness, because Vn�ψ is tight and has a continuous limit by
Theorem 2.1, it suffices to prove the same for the second term in (4.9). To that
effect, let

L�x� �=
∫ x

−∞
�ṁT A−1�dG� x ≤ x0�

Note that L is nondecreasing, continuous and L�x0� < ∞ [see (2.17)]. Now,
rewrite the relevant term as

Kn�x� �= n−1/2
n∑
i=1

ψ�εi�
∫ x

−∞
ṁT�y�A−1�y�ṁ�Xi−1�I�Xi−1 ≥ y�G�dy��

Because the summands are martingale differences and because of (2.8) with
σ2
ψ = 1� we obtain, with the help of Fubini’s theorem, that for x < y,

EKn�y� −Kn�x��2 =
∫ y

x

∫ y

x
ṁT�s�A−1�s�A�s ∨ t�A−1�t� ṁ�t�G�dt�G�ds��

By (2.6), �A�∞ �= supx∈R
�A�x�� ≤ ∫∞

−∞ �ṁ�2 dG < ∞. We thus obtain that

EKn�y� −Kn�x��2 ≤ �A�∞
[∫ y

x
�ṁT A−1�dG

]2

= �A�∞L�y� −L�x��2�

This then yields the tightness of the second term in (4.9) in a standard fashion
and also completes the proof of Theorem 2.3(a). ✷

For the proof of Theorem 2.4 the following lemma will be crucial.
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Lemma 4.2. Let � be a relatively compact subset of D−∞� x0�. Let L� Ln

be a sequence of random distribution functions on R such that

sup
t≤x0

�Ln�t� −L�t�� → 0 a.s.

Then

sup
t≤x0� α∈�

∣∣∣∣
∫ t

−∞
α�x�Ln�dx� −L�dx��

∣∣∣∣ = oP�1��

This lemma is an extension of Lemma 3.1 of Chang (1990) to the dependent
setup, where the strong law of large numbers is replaced by the ET. Its proof is
similar and uses the fact that the uniform convergence over compact families
of functions follows from the uniform convergence over intervals.

In the following proofs, the above lemma is used with Ln ≡ Gn and L ≡ G
and more generally, with Ln and L given by the relations dLn ≡ hdGn, dL ≡
hdG� where h is an G-integrable function. As to the choice of �, let �αn
 be a
sequence of stochastic processes which are uniformly tight; that is, for a given
δ > 0 there exists a compact set � such that αn ∈ � with probability at least
1 − δ. Apply Lemma 4.2 with this � and observe that αn /∈ �, with small
probability to finally get uniformly in t,∣∣∣∣

∫ t

−∞
αn�x�Ln�dx� −L�dx��

∣∣∣∣ = oP�1��

As will be seen below, these types of integrals appear in the expansion of
TnV

1
n�ψ.

Proof of Theorem 2.4. Again, the details below are given for part
(a) only, and for convenience we do not exhibit θ0 in m, ṁ, K1 and
m̈. First, note that the stationarity of the process and (2.6) imply that
n−1/2 maxi �ṁ�Xi−1�� = oP�1�. Recall An = n1/2�θn − θ0�. Then by (2.14) and
the ET, on an event with probability tending to one and for a given ε > 0,

n−1
n∑
i=1

�ṁ�Xi−1�� �ṁ�Xi−1� θn� − ṁ�Xi−1��

≤ n−1/2 max
i

�ṁ�xi−1�� �An�

×
{
εn−1

n∑
i=1

K1�Xi−1� + n−1
n∑
i=1

�m̈�Xi−1��
}

= oP�1��
Similarly, one obtains

n−1
n∑
i=1

�ṁ�Xi−1� θn� − ṁ�Xi−1��2 = oP�1��
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These bounds in turn, together with (4.1), imply that

sup
y∈R

�An�y� −A�y�� ≤ 2n−1
n∑
i=1

�ṁ�Xi−1�� �ṁ�Xi−1� θn� − ṁ�Xi−1��

+ n−1
n∑
i=1

�ṁ�Xi−1� θn� − ṁ�Xi−1��2

+ sup
y∈R

∥∥∥∥n−1
n∑
i=1

ṁ�Xi−1�ṁT�Xi−1�I�Xi−1 ≥ y� −A�y�
∥∥∥∥

= oP�1��
Consequently, we have

sup
y≤x0

�A−1
n �y� −A−1�y�� = oP�1��(4.16)

