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Abstract

This paper discusses two goodness-of-fit testing problems. The first problem pertains
to fitting an error distribution to an assumed non-linear parametric regression model
while the second pertains to fitting a parametric regression model when the error
distribution is unknown. For the first problem, the paper contains tests based on a
certain martingale type transform of residual empirical processes. The advantage of
this transform is that the corresponding tests are asymptotically distribution free. For
the second problem, the proposed asymptotically distribution free tests are based on
innovation martingale transforms. A Monte Carlo study shows that the simulated level
of the proposed tests is close to the asymptotic level for moderate sample sizes.

1 Introduction

This paper is concerned with developing asymptotically distribution free tests for two testing

problems. The first problem pertains to testing a goodness-of-fit hypothesis about the error

distribution in a class of non-linear regression models. The second problem pertains to fitting

a regression model in the presence of the unknown error distribution. The tests are obtained

via certain martingale transforms of some residual empirical processes for the first problem

and partial sum residual empirical processes for the second problem.

To be more precise, let Θ be an open subset of the q-dimensional Euclidean space and

let {µ(·, ϑ); ϑ ∈ Θ} be a parametric family of functions from Rp to R. For a pair (X,Y ) of

a p-dimensional random vector X with distribution function (d.f.) H and one–dimensional

random variable (r.v.) Y with finite expectation let

m(x) := E[Y |X = x], x ∈ Rp,

denote the regression function of Y on X. In the first problem of interest, one assumes m is

a member of a parametric family {µ(·, ϑ); ϑ ∈ Θ} and one observes a sequence {(Xi, Yi), 1 ≤
i ≤ n} such that for some θ ∈ Θ, the errors

(1.1) εi(θ) = Yi − µ(Xi, θ), 1 ≤ i ≤ n,
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are independent, identically distributed (i.i.d.) r.v.’s with expected value 0. Let F be a

specified distribution function (d.f.) with mean 0 and finite Fisher information for location,

i.e, F is absolutely continuous with a.e. derivtive f ′ satisfying

0 <

∫ (
f ′

f

)2

dF < ∞.(1.2)

The problem of interest is to test the hypothesis

H0 : the d.f. of ε1(θ) is F,

against a class of all sequences of local (contiguous) alternatives where the error d.f.’s An

are such that for some a ∈ L2(R, F ),

(
dAn

dF

)1/2

= 1 +
1

2
√

n
a + rn,

∫
a dF = 0, n

∫
r2
n dF = o(1).(1.3)

Occasionally, we will also insist that a satisfy orthogonality assumption

(1.4)

∫
a

f ′

f
dF = 0.

In the second problem one is again given independent observations {(Xi, Yi), 1 ≤ i ≤ n}
such that Yi −m(Xi) are i.i.d. according to some distribution, not necessarily known, and

one wishes to test the hypothesis

(1.5) H̃0 : m(·) = µ(·, θ), for some θ ∈ Θ.

The alternative to H̃0 of interest here consists of all those sequences of functions mn(x),

which “locally” deviate from one of µ(x, θ), that is, for some θ ∈ Θ and for some function

`θ ∈ L2(Rp, H),

(1.6) `θ ⊥ µ̇θ, mn(x) = µ(x, θ) +
1√
n

`θ(x) + rnθ(x), n

∫
r2
nθ(x) dH(x) → 0,

while the errors Yi−mn(Xi) are still i.i.d. Here, µ̇θ(x) is a vector of L2-derivatives of µ(x, θ)

with respect to θ, assumed to exist, see the assumption (2.4) below.

Both of these testing problems are historically almost as old as the subject of statistics

itself. The tests based on various residual empirical processes for H0 have been discussed

in the literature repeatedly, cf. Durbin (1972), Durbin, Knott, and Taylor (1975), Loynes

(1980), D’Agostino and Stephens (1986), Koul (1992, 2002), among others. Several authors

have addressed the problem of regression model fitting, i.e, testing for H̃0: see, e.g., Cox,

Koh, Wahba and Yandell (1988), Eubank and Hart (1992, 1993), Eubank and Spiegelman

(1990), Härdle and Mammen (1993), Koul and Ni (2002), An and Cheng (1991), Stute

(1997), Stute, González Manteiga and Presedo Quindimil (1998), Stute, Thies and Zhu
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(1998), Stute and Zhu (2002), among others. The last five references propose tests based

on a certain marked empirical or partial sum processes while the former cited references

base tests on nonparametric regression estimators. See also the review paper of MacKinnon

(1992) for tests based on the least square methodology and the monograph of Hart (1997)

and references therein for numerous other tests of H̃0 based on smoothing methods in the

case p = 1.

However, it is well known that most of these tests are not asymptotically distribution

free. This is true even for the chi-square type of tests with the exception of modified chi-

square statistic studied in Nikulin (1973) in the context of empirical processes. It is also well

documented in the literature that chi-square type tests often have relatively low power against

many alternatives of interest, see e.g., Moore (1986). Hence a larger supply of asymptotically

distribution free (ADF) goodness of fit tests with relatively good power functions is needed.

The aim of this paper is to propose a large class of such tests. These will be the tests

based on statistics of a certain ADF modification and extension (see, e.g., (5.3) and (5.4)

below) of the (weighted) empirical process of residuals

Ŵγ(x) := n−1/2

n∑
i=1

γ(Xi)[I{Yi − µ(Xi, θ̂ ) ≤ y} − F (y)], −∞ ≤ y ≤ ∞,

where γ is a square integrable function with respect to H. The ADF versions of the Cramér-

von Mises and the Kolmogorov-Smirnov tests will be particular cases of such tests. Write

Ŵ1 for Ŵγ whenever γ ≡ 1- see Sections 3.2 and 5 below.

As far as the problem of estimation of θ is concerned, certain weighted residual empirical

processes play an indispensable role (cf. Koul 1992, 1996). A part of the objective of the

present paper is to clarify the role of these processes with regards to the above goodness-of-fit

testing problem.

To begin with, we shall discuss the basic structure of the first problem from a geo-

metric perspective. This perspective was explored in the context of empirical processes in

Khmaladze (1979). We shall show that under H0, the asymptotic distribution of Ŵγ, and its

general function-parametric form ξn(γ, ϕ; ϑ̂) (see (2.2)), is equivalent to that of the projection

of (function-parametric) Brownian motion parallel to the tensor product µ̇θ · (f ′/f). Since

a “projection” is typically “smaller” than the original process we can intuitively understand

why, at least for alternatives (1.3), it will lead to the increase in the asymptotic power if

we substitute an estimator θ̂ even in the problems where the true value of the parameter

is known. The distribution of this projection depends not only on the family of regression

functions {µ(·, ϑ); ϑ ∈ Θ} and F but also on the estimator θ̂. Therefore, the limit distribu-

tion of any fixed statistic based on Ŵγ or on ξn(γ, ϕ; ϑ̂) will be very much model-dependent.

However, using this “projection” point of view, we shall show in Sec.3.2 that the tests based

on Ŵγ corresponding to a certain non-constant γ may be useful, because they may have

simpler asymptotic behaviour, but at the cost of some loss of the asymptotic power, and the
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tests based on Ŵ1, in general, will have higher asymptotic power.

But, as mentioned above, the asymptotic null distribution of Ŵ1 is model dependent.

Proposed martingale transforms of Ŵγ(F
−1) will be shown to converge in distribution to a

standard Brownian motion on [0, 1] under H0, and hence tests based on these transforms

will be ADF for testing H0. It will also be shown that, for any γ this transform is one-to-one

and therefore there is no loss of the asymptotic power associated with it.

The paper also provides ADF tests for the problem of testing

Hσ : the d.f. of ε1(θ) is F (y/σ), ∀ y ∈ R, for some σ > 0.

In the univariate design case, ADF tests for H̃0 based on certain partial sum processes

and using ideas of Khmaladze (1981) have been discussed by Stute, Thies and Zhu (1998).

An extension of this methodology to the general case of a higher dimensional design is far

from trivial. The second important goal of this paper is to provide this extension. Here too

we first discuss this problem from a general geometric perspective. It turns out that the

weighted partial sum processes that are natural to this problem are

ξn(B; θ̂ ) := n−1/2
∑

I{Xi ∈ B}ϕ(Yi − µ(Xi, θ̂ )),

for a fixed real valued function ϕ with Eϕ2(ε) finite, where B is a Borel measurable set in Rp.

Tests based on these processes and the innovation martingale transform ideas of Khmaladze

(1993) (see, e.g., (6.4)) are shown to be ADF, i.e., their asymptotic null distribution is free

of the model µ(·, θ) and the error distribution, but depends on the design distribution in the

case p > 1. These tests include those proposed in Stute et al. (1998) where p = 1, ϕ(y) ≡
y, B = (−∞, x], x ∈ R.

We mention that recently Stute and Zhu (2002) used the innovation approach of Khmal-

adze (1981) to derive ADF tests in a special case of the higher dimension design where the

design vector appears in the null parametric regression function only in a linear form, e.g.,

as in generalized linear models, and where the sets B in ξn(B; θ̂ ) are taken to be half spaces.

This again reduces the technical nature of the problem to the univariate case.

In another recent paper Koenker and Xiao (2002) studied tests based on the transfor-

mations of a different process – regression quantile process to test the hypothesis that the

effect of the covariate vector X on the location and/or on the location-scale of the condi-

tional quantiles of Y , given X, is linear in X. They then used the Khmaladze approach to

make these tests ADF. Based on several Monte Carlo experiments, Koenker and Xiao (2001)

report that their tests have accurate size and respectable power.

The paper is organised as follows. Section 2 introduces some basic processes that are

used to construct tests of the above hypotheses. It also discusses some asymptotics under

H0 of these processes. Section 3 discusses some geometric implications of the asymptotics of

Section 2 while Section 4 gives the martingale transforms of these processes whose asymptotic

distribution under H0 is known and free from F . Section 5 contains some computational
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formulas of these transformed processes. It also provides analogues of these ADF tests for

non-random designs and when the underlying observations form a stationary autoregressive

process. Section 6 contains the ADF processes for testing H̃0. Section 7 contains some

simulation results to show how well the asymptotic level approximates the finite sample

level for the proposed ADF tests. It is observed that even for the samples size 40, this

approximation is quite good for the chosen simulation study. See section 7 for details.

2 Function-parametric regression processes with esti-

mated parameter

2.1 Function parametric regression process.

Consider a regression process as is defined in Stute (1997):

ξn(B, y, ϑ) := n−1/2

n∑
i=1

I{Xi ∈ B} [I{εi(ϑ) ≤ y} − F (y)] , −∞ ≤ y ≤ ∞, ϑ ∈ Θ,(2.1)

where B is a Borel measurable set in the p - dimensional Borel space (Rp,B(Rp)), and

εi(ϑ) := Yi − µ(Xi, ϑ), 1 ≤ i ≤ n.

We will use also notation IB(Xi) for the idicator function I{Xi ∈ B} interchangably. It is

natural to consider an extension of the above process where the indicator weights are replaced

by some weight function γ(Xi). The function γ may be a scalar or a vector valued. The

weak convergence of such processes in the y variable and for a fixed γ has been developed

in Koul (1992, 1996) and Koul and Ossiander (1994).

It is not any less natural to consider an extension of these weighted empiricals to those

processes where the second indicator involving the error random variable εi(ϑ) in (2.1) is also

replaced by a function. Consider, therefore, a function-parametric version of (2.1) indexed

by a pair of functions (γ, ϕ):

ξn(γ, ϕ; ϑ) :=

∫

Rp+1

γ(x)ϕ(y)ξn(dx, dy; ϑ)(2.2)

= n−1/2

n∑
i=1

γ(Xi)

[
ϕ(εi(ϑ))−

∫
ϕ(y)dF (y)

]
.

We shall choose γ ∈ L2(Rp, H) and ϕ ∈ L2(R, F ). In this way one can say that ξn is defined

for the function α(x, y) = γ(x)ϕ(y), which is an element of L := L2(Rp+1, H × F ). For a

general α ∈ L, we certainly have

ξn(α; ϑ) :=

∫

Rp+1

α(x, y)ξn(dx, dy; ϑ)

= n−1/2

n∑
i=1

(
α(Xi, εi(ϑ))− E

[
α(Xi, εi(ϑ))

∣∣∣Xi

])
.
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We will realize, however, that it is sufficient and natural for our present purpose to restrict

α to be of the above product type. In the sequel, for any functional S on L, we will use the

notation S(α) or S(γ, ϕ) interchangeably, whenever α = γ · ϕ.

The processes defined at (2.1) and (2.2) are obviously closely related: (2.1) represents a

regression process as a random measure on Rp+1 while (2.2) represents it as an integral from

this random measure. Also, (2.2) defines a linear functional on L.

The function-parametric version (2.2) will help to visualise in a natural way the geometric

picture of what is involved when we estimate parameters and show why and when we need

“martingale transformations” (Sections 4 and 6) to obtain asymptotically distribution free

tests.

2.2 Asymptotic increments of ξn with respect to parameter.

Since θ is unknown, in order to base tests of H0 on the process ξn, we will need to replace

it by an estimator θ̂ in this process. This estimator will be typically assumed to be n1/2-

consistent, i.e.,

(2.3) ‖θ̂ − θ‖ = Op(n
−1/2).

There is thus a need to understand the behaviour of ξn(α; θ + n−1/2v) as a process in v ∈
Rq, ‖v‖ ≤ k < ∞. The first thing certainly is to consider the Taylor expansion of this

function in v.

To do this assume the following L2-differentiability condition of the regression function

µ(x, ϑ) with respect to ϑ: there exists a q× 1 vector µ̇θ of functions from Rp×Θ to Rq, such

that

µ(x, ϑ)− µ(x, θ) = µ̇T
θ (x)(ϑ− θ) + ρµ(x; ϑ, θ),(2.4)

0 <

∫
µ̇T

θ (x)µ̇θ(x) dH(x) < ∞,

Cθ :=

∫
µ̇θ(x)µ̇T

θ (x) dH(x) is positive definite,
∫

sup
‖ϑ−θ‖≤ε

ρ2
µ(x; ϑ, θ)dH(x) = o(ε2), as ε → 0.

Here, and in the sequel, for any Euclidean vector v, vT denotes its transpose.

Now, if additionally ϕ is differentiable with derivative ϕ′ ∈ L2(R, F ) satisfying

(2.5) lim
ε→0

∫
sup

0<∆<ε
|ϕ′(y −∆)− ϕ′(y)|2dF (y) = 0,

then, with α(x, y) ≡ γ(x)ϕ(y), we have the following proposition.
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Proposition 2.1 Under assumptions (2.4) and (2.5), the following holds for every 0 < k <

∞.

(i) For any γ ∈ L2(Rp, H)

sup
‖v‖≤k

|ξn(α; θ + n−1/2v)− ξn(α; θ)− Eγ(Xi)µ̇
T
θ (X) Eϕ′(ε) v| = op(1).

(ii) For γ = η IB, B ∈ B(Rp), and a fixed η ∈ L2(Rp, H),

sup
B∈B,‖v‖≤k

|ξn(α; θ + n−1/2v)− ξn(α; θ)− n−1

n∑
i=1

ηiIB(Xi)µ̇
T
θ (Xi) ϕ′(εi) v| = op(1).

Hence, under (2.3), one obtains

ξn(α; θ̂ ) = ξn(α; θ)− n−1

n∑
i=1

ηiIB(Xi) µ̇T
θ (Xi) ϕ′(εi) n1/2(θ̂ − θ) + ρn(B),(2.6)

where ρn(B) is sequence of stochastic processes indexed by B ∈ B, tending to zero, uniformly

in B ∈ B, in probability.

The representation in (i) or in (2.6) will be very convenient and appropriate when dealing

with the fitting of a regression model in Section 6. But for testing H0 pertaining to the

error distribution, as we will see in the next section, the differentiability of ϕ is restrictive.

We may wish, for example, to choose ϕ to be an indicator function as in (2.1). Thus it is

desirable to obtain an analog of the above proposition for as general a ϕ as possible.

Towards this goal, let Φ denote the linear span of a class of nondecreasing real valued

functions ϕ(y), y ∈ R, such that
∫

ϕ2(y)dF (y) < ∞,(2.7)

(∫
[ϕ(y − t)− ϕ(y − s)]2 dF (y)

)1/2

≤ ν(|t− s|), −ε ≤ s, t ≤ ε,

for some ε > 0 and for some continuous function ν from [0,∞) to [0,∞), with ν(0) =

0,
∫ ε

0
log ν−1(t) dt < ∞. This is a wide class of functions and will be a source of our ϕ in

what follows.

For any two functions α, β ∈ L, let

〈α, β〉 :=

∫

Rp+1

α(x, y)β(x, y)dH(x)dF (y).

Note that if α or both α, β are vector functions, then 〈α, β〉 or 〈α, βT 〉 is a vector or a matrix

of coordinate-wise inner products. Let ‖α‖ := 〈αT , α〉1/2, for a vector function α. Finally,

let

ψf (y) :=
f ′(y)

f(y)
, mθ(x, y) := µ̇θ(x)ψf (y), x ∈ Rp, y ∈ R.
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Note that

〈µ̇θ, µ̇
T
θ 〉 = Cθ, 〈mθ,m

T
θ 〉 = Cθ ‖ψf‖2.

We are ready to state

Proposition 2.2 Suppose that (1.2) and (2.4) hold. Then for α(x, y) = γ(x)ϕ(y) with

γ ∈ L2(Rp, H), ϕ ∈ Φ,

ξn(α; θ̂ ) = ξn(α; θ) + 〈α,mT
θ 〉 · n1/2(θ̂ − θ) + op(1).(2.8)

To appreciate some implications of (2.8) we need to consider those estimators of θ that

admit an asymptotic linear representation. For the purpose of the present paper it would be

enough to assume this. However, for completeness of the presentation we give a relatively

broad set of sufficient conditions under which a class of M-estimators is asymptotically linear.

Let {ηϑ, ϑ ∈ Θ} be a family of q-dimensional functions on Rp with coordinates in L2(Rp, H).

Let βϑ := ηϑ · ϕ, ϕ ∈ Φ. Define an M-estimator θ̃ to be a solution of the equation

(2.9) ξn(βϑ; ϑ) = 0.

The following proposition gives a set of sufficient conditions for this estimator to be asymp-

totically linear.

Proposition 2.3 Suppose that (1.2) and (2.4) hold. In addition, suppose ϕ ∈ Φ and

{ηϑ, ϑ ∈ Θ} are such that

(2.10)

∫

Rp

sup
‖ϑ−θ‖<ε

‖ηϑ − ηθ‖2 dH = o(1), as ε −→ 0,

and the matrix 〈βθ, mT
θ 〉 is nonsingular. Then, θ̃ defined at (2.9) satisfies

(2.11) n1/2(θ̃ − θ) = −〈βθ,m
T
θ 〉−1 ξn(βθ; θ) + op(1).

In particular, if {µ̇ϑ; ϑ ∈ Θ} satisfies (2.10), then the solution θ̂ of the likelihood equation

ξn(mϑ; ϑ ) = 0,(2.12)

has the asymptotic linear representation

(2.13) n1/2(θ̂ − θ) = −〈mθ, mT
θ 〉−1 ξn(mθ; θ) + op(1).

From now on θ̂ will stand for the solution of (2.12), and we shall use the abbreviated

notation ξn(α) = ξn(α; θ), ξ̂n(α) = ξn(α; θ̂ ) and ξ̃n(α) = ξn(α; θ̃ ). Combining (2.8) with

(2.11) and (2.13) we see that the leading term of ξ̂n and of ξ̃n in general can be represented

as the linear transformation of ξn:

ξ̂n(α) = ξn(α)− 〈α, mT
θ 〉 〈mθ, mT

θ 〉−1ξn(mθ) + op(1),(2.14)

ξ̃n(α) = ξn(α)− 〈α, mT
θ 〉 〈βθ, mT

θ 〉−1ξn(βθ) + op(1).(2.15)

These linear transformations have a remarkably simple and convenient structure as is de-

scribed in the next subsection.
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2.3 Processes ξ̂n and ξ̃n as projections.

Let us use the notation 1 for the function in y identically equal to 1, so that, e.g. 〈ϕ, 1〉 =∫
ϕ(y) dF (y), and let ϕ1 = ϕ − 〈ϕ, 1〉 and for α = γ · ϕ, let α1 = γ · ϕ1. It is obvious that

ξn(α) = ξn(α1).

For α ∈ L and a vector-valued function β, with coordinates in L, such that the matrix

〈β, mT
θ 〉 is nonsingular (we require this for simplicity, although it is not necessary), let

Πα = α− 〈α, mT
θ 〉〈mθ,m

T
θ 〉−1mθ,(2.16)

Πβα = α− 〈α, mT
θ 〉〈β, mT

θ 〉−1β.(2.17)

Proposition 2.4 (i) The linear transformation α 7→ α1 is an orthogonal projection in L
parallel to functions which are constant in y.

(ii) The linear transformation Πβθ
(and therefore Π) is a projection. It projects parallel to

βθ on a subspace of functions orthogonal to mθ. In particular Π is an orthogonal projection

parallel to mθ.

(iii) Adjoint projectors Π∗
βθ

(and therefore Π∗) project parallel to mθ. For any two vector

functions β, λ,

Π∗
βΠ∗

λ = Π∗
β.(2.18)

We can therefore say, that under the regularity conditions that guarantee the validity of

the expansions at (2.8), (2.11) and (2.13), the substitution of the M-estimator θ̃ in ξn(α; θ)

for θ is asymptotically equivalent to projecting ξn(α; θ) parallel to the linear functional

mθ generated by µ̇θ and ψf . Similarly, the substitution of the MLE θ̂ in ξn(α; θ) for θ is

asymptotically equivalent to projecting ξn(α; θ) orthogonal to mθ. Moreover, the property

(2.18) shows that the leading terms of ξn(α; θ̃1) and ξn(α; θ̃2), for any two estimators θ̃1, θ̃2,

admitting the asymptotic linear representation (2.11), are in one-to-one correspondence with

each other. Even though one of the estimators may be asymptotically more efficient than

the other, (2.18) shows that the stocks of test statistics based on each of these processes are

asymptotically the same. Therefore the inference based on either ξn(α; θ̃1) or ξn(α; θ̃2) will

be asymptotically indistinguishable.

We end this section by outlining the proofs for Propositions 2.2 and 2.4. Throughout, εi

stands for εi(θ), 1 ≤ i ≤ n.
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2.4 Some Proofs.

Sketch of the proof of Proposition 2.1 We shall sketch details only for part (ii), while

those for part (i) are similar and simpler. Let ∆i(v) = µ(Xi, θ + n−1/2v)−µ(Xi, θ). Rewrite

ξn(α; θ + n−1/2v)− ξn(α; θ)− n−1

n∑
i=1

ηiIB(Xi)µ̇
T
θ (Xi) ϕ′(εi) v

= n−1

n∑
i=1

ηiIB(Xi)[ϕ(εi + ∆i(v))− ϕ(εi)−∆iϕ
′(εi)]

+n−1/2

n∑
i=1

ηiIB(Xi)[∆i(v)− µ̇T
θ (Xi) n−1/2v] ϕ′(εi)

The condition (2.4) implies that for every ε > 0, ∃Nε < ∞ such that with probability at

least 1− ε the following holds for all n > Nε:

E
{

sup
‖v‖≤k

n∑
i=1

∣∣∣∆i(v)− n−1/2µ̇T
θ (Xi) v

∣∣∣
2}
−→ 0, sup

1≤i≤n;‖v‖≤k

|∆i(v)| = op(1).

This fact and (2.5) imply the conclusion (ii) in a routine fashion. ¤

Before proving the next proposition, we recall from Hájek (1972) that (1.2) implies the

mean-square differentiability of f 1/2:

f 1/2(y + δ)− f 1/2(y)

f 1/2(y)
=

1

2

f ′

f
(y) δ + ρf (y; δ),

∫
ρ2

f (y; δ)dF (y) = o(δ2), δ → 0.

This fact is used implicitly in the following proof and throughout the discussion in the paper

without mentioning explicitly.

Proof of Proposition 2.2. Recall α(x, y) = γ(x)ϕ(y). Rewrite ξn = ξno + ξ∗n, where

ξno(α; ϑ) := n−1/2

n∑
i=1

γ(Xi)
[
ϕ(εi(ϑ))− Eθ[ϕ(εi(ϑ))

∣∣∣Xi]
]
,

ξ∗n(α; ϑ) := n−1/2

n∑
i=1

γ(Xi)
[
Eθ

[
ϕ(εi(ϑ))

∣∣∣Xi

]
− Eθ[ϕ(εi(θ))]

]
.

Note that ξno(α; θ) = ξn(α; θ).

To prove the Proposition 2.2, it thus suffices to show that for every 0 < k < ∞,

sup
‖v‖≤k

∣∣∣ξno(α; θ + n−1/2v)− ξno(α; θ)
∣∣∣ = op(1),(2.19)

sup
‖v‖≤k

∣∣∣ξ∗n(α; θ + n−1/2v)−mT (α; θ)n−1/2u
∣∣∣ = op(1),(2.20)

But, (2.19) will follow from equicontinuity condition of the process ξno(α; ·) :

sup
‖ϑ−θ‖≤ε

∣∣∣ξno(α; ϑ)− ξno(α; θ)
∣∣∣ = op(1),
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as n →∞ and ε → 0. This in turn follows from the argument below.

A ϕ ∈ Φ may be written as ϕ = ϕ1 − ϕ2, where nondecreasing ϕ1, ϕ2 both satisfy (2.7).

Let Ii := sign(γ(Xi)), i = 1, · · · , n. Then for any δ > 0, and for all i = 1, · · · , n,

γ(Xi)[ϕ1(Yi −∆− δ Ii)− ϕ2(Yi −∆ + δ Ii)]

≤ γ(Xi)ϕ(Yi −∆)

≤ γ(Xi)[ϕ1(Yi −∆ + δ Ii)− ϕ2(Yi −∆− δ Ii)].

The expected value of the square of the above upper and lover bounds is bounded from above

by ∫
γ2 dH 2ν2(2δ).

Therefore the bracketing entropy (log of covering number) does not exceed

log ν−1

(
t
/[

2

∫
γ2 dH

]1/2
)

,

and hence is integrable by the definition of ν. Therefore, by a result in van der Vaart and

Wellner (1996; sections 2.5.2, 2.7), (2.19) follows.

To prove (2.20), let, as above, ∆i(v) = µ(Xi, θ + n−1/2v)− µ(Xi, θ). Then one has

ξ∗n(α; θ + n−1/2v) = n−1/2

n∑
i=1

γ(Xi)

∫
ϕ(y)[f(y + ∆i(v))− f(y)]dy

= n−1

n∑
i=1

γ(Xi)µ̇
T (Xi)

∫
ϕ(y)ψf (y)dF (y) v + ρn(v)

= 〈α, mT
θ 〉 v + ρ∗n(v),

where under the assumed conditions, and using an argument similar to one used, e.g., in

Hájek and Šidák (1967) one can show that sup‖v‖≤k |ρ∗n(v)| = op(1). ¤
Proof of Proposition 2.4. Let us prove part (iii) only. We need to show that Π∗

βΠ∗
λS(α) =

Π∗
βS(α). We have

Π∗
βΠ∗

λS(α) = Π∗
βS(α)− Π∗

β〈α, mT
θ 〉 〈λ, mT

θ 〉−1S(λ).

But, by definition,

Π∗
β〈α, mT

θ 〉 = 〈α, mT
θ 〉 − 〈α, mT

θ 〉〈β, mT
θ 〉−1〈β, mT

θ 〉 = 0.

Hence the last claim. It implies that Π∗
βΠ∗

β = Π∗
β, i.e., Π∗

β is a projection. The remainder of

the proof is obvious. ¤
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3 Limiting process and asymptotic power

3.1 The limiting process

Let b(x, y), x ∈ Rp, y ∈ R, be a Brownian motion with the covariance function H(x∧x′)F (y∧
y′), where x ∧ x′ is the vector with coordinates min(xi, x

′
i), i = 1, . . . , p. In the discussion

below, all γ’s and ϕ’s are in L2(Rp, H) and L2(R, F ), respectively, i.e., (γ, ϕ) ∈ L. Define,

for α(x, y) = γ(x)ϕ(y), the function parametric Brownian motion

b(α) := b(γ, ϕ) :=

∫

Rp+1

γ(x)ϕ(y)b(dx, dy).

Clearly the class {b(α) : α ∈ L} is a family of zero mean Gaussian random variables with

the covariance given by

Eb(α1)b(α2) = 〈α1, α2〉.

Let

ξ(α) := b(γ, ϕ)− 〈ϕ, 1〉 b(γ, 1) = b(γ, ϕ1) = b(α1).

The family {ξ(α) : α ∈ L} is also a family of zero mean Gaussian random variables with

the covariance

Eξ(α1)ξ(α2) = 〈γ1, γ2〉
[
〈ϕ1, ϕ2〉 − 〈ϕ1, 1〉〈ϕ2, 1〉

]
= 〈α1

1, α
1
2〉.

Thus, ξ(α) is a function parametric Kiefer process in α and simply a Brownian motion in

α1. Finally, define

ξ̂(α) := ξ(α)− 〈α, mT
θ 〉〈mθ, mT

θ 〉−1 ξ(mθ) = Πξ(α).

Since 〈ψf , 1〉 =
∫

f ′(y)dy = 0, we have ξ(mθ) = b(mθ). Hence, ξ̂ can be rewritten as

ξ̂(α) = b(α1)− 〈α1, mT
θ 〉 〈mθ, mT

θ 〉−1 b(mθ) = Πb(α1) = b(Πα1).(3.1)

It seems easier to use below the notation α⊥ for Πα1:

α⊥ = α1 − 〈α1,mθ〉〈mθ,m
T
θ 〉−1mθ

which is the part of α orthogonal to 1 and mθ.

Here and everywhere below we will consider only the case of orthogonal projectors, which

asymptotically correspond to the substitution of the MLE. As our comment after Proposition

2.4 shows, we can do this without loss of generality.

In view of (2.14), the reason for introducing the processes ξ and ξ̂ is clear and is given

by the following statement.
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Proposition 3.1 Suppose that the conclusion (2.14) holds. Then, the following holds for

every α ∈ L:

Under H0,

(3.2) ξn(α) −→d ξ(α), ξ̂n(α) −→d ξ̂(α).

Under the alternatives (1.3),

ξn(α) −→d ξ(α) + 〈α, a〉,(3.3)

ξ̂n(α) −→d ξ̂(α) + 〈α, a〉 − 〈α, mT
θ 〉 〈mθ, mT

θ 〉−1 〈mθ, a〉.

Because both ξn and ξ̂n are linear in α, the above proposition is equivalent to the weak

convergence of any finite dimensional distributions of these processes. Hence, the possible

weak limits of these processes are uniquely determined.

From (3.2)-(3.3), we see that the asymptotic shift of ξ̂n under the alternatives (1.3) and

(1.4) is simply 〈α, a〉, if α ⊥ mθ, i.e., if either γ ⊥ µ̇θ or ϕ ⊥ ψf .

3.2 The case of γ ⊥ µ̇θ

In this case there exists an optimal choice of γ which will maximise the asymptotic “signal

to noise” ratio ∆ of ξ̂n(γ, ϕ) uniformly in a, that is, uniformly in alternatives (1.3), where

∆ :=
|〈α, a〉|
‖α‖ =

|〈γ, 1〉|
‖γ‖

|〈ϕ, a〉|
‖ϕ‖ .

Here too we use the notation 1 for the function in x identically equal to 1. Clearly, the γ

that maximises ∆, uniformly in a, is the γ that maximises the ratio

(3.4)
|〈γ, 1〉|
‖γ‖ ,

subject to the condition that γ ⊥ µ̇θ, and is given by

1⊥ := 1−
∫

µ̇T
θ dHC−1

θ µ̇θ = 1− 〈µ̇T
θ , 1〉C−1

θ µ̇θ.

On the other hand the γ that maximises ∆ or (3.4) among all γ ∈ L2(Rp, H) is 1. Then 1⊥
is simply part of the identity function 1 orthogonal to µ̇θ. It thus follows that 1⊥(x) ≡ 0

when µ(x, ϑ) is linear in ϑ and has a non-zero intercept.

Now, consider ξ̂(1⊥, ϕ) as a process in ϕ, assuming that ‖1⊥‖ 6= 0. Since 1⊥ · ϕ is

orthogonal to µ̇θ, from (3.1) we obtain

ξ̂(1⊥, ϕ) = ξ(1⊥, ϕ) = b(1⊥, ϕ1).
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It thus follows that ξ̂(1⊥, ϕ) is a Brownian bridge in ϕ. If, e.g., we choose ϕ(y) = ϕt(y) =

I(y ≤ F−1(t)), 0 ≤ t ≤ 1, then along the family of functions {ϕt(·), 0 ≤ t ≤ 1}, the process

u(t) := ξ̂

(
1⊥
‖1⊥‖ , ϕt

)

is a standard Brownian bridge with Eu(s)u(t) = s ∧ t− st.

A prelimiting form of the process u is

ûn(t) = ξ̂n(
1⊥,n

‖1⊥,n‖n

, ϕt) = n−1/2

n∑
i=1

1⊥,n(Xi)

‖1⊥,n‖n

[
I
{

εi(θ̂ ) ≤ F−1(t)
}
− t

]
,

1⊥,n(x) :=
[
1− 〈µ̇T

θ̂
, 1〉n C−1

θ̂,n
µ̇θ̂(x)

]
, x ∈ Rp;

where

Cθ̂,n :=

∫
µ̇θ̂µ̇

T
θ̂
dHn, 〈µ̇T

θ , 1〉n =

∫
µ̇T

θ̂
dHn,

‖1⊥,n‖n :=
(
1− 〈µ̇T

θ̂
, 1〉n C−1

θ̂,n
〈µ̇θ̂, 1〉n

)1/2

,

and where Hn is the empirical d.f. of the design variables {Xi, 1 ≤ i ≤ n}. One can verify,

using, e.g., the results from Koul (1996), that under the present set up, ûn converges weakly

to a Brownian bridge. Hence, for instance, tests based on

sup
t
|ûn(t)| or

∫ 1

0

|ûn(t)|2 dt

will have asymptotically the well known Kolmogorov and Cramér - von Mises distributions,

respectively.

Now, suppose that the design d.f. H and the regression function µθ are such that

(3.5) 〈µ̇θ, 1〉 =

∫
µ̇θ dH = 0.

Then 1⊥ ≡ 1, and ûn ≡ Ŵ1(F
−1) , the ordinary empirical process of the residuals whose

weak convergence to Brownian bridge can also be derived from Koul (1996) under the present

set up.

There is, however, a draw back in the choice of γ ⊥ µ̇θ: although, as we see, this

choice of γ makes the asymptotic behaviour of ξ̂n in ϕ simple, the tests based on the pro-

cess ξ̂n(‖1⊥‖−1 1⊥, ϕ) will in general have some loss of the asymptotic power. Consider

for the moment the problem of testing H0 vs. the alternative (1.3) for given a, when θ is

known. Then the shift function that will appear in the asymptotic power for ξn(γ, ϕ) is

|〈γ, 1〉〈ϕ, a〉|/‖γ‖‖ϕ‖. This will attain its maximum in γ when γ ≡ 1. However, for the

process ξ̂n(1⊥, ϕ) the corresponding shift is uniformly smaller in absolute value:
∣∣∣∣
〈1⊥, 1〉
‖1⊥‖ 〈ϕ, a〉

∣∣∣∣ < |〈ϕ, a〉|
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and, in particular, the statistic ξ̂n(1⊥, a) will have smaller asymptotic power against the

alternative a than the statistic ξn(1, a). The actual loss may be quite small, depending on

the quantity

‖1⊥‖2 = 1− 〈µ̇T
θ , 1〉C−1

θ 〈µ̇T
θ , 1〉,

and may actually equal to 0, if (3.5) holds. But, in general there is some loss.

We shall see in Section 6 below that the choice of γ ⊥ µ̇θ will become most natural when

fitting a regression model. However, one should not think that the loss of power associated

with this choice in testing the hypothesis H0 is unavoidable due to the estimation of the

nuisance parameters. On the contrary, estimation of the parameter may lead to an increase

of power against “most” alternatives. We will see this better in the next subsection.

Finally, we remark that the geometric picture similar to the one depicted by Propositions

2.4 and 3.1 and also in this and the next subsections was developed in the context of the

parametric empirical processes in Khmaladze (1979). See also the monograph by Bickel,

Klaassen, Ritov and Wellner (1998) describing the related geometry in connection with

efficient and adaptive estimation in semiparametric models.

3.3 The case of ϕ ⊥ ψf

This case is important for two reasons. The first is that in this case again ξ̂(γ, ϕ) = ξ(γ, ϕ),

i.e., the asymptotic behaviour of the processes ξ̂n(α) and ξn(α) under H0 is the same. The

second is that if we assume that a of (1.3) also satisfies (1.4), then there is in general a gain

in the signal to noise ratio if we choose ϕ orthogonal to ψf . Indeed, let ϕ⊥ denote the part

of ϕ orthogonal to ψf and 1. The signal to noise ratio for ξ̂n(γ, ϕ⊥) is asymptotically larger

than that for ξn(γ, ϕ) as is seen from the following elementary argument:

〈γ, 1〉
‖γ‖

〈ϕ, a〉
‖ϕ1‖ =

〈γ, 1〉
‖γ‖

〈ϕ⊥, a〉
‖ϕ1‖ ≤ 〈γ, 1〉

‖γ‖
〈ϕ⊥, a〉
‖ϕ⊥‖ ,

because ‖ϕ1‖ ≥ ‖ϕ⊥‖.
It is also obvious that the optimal choice of γ that maximises ∆ uniformly in a is γ ≡ 1.

Therefore, consider the process

(3.6) ξ̂(1, ϕ) = ξ(1, ϕ) = b(1, ϕ)

as a process in ϕ, for ϕ satisfying ϕ ⊥ ψf and ϕ ⊥ 1. From (3.6), it is clear that if we had a

family of functions {ϕt, 0 ≤ t ≤ 1} from L2(R, F ) such that

〈ϕt, 1〉 = 〈ϕt, ψf〉 = 0.(3.7)

〈ϕt, ϕt〉 = t, 0 ≤ t ≤ 1.(3.8)

〈ϕt2 − ϕt1 , ϕt1〉 = 0, t2 ≥ t1.(3.9)



16 Khmaladze & Koul

then the process ξ(1, ϕt), 0 ≤ t ≤ 1, would be a Brownian motion in 0 ≤ t ≤ 1. Hence, all

tests based on

n−1/2

n∑
i=1

ϕt(εi(θ̂ )), 0 ≤ t ≤ 1,

will be ADF.

It is straightforward to construct a family of functions satisfying (3.8) and (3.9). For

example, take any function ϕ from L2(R, F ) such that L(y) :=
∫ y

−∞ ϕ2dF is a continuous

distribution function on R, and ϕ2f > 0, a.e. Then the family

ϕt(y) := ϕ(y)I
{
y ≤ L−1(t)

}
, L−1(t) := inf{y ∈ R : L(y) ≥ t}, 0 ≤ t ≤ 1,(3.10)

satisfies these conditions. However, finding a family {ϕt, 0 ≤ t ≤ 1} that satisfies (3.7) as

well becomes far less straightforward. It is here we will exploit the “martingale transform”

ideas of Khmaladze (1981, 1993) in the next section.

4 A martingale transform

Let h(y) := (1, ψf (y))T be an extended score function of the error distribution and set

Γt :=

∫

z≥y

h(z)hT (z) dF (z) =

(
1− F (y) −f(y)

−f(y)
∫∞

y
ψ2

f (z) dF (z)

)
, t = F (y).

The matrix Γt will be assumed to be nonsingular for every 0 ≤ t < 1. This indeed is true if

and only if 1 and ψf (y) are linearly independent on the set y > c, for all sufficiently large c.

This, in turn, is true if ψf is not a constant in the right tail of the support of f . Then the

unique inverse Γ−1
t exists for every 0 ≤ t < 1. (The case when Γt is not uniquely invertible

does not create, however, much of a problem for the transformation (4.1) below, as is shown

in Tsigroshvili (1998).)

Now, observe that the condition (3.7) above is equivalent to requiring that ϕ be orthog-

onal to the vector h. For a function ϕ ∈ L2(R, F ), consider the transformation

Lϕ(y) := ϕ(y)−
∫

z≤y

ϕ(z)hT (z)Γ−1
F (z)dF (z) h(y), y ∈ R.(4.1)

Let, for a (γ, ϕ) ∈ L,

w(α) := ξ̂(γ,Lϕ), α = γ · ϕ.

We have the following
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Proposition 4.1 Let H := {ϕ ∈ L2(R, F ) : 〈ϕ, h〉 = 0}. The transformation L of (4.1) is

a norm preserving transformation from L2(R, F ) to H:

Lϕ ⊥ h, ‖Lϕ‖ = ‖ϕ‖.

Consequently the process w(α) is a (function parametric) Brownian motion on L.

A consequence of this proposition is the following

Corollary 4.1 Suppose {ϕt, 0 ≤ t ≤ 1} is a family of functions satisfying the conditions

(3.8) and (3.9). Then {Lϕt, 0 ≤ t ≤ 1} is a family of functions satisfying all three conditions

(3.7) - (3.9). Consequently, {ξ̂(γ,Lϕt), 0 ≤ t ≤ 1} for any fixed γ with ‖γ‖ = 1 is a standard

Brownian motion in t.

Now, if {ξ̂n(γ,Lϕt), 0 ≤ t ≤ 1} converges weakly to {ξ̂(γ,Lϕt), 0 ≤ t ≤ 1}, then tests

based on any continuous functionals of ξ̂n(γ,Lϕt) will be ADF for testing H0. Some general

sufficient conditions for the weak convergence of {ξ̂n(γ, ϕt), 0 ≤ t ≤ 1} can be drawn from

Proposition 6.2 below. Others can be inferred from, e.g., van der Vaart and Wellner (1996).

In particular, these claims hold for the family {ϕt, 0 ≤ t ≤ 1} given at (3.10).

It is also important to note that the transformation L is free from γ and hence the

statement concerning the asymptotic distribution of {ξ̂n(γ,Lϕt), 0 ≤ t ≤ 1}, is valid for any

γ ∈ L2(Rp, H).

Another consequence of Proposition 4.1 is worth formulating separately.

Proposition 4.2 Let θ̃ be any estimator which satisfies (2.3) (and does not necessarily have

a linear representation (2.11)) and let ψf be a function of bounded variation. If, additionally,

(1.2) and (2.4) hold, then for every α = γ · ϕ with γ ∈ L2(Rp, H) and ϕ ∈ Φ, under H0,

ξ̃n(γ,Lϕ) →d w(α),

while under alternatives (1.3),

ξ̃n(γ,Lϕ) →d w(α) + 〈Lα, a〉.

This proposition shows that although we used asymptotically linear representations (2.11)

and (2.13) of θ̂ and θ̃ to develop the previous theory, for the asymptotic behaviour of the

transformed processes ξ̂n(γ,Lϕ) and ξ̃n(γ,Lϕ) , the behaviour of θ̂ and θ̃ plays only a minor

role.

It is instructive to consider informally a probabilistic connection between the processes

ξ̂(γ, ϕt) and ξ̂(γ,Lϕt). Let us associate with {ξ̂(γ, ϕt), 0 ≤ t ≤ 1} its natural filtration

{Ft, 0 ≤ t ≤ 1}, where each σ − field is

F̂t = σ{ξ̂(γ, ϕs), s ≤ t}, 0 ≤ t ≤ 1,
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and consider the filtered process {ξ̂(γ, ϕt), F̂t, 0 ≤ t ≤ 1}. This is in t a Gaussian semi-

martingale and it can be shown that the process {ξ̂(γ,Lϕt), F̂t, 0 ≤ t ≤ 1} is actually its

martingale part. In other words, if V denotes the Volterra operator defined by the integral

on the right hand side of (4.1), then the identity

ξ̂(γ, ϕt) = ξ̂(γ,Vϕt) + ξ̂(γ,Lϕt), 0 ≤ t ≤ 1,(4.2)

is simply the Doob-Meyer decomposition of the process {ξ̂(γ, ϕt), F̂t, 0 ≤ t ≤ 1}.
Details of this decomposition can be found in Khmaladze (1993) where the general con-

struction of this form for a function-parametric process was introduced and studied. The

notion of Doob-Meyer decomposition for a semimartingale can be found, e.g., in Liptser and

Shiryayev (1978).

Remark 4.1 Since Lϕ is orthogonal to 1 and to ψf , the equality (4.2) can be rewritten in

terms of the process b:

b(γ, ϕt) = b(γ,Vϕt) + b(γ,Lϕt).(4.3)

To some extent this is an unusual equation because both processes b(γ, ϕt) and b(γ,Lϕt),

taken separately, are Brownian motions. However, the nature of (4.3) can be more clearly

understood as follows: let {F b
t , 0 ≤ t ≤ 1} be the natural filtration of the process b(γ, ϕt) in t

and let us enrich it with the σ-filed σ{b(γ, h)}. Then the process {b(γ, ϕt),F b
t∨σ{b(γ, h)}, 0 ≤

t ≤ 1} is a Gaussian semimartingale (and not a martingale) and (4.3) is its Doob-Meyer

decomposition. See, e.g., Liptser and Shiryayev (1989) for more details on this.

Remark 4.2 Another consequence of the orthogonality of Lϕt to 1 and to ψf is this: al-

though the process ξ(γ, ϕt), with ϕt chosen according to (3.10) with a non-constant ϕ, is

not a Brownian bridge (because in this case ‖ϕ1
t‖2 < ‖ϕt‖2 = t) and hence even the process

ξn(γ, ϕt) with known value of parameter and statistics based on it may have an inconvenient

limiting distribution, the transformed process ξ(γ,Lϕt) is the standard Brownian motion for

any such choice of ϕt.

We shall now describe an analog of the above transformation suitable for testing the

hypothesis Hσ : G(y) = F (y/σ), ∀ y ∈ R, and for some σ > 0. Let σ̂ be an estimate of σ

based on {(Xi, Yi), 1 ≤ i ≤ n} satisfying

(4.4) ‖n1/2(σ̂ − σ)‖ = op(1).

The analog of the processes ξ̂n here is

ξ̂nσ(γ, ϕ) := n−1/2

n∑
i=1

γ(Xi)

[
ϕ

(
Yi − µ(Xi, θ̂ )

σ̂

)
−

∫
ϕdF

]
.
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To transform its weak limit ξ̂σ under Hσ, again define an extended score function of F ((y−
µ)/σ) with respect to both parameters µ and σ, which is hσ(y) = (1, ψfµ(y/σ), ψfσ(y/σ))T

where obviously

ψfµ(
y

σ
) =

1

σ
ψf (

y

σ
), ψfσ(

y

σ
) =

1

σ
[1 +

y

σ
ψf (

y

σ
)]

With notation

q(t) =
1

σ
f

(y

σ

)
, qσ(t) =

y

σ2
f

(y

σ

)
, t = F

(y

σ

)
.

the analog of the Γt matrix is

Γσ,t :=




1− t −q(t) −qσ(t)

−q(t)
∫ 1

t
q̇2(s)ds

∫ 1

t
q̇(s)q̇σ(s)ds

−qσ(t)
∫ 1

t
q̇(s)q̇σ(s)ds

∫ 1

t
q̇2
σ(s)ds


 .

Again, assume that Γ−1
σ,t exists for all 0 ≤ t < 1. Then, as above, let

(4.5) Lσϕ(y) := ϕ(y)−
∫ y

−∞
ϕ(z)hT

σ (z)Γ−1
σ,F (z)dF (z) hσ(y), y ∈ R.

One can show that Lσ is a norm preserving transformation from L2(R, F ) to the subspace

Hσ = {ϕ ∈ L2(R, F ) : 〈ϕ, hσ〉 = 0} and hence ξ̂(γ,Lσϕ) is Brownian motion on L.

Proof of Proposition 4.1. Though we could refer to the proof of Proposition 6.1, for

presentational purposes it seems more convenient to give it here separately. Let, within this

proof only, ψ(t) := ϕ(F−1(t)) and g(t) = h(F−1(t)) for 0 ≤ t ≤ 1. Then

∫
Lϕ(y) h(y)T dF (y) =

∫ 1

0

ψ(t) g(t)T dt−
∫ 1

0

∫ t

0

ψ(s) g(s)T Γ−1
s ds g(t)gT (t) dt

=

∫ 1

0

ψ(t) g(t)T dt−
∫ 1

0

ψ(s) g(s)T Γ−1
s

∫ 1

s

g(t)gT (t) dt ds

=

∫ 1

0

ψ(t) g(t)T dt−
∫ 1

0

ψ(s) g(s)T ds

= 0.

For the technical justification of the interchange of integration in the second equation above

see the proof of Proposition 6.1 below or Khmaladze (1993). Similarly, we also have

∫
[Lϕ]2dF =

∫ 1

0

ψ2(s) ds− 2

∫ 1

0

ψ(s)gT (s)Γ−1
s

∫ 1

s

ψ(t)g(t) ds dt

+

∫ 1

0

∫ 1

0

ψ(s)gT (s)Γ−1
s Γs∨tΓuh(t)ψ(t) ds dt

=

∫
ϕ2dF. ¤
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Proof of Proposition 4.2. If ψf is the function of bounded variation and ϕ ∈ Φ then

Lϕ ∈ Φ and therefore we can use (2.8). Together with the orthogonality property Lϕ ⊥ ψf

which implies that 〈Lα, mθ〉 = 0 we obtain that

ξ̂n(Lα) = ξn(Lα) + op(1)

and the rest follows from Proposition 4.1, the CLT for ξn(Lα) and the standard contiguity

argument. ¤

5 Some Explicit Formulas and Remarks

5.1 Transformation of the processes Ŵ1 and ξ̂n(1, ϕt)

In this section we shall apply the above transformation to residual empirical processes and

give computational formulae of the transformed processes for testing H0 and Hσ.

Recall from the previous sections that, for 0 ≤ t ≤ 1,

Û1(t) := Ŵ1(F
−1(t)) = n−1/2

n∑
i=1

[
I{εi(θ̂ ) ≤ F−1(t)} − t

]
,(5.1)

ξ̂n(1, ϕt) = n−1/2

n∑
i=1

[
ϕ(εi(θ̂ ))I{εi(θ̂ ) ≤ F−1(t))} −

∫

y≤F−1(t)

ϕ(y) dF (y)

]
,(5.2)

where in (5.2), ϕt(y) = ϕ(y)I(y ≤ F−1(t)). Note that Û1(t) also corresponds to the ξ̂n(1, ϕt)

with ϕt(y) = I{y ≤ F−1(t)}. As another practically useful consequence of orthogonality of

Lϕ to 1 we have the following equality:

ξ̂n(γ,Lϕ) = n−
1
2

n∑
i=1

γ(Xi)Lϕ(εi(θ̂ )) + op(1).

It means that we only need to construct transformations of random summands in (5.1) and

(5.2). Introduce vector-functions

G(z) =

∫

y≤z

Γ−1
F (y)h(y) dF (y) J(z) =

∫

y≤z

ϕ(y)Γ−1
F (y)h(y) dF (y), z ∈ R.

Then the transformation L of (4.1) applied to Û1 of (5.1) gives

ŵn1(t) = n−1/2

n∑
Pi=1

[
I{εi(θ̂ ) ≤ z} − [1, ψf (εi(θ̂ ))]G(z ∧ εi(θ̂ ))

]
, t = F (z),(5.3)

while the transformation of (5.2) is

ŵn2(t) = n−1/2

n∑
i=1

[
ϕ(εi(θ̂ ))I{εi(θ̂ ) ≤ z} − [1, ψf (εi(θ̂ ))]J(z ∧ εi(θ̂ ))

]
, t = F (z).(5.4)
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Similarly, to describe ADF tests for Hσ based on the analog of ŵ1, let now r̂i ≡ εi(θ̂ )/σ̂,

and let us consider the processes

n−1/2

n∑
i=1

[I(r̂i ≤ z)− F (z)],

n−1/2

n∑
i=1

[
ϕ(r̂i)I{r̂i ≤ z} −

∫

y≤z

ϕ(y) dF (y)

]
, t = F (z), z ∈ R.

Then arguing as above we are led to the following respective computational formulae:

wn1(t) = n−1/2

n∑
i=1

[
I{r̂i ≤ z} − hT

σ̂ (εi(θ̂ ))Gσ̂(z ∧ εi(θ̂ ))
]

wn2(t) = n−1/2

n∑
i=1

[
ϕ(r̂i)I{r̂i ≤ z} − hT

σ̂ (εi(θ̂ ))Jσ̂(z ∧ εi(θ̂ ))
]
, t = F (z), z ∈ R,

where hσ(y) is as in the previous section while Gσ and Jσ are defined as above with h replaced

by hσ and Γ replaced by Γσ.

These formulae may be used in the computation of any test statistic based on continuous

functionals of wn1, wn2. From the theory developed above, if these functionals are invariant

under usual time transformation t = F (y), they will be ADF!

5.2 Non-random design

We now state some analogous facts for the case of non-random design where now the design

vectors are denoted by xni. An analog of the condition (2.4) here is as follows: There exists

a q-vector µ̇ on Rp ×Θ and a q × q positive definite symmetric matrix Σ such that

Σn := n−1

n∑
i=1

µ̇(xni, θ)µ̇
T (xni, θ) −→ Σ, max

1≤i≤n
n−1/2‖µ̇(xni, θ)‖ = o(1).(5.5)

sup
1≤i≤n, n1/2‖ϑ−θ‖≤k

n1/2|µ(xni, ϑ)− µ(xni, θ)− (ϑ− θ)T µ̇(xni, θ)| = o(1).

Under these conditions on the regression function and the rest of the conditions as before,

the analogs of the above results with µ(Xi, ·) replaced by µ(xni, ·) remain valid in the present

case. Using the results from Koul (1996), it is possible to obtain the analog of the expansions

(2.14) and (2.15) under more general conditions on the function µ than given in (5.5), but we

refrain from doing this for the sake of not obscuring main ideas and for the sake of brevity.

A similar remark applies to the linear regression model. In particular, in the case of non-

random and general designs, but having the n × p design matrix X of rank p, just replace

n−1/2Xi in the above formulas by (X′X)−1/2xni, 1 ≤ i ≤ n, everywhere. Then, tests based

on the analogues of ŵn1 and ŵn2 are ADF for H0, provided max1≤i≤n n1/2‖(X′X)−1/2xni‖ =

O(1).
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5.3 Autoregressive time series

Because of the close connection between regression and autoregressive models, analogues

of the above ADF tests pertaining to the error distribution are easy to see in this case.

Accordingly, suppose Yi, i ∈ Z := {0,±1,±2, · · · }, is now an observable stationary and

ergodic time series. Let µ be as before satisfying (1.1) with Xi := (Yi−1, · · · , Yi−p)
T , where

p ≥ 1 is a known integer. Then the above tests with this Xi will be again ADF for testing

H0. A rigorous proof of this claim is similar to that appearing above, with the proviso that

one uses the ergodic theorem in place of the law of the large numbers, and the CLT for

martingale differences in place of the Lindeberg-Feller CLT. Note that now H is the d.f. of

the random vector X0.

In the case of a stationary and ergodic linear AR(p) model, i.e., when µ(x, ϑ) = x′ϑ, if the

null error d.f. F has mean zero and finite variance, then EX0 = 0, i.e., (3.5) is automatically

satisfied, and hence tests based on the analog of Û1 of (5.1) will be a priori ADF for H0.

This was first proved in Boldin (1982), assuming F has bounded second derivative, and in

Koul (1991) when F has only uniformly continuous density. Thus, in linear autoregressive

models, the above transformation is useful only when there is a non-zero mean present in

these models.

6 Fitting a regression model

In this section we shall develop some tests based on innovation processes that will be

asymptotically distribution free for fitting a parametric model to the regression function

m(x) := E(Y |X = x). Actually we consider a bit more general problem where we fit a

parametric model to a general regression function defined as follows.

For a real valued measurable function ϕ on R, let Fϕ denote a class of distribution

functions F on R such that ϕ ∈ L2(R, F ) and
∫ |ϕ(y + t)|F (dy) < ∞, for all |t| ≤ k < ∞.

Let mϕ(x) be defined by the relation

(6.1) E
[
ϕ
(
Y −mϕ(x)

)∣∣∣X = x
]

= 0.

Note that if ϕ(y) = y, then mϕ(x) = m(x), while if ϕ(y) ≡ I{y > 0} − (1 − α) for an

0 < α < 1, then mϕ(x) is the α-th quantile of the conditional distribution of Y, given X = x.

The choice of ϕ is up to the practitioner. The d.f. F of the error Y −mϕ(X) will be assumed

to be an unknown member of Fϕ, for a given ϕ.

The problem of testing H̃0 is now extended to testing the hypothesis that Hϕ : mϕ(x) =

µ(x, θ) for some θ ∈ Θ, against the alternatives described in (1.6). Consider again the

function-parametric regression process

ξn(γ, ϕ; ϑ) := n−1/2

n∑
i=1

γ(Xi)ϕ
(
Yi − µ(Xi, ϑ)

)
.
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Note that because of (6.1), under Hϕ, Eξn(γ, ϕ; θ) = 0.

Let θ̃ be an M-estimator of θ satisfying (2.9) corresponding to ηϑ ≡ µ̇ϑ. Suppose, addi-

tionally, F ∈ Fϕ is such that the function t 7→ ∫
ϕ(y + t)F (dy), t ∈ R is strictly monotonic

and differentiable in a neighbourhood of 0. Now, if we consider problems where ϕ(y) is

differentiable, such as ϕ(y) = y which is a most interesting case, then we need to assume

regularity condition (2.4) on the regression function µ(·, ϑ). While in the case of a non-

differentiable ϕ, as in for example, ϕ(y) = I{y > 0}− (1−α), we need to assume as well that

F , although unknown, satisfies also (1.2). In both cases, under (2.4) and (2.10), θ̃ satisfies

(2.11) and we obtain

ξ̃n(γ, ϕ) = ξn(γ, ϕ)− 〈γ, µ̇T
θ 〉C−1

θ ξn(µ̇θ, ϕ) + op(1)

= ξn(γ⊥, ϕ) + op(1),

where

γ⊥(x) = γ(x)− 〈γ, µ̇T
θ 〉C−1

θ µ̇θ(x), x ∈ Rp,

is the part of γ orthogonal to µ̇θ and no transformation of ϕ is involved.

We emphasise that it is only for the motivational purpose we are confining the attention

here to M-estimators. As we shall see later, any n1/2-consistent estimator may be used to

construct ADF tests for Hϕ.

Now one can show that under Hϕ, for each γ, ϕ of the given type,

(6.2) ξ̃n(γ, ϕ) −→d b(γ⊥, ϕ),

while, under any sequence of alternatives (1.6),

ξ̃n(γ, ϕ) −→d b(γ⊥, ϕ) + λ〈γ⊥, `θ〉

where λ is either 〈ϕ′, 1〉 or −〈ϕ, ψf〉 depending on whether we assume (2.4) and (2.5) or

(1.2).

As this last result shows, the asymptotic shift of the regression process ξ̃n(γ, ϕ), under

the alternatives (1.6), is the linear functional of `θ defined by the function γ⊥. Therefore, to

be able to detect all alternatives of the assumed type, we need to have a substantial supply

of γ⊥, i.e., we need to consider ξ̃n(γ, ϕ) as a process in γ, and there is no need to vary ϕ just

in the same way as we had to vary ϕ when testing our previous hypothesis H0 and keep γ

fixed. We do not try to choose in any sense “optimal” ϕ because the result will depend on

F while we prefer to work under assumption that we do not know this d.f. Thus we can and

will assume that ϕ in the rest of this section is fixed.

From (6.2) we note that the limiting process as a function in γ is again a projection of

Brownian motion, but as a function in γ⊥, it is just a Brownian motion.

Now, we may have a convenient and customary way to parametrise b(γ, ϕ) in γ ∈
L2(Rp, H) to obtain processes with standard and convenient distribution, and if we had
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similar ways to do this in sub-spaces of L2(Rp, H), we could have the same convenient lim-

iting processes in our problem. This, however, is not a straightforward task, as we have

said earlier, especially because these subspaces, being orthogonal to µ̇θ, change from one

regression function to another, and may even well change, for the same regression function,

along the changes in the parameter θ.

Nevertheless, we will see below that given a “convenient” indexing class G0 ⊂ L2(Rp, H),

in a sense that {b(γ, ϕ), γ ∈ G0} forms a “convenient” asymptotic process - say, we can

find distribution of statistics based on {b(γ, ϕ), γ ∈ G0} easily, and so on - we can map

it isometrically into the subspace of functions orthogonal to µ̇θ. Thus, we obtain the pro-

cess {b(γ, ϕ), γ ∈ G ′0}, where G ′0 is the image of this isometry, which on the one hand has

exactly the same distribution and therefore carries the same “convenience” as the process

{b(γ, ϕ), γ ∈ G0}, and on the other hand, is the limiting process for ξ̃n(γ, ϕ) if we index it

by γ ∈ G ′0.
To achieve this goal, first introduce the so called scanning family of measurable subsets

A := {Az : z ∈ R} of Rp such that Az ⊆ Az′ , for all z ≤ z′, H(A−∞) = 0, H(A∞) = 1, and

H(Az) is strictly increasing absolutely continuous function of z ∈ R.

To give examples, let Xj denote the jth coordinate of the p-dimensional design variable

X, j = 1, · · · , p. Suppose that the marginal distribution of X1 is absolutely continuous.

Then we can take the family Az = {x ∈ Rp : x1 ≤ z} as a scanning family. Or, if the

sum X1 + · · · + Xp is absolutely continuous, then one can take the family of half spaces

Az = {x ∈ Rp : x1 + x2 + · · ·+ xp ≤ z}.
Now, let Bc denote the complement of a set B,

z(x) := inf{z : Az 3 x}, Cϑ,z :=

∫

Ac
z

µ̇ϑ(y)µ̇T
ϑ (y)dH(y), z ∈ R,

Tϑγ(x) =

∫

Az(x)

γ(y)µ̇T
ϑ (y) C−1

z(y) dH(y) µ̇ϑ(x), x ∈ Rp, ϑ ∈ Θ.

We shall often write Cz, T for Cθ,z, Tθ, respectively. Now, define the operator

Kγ(x) := γ(x)− T γ(x), x ∈ Rp.

Proposition 6.1 Let G := {γ ∈ L2(Rp, H) : 〈γ, µ̇θ〉 = 0}. Assume Cz is non-singular for

all −∞ < z < ∞. Then the transformation K is a norm preserving transformation from

L2(Rp, H) to G:

Kγ ⊥ µ̇θ, ‖Kγ‖ = ‖γ‖.
Consequently, for any fixed ϕ, the process w(γ, ϕ) = ξ̃(Kγ, ϕ) is (function parametric) Brow-

nian motion in γ.

Similarly to Proposition 4.2 the following corollary shows that much less is required from

an estimator θ̃ than its asymptotic linearity. The random vector Z below can be thought of

as the limit in distribution of
√

n(θ̃ − θ).
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Corollary 6.1 Let ξ̃ be any process of the form

ξ̃(γ, ϕ) = b(γ, ϕ)− 〈γ, µ̇T
θ 〉Z,

where Z is a random vector (not necessarily Gaussian) in Rq. Then for any fixed ϕ ∈
L2(R, F ), the process

w(γ, ϕ) = ξ̃(Kγ, ϕ)

is Brownian motion in γ ∈ L2(Rp, H).

Now we shall, as an example, focus on the case γ = IB, for B a Borel set in Rp. Then

KIB(x) = IB(x)−
∫

Az(x)

IB(y)µ̇T
θ (y)C−1

z(y)dH(y) µ̇θ(x).

In view of the above discussion, our transformation is the process

wn(B) := ξ̃n(KIB, ϕ)(6.3)

= n−1/2

n∑
i=1

[
IB(Xi)−

∫

Az(Xi)

IB(y) µ̇T
θ (y)C−1

z(y)dH(y) µ̇θ(Xi)

]
ϕ
(
Yi − µ(Xi, θ̃ )

)
.

We do not consider in this paper the problem of weak convergence of transformed processes

{ξ̃n(γ,Lϕ), ϕ ∈ Φ0} or {ξ̃n(Kγ, ϕ), γ ∈ G0} to corresponding Brownian motions for appropri-

ate indexing classes Φ0 and G0 in full generality. Nevertheless we shall now state a sufficient

condition under which the process (6.3) converges weakly to a set-parametric Brownian mo-

tion on the practically important class of sets - a sub-class B0 of all right closed rectangles

in Rp , i.e. B0 ⊂ {(−∞, v], v ∈ Rp}. Our assumption is the following:

(6.4) There exists a τ > 0 such that B ⊆ A1−τ , for all B ∈ B0.

This condition is not necessary, but simplifies the proof substantially. See Khmaladze (1993)

for the version without this condition.

Let {w(B), B ∈ B0} be set-parametric Brownian motion on B0 with covariance function

Ew(B)w(B′) = cH(B ∩B′),

where, without loss of generality we can assume the constant c to be 1, cf. Remark 6.1

below.

The space in which we will consider weak convergence of wn will be `∞(G0), where

G0 = {IB(·), B ∈ B0} is equipped with the L2-norm. (See, e.g., page 34 in van der Vaart

and Wellner (1996)). Now, write ε̂i, ε̃i, for εi(θ̂ ), εi(θ̃ ), respectively. Also, let ε denote a

r.v. having the same distribution as ε1(θ).
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Proposition 6.2 Suppose regularity conditions (2.4) and (2.5) are satisfied. Suppose also

Eϕ2(ε) = 1 and θ̃ is any estimator such that
√

n(θ̃ − θ) = Op(1). If B0 is such that (6.4) is

satisfied then, under Hϕ,

wn −→d w, in l∞(G0).

Remark 6.1 In the definition (6.3) of the process wn we assumed that Eϕ2(ε) = 1 with-

out loss of generality. Indeed, we can always replace ϕ(ε̂i) by ϕ(ε̂i)/σ̂ in wn, where σ̂2 =

n−1
∑n

i=1 ϕ2(ε̂i) is an estimator of σ2 = Eϕ2(ε). Then it is obvious that the processes which

incorporate ϕ(ε̂i)/σ̂ and ϕ(ε̂i)/σ, respectively, will converge to each other, uniformly in B,

in probability.

Since the kernel of the transformation T depends on θ we will certainly need to replace

it with an estimator. It seems the simplest to use the same estimator θ̃ as is used in ξ̃n,

although it is not necessary and in principle any consistent estimator can be used: small

perturbation of θ in Tθ will only slightly perturbe the process ξ̃n(Tθγ, ϕ). To prove this latter

statement formally we need to compliment (2.4) by the following two mild assumptions.

Let

d2(ϑ1, ϑ2) := E‖µ̇ϑ1(X)− µ̇ϑ2(X)‖2Eϕ2(ε̃), ε̃ := ε(θ̃ ), ϑ ∈ Θ,

ρ(δ) := sup
‖ϑ1−ϑ2‖≤δ

d(ϑ1, ϑ2), δ > 0.

Suppose that Eϕ2(ε) = 1, and that for some ε > 0,

sup
‖ϑ1−ϑ2‖≤ε

∣∣∣ 1
n

n∑
i=1

‖µ̇ϑ1(Xi)− µ̇ϑ2(Xi)‖2 − d2(ϑ1, ϑ2)
∣∣∣ = op(1), as n →∞.(6.5)

∞∑

k=0

kρ(ε 2−k) < ∞.(6.6)

Define the estimated tranformed process:

w̃n(B) := ξ̃n(IB, ϕ)− ξ̃n(Tθ̃IB, ϕ).

We have the following statement.

Proposition 6.3 Let {IB, B ∈ B0} be any collection of indicator functions such that B0

satisfies (6.4). Then, under the assumptions (6.5) and (6.6),

sup
B∈B0

|w̃n(B)− wn(B)| = op(1).

To prove this last proposition we will use the following lemma, which is of independent

interest. Let, for a c > 0,

Dn = { sup
‖ϑ1−ϑ2‖≤δ

1

n

n∑
i=1

‖µ̇ϑ1(Xi)− µ̇ϑ2(Xi)‖2ϕ2(ε̃i) ≤ (1 + c)d2(δ), for all 0 < δ < c}.
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Lemma 6.1 Let {IA, A ∈ A′} be any collection of indicator functions. Then, under the

assumptions (6.5) and (6.6),

P
(

sup
‖ϑ−θ‖≤ε

|ξ̃n(IAµ̇ϑ, ϕ)− ξn(IAµ̇θ, ϕ)
∣∣∣ > x|Dn

)
≤ exp{−(x/2)C

∞∑

k=0

kρ(ε 2−k)},

E
{

sup
‖ϑ−θ‖≤ε

|ξ̃n(IAµ̇ϑ, ϕ)− ξ̃n(IAµ̇θ, ϕ)|2
∣∣∣Dn

}
≤ C

∞∑

k=0

kρ(ε 2−k) → 0,

as ε → 0, where C is a positive universal constant.

Now we prove all three propositions and the lemma.

Proof of Proposition 6.1. Fix a k < ∞ and consider γk := γIAk
. We shall first show that

〈Kγk, µ̇
T
θ 〉 = 0. Note that y ∈ Az(x) is equivalent to x ∈ Ac

z(y) for almost all x, y with respect

to the measure H. This fact together with changing the order of integration, yields

〈Kγk, µ̇
T
θ 〉

=

∫

Rp

γk(x)µ̇T
θ (x)dH(x)−

∫

Rp

∫

Az(x)

γk(y)µ̇T
θ (y) C−1

z(y)dH(y) µ̇θ(x)µ̇T
θ (x) dH(x)

= 〈γk, µ̇
T
θ 〉 −

∫

Rp

γk(y)µ̇T
θ (y) C−1

z(y) dH(y)

∫

Ac
z(y)

µ̇θ(x)µ̇T
θ (x)dH(x)

= 〈γk