Next, we shall prove (2.15). For the sake of brevity, write V1
n, Vn for V1

n�ψ,
Vn�ψ, respectively. Let

U1
n�y� �=

∫ ∞

y
ṁ�t� θn�V1

n�dt�� Un�y� �=
∫ ∞

y
ṁ�t�Vn�dt��

Then we have

TnV
1
n�x� = V1

n�x� −
∫ x

−∞
ṁT�y� θn�A−1

n �y�U1
n�y�Gn�dy��

so that from (4.9) and (4.10) we obtain, uniformly in x ∈ R,

TnV
1
n�x� −TVn�x� �= −γ νT�x�An + oP�1�

+
∫ x

−∞
ṁT�y�A−1�y�Un�y�G�dy�

−
∫ x

−∞
ṁT�y� θn�A−1

n �y�U1
n�y�Gn�dy�

= −γ νT�x�An + oP�1� +Bn1�x� −Bn2�x� say�

(4.17)

We shall shortly show that

sup
x≤x0

�U1
n�x� −Un�x� + γA�x�An� = oP�1��(4.18)

Apply Lemma 3.1 k times, jth time with Zn� i ≡ ṁj�Xi−1�ψ�εi�, where ṁj

is the jth component of ṁ, 1 ≤ j ≤ k. Then under the assumed conditions it
follows that Un is tight. Using (4.16), (4.18), Lemma 4.2 and the assumptions
(2.14), we obtain

Bn2�x� =
∫ x

−∞
ṁT A−1 Un dGn − γ

∫ x

−∞
ṁT dGAn + oP�1��

=
∫ x

−∞
ṁTA−1 Un dG− γ νT�x�An + oP�1��

uniformly in x ≤ x0, which in turn together with (4.17) implies (2.15).
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We shall now prove (4.18). Some of the arguments are similar to the proof
of Lemma 2.1. Again for the sake of brevity, write mi�t�� ṁi�t� for m�Xi−1� t�,
ṁ�Xi−1� t�, respectively, with the convention that the dependence on the true
θ0 will not be exhibited. Also recall the definition of εn� i from the proof of
Lemma 2.1. Now, decompose U1

n as follows:

U1
n�y� = n−1/2

n∑
i=1

ṁi�θn�ψ�εn� i�I�Xi−1 ≥ y�

= n−1/2
n∑
i=1

ṁi�θn� ψ�εn� i� − ψ�εi� − �εn� i − εi�ψ̇�εi��I�Xi−1 ≥ y�

+ n−1/2
n∑
i=1

ṁi�θn� mi −mi�θn� − ṁT
i �θ0 − θn�� ψ̇�εi�I�Xi−1 ≥ y�

− n−1
n∑
i=1

ṁi�θn� ṁT
i ψ̇�εi�I�Xi−1 ≥ y�An

+ n−1/2
n∑
i=1

ṁi�θn�ψ�εi�I�Xi−1 ≥ y�

= −Tn1�y� −Tn2�y� −Tn3�y�An +Tn4�y� say�

Observe that Tn1, Tn2 are, respectively, similar to Dn1, Dn2 in the proof of
Lemma 2.1 except the weights ṁi are now replaced by ṁi�θn�. We shall first
approximate Tn1 by Dn1. We obtain, for a given ε > 0,

sup
y∈R

�Tn1�y� −Dn1�y�� ≤ n−1
n∑
i=1

[�m̈�Xi−1�� + εK1�Xi−1�
] �An�

×
∫ h�Xi−1�/n1/2

−h�Xi−1�/n1/2
�ψ̇�εi − s� − ψ̇�εi��ds

= oP�1��
A similar, but simpler, argument using the assumption (A2) shows that
supy∈R

�Tn2�y� −Dn2�y�� = oP�1�� Since Dn1 and Dn2 tend to zero uniformly
in y, we conclude that

sup
y∈R

��Tn1�y�� + �Tn2�y��
 = oP�1��

Again, using (2.14) and (4.1) we obtain

Tn3�y� = n−1
n∑
i=1

ṁi ṁ
T
i ψ̇�εi�I�Xi−1 ≥ y� + oP�1� = γA�y� + oP�1��

uniformly in y ∈ R. We now turn to Tn4. We shall prove

sup
y∈R

∥∥∥∥Tn4�y� − n−1/2
n∑
i=1

ṁi ψ�εi�I�Xi−1 ≥ y�
∥∥∥∥ = oP�1��(4.19)
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To that effect let gni �= ṁi�θn� − ṁi�θ0� − m̈i�θ0��θn − θ0� and

0n�y� �= n−1/2
n∑
i=1

gni ψ�εi�I�Xi−1 ≥ y��

Clearly, by (2.14), on a large set,

sup
y∈R

�0n�y�� ≤ ε kn−1
n∑
i=1

K1�Xi−1� �ψ�εi�� = OP�ε��

But, because of (1.1) and (4.1), supy∈R
�n−1∑n

i=1 m̈i�θ0�ψ�εi�I�Xi−1 ≥ y�� =
oP�1��

The claim (4.19) thus follows from these facts and the assumption that
An = OP�1�, in a routine fashion. This also completes the proof of (4.18) and
hence that of the theorem. ✷
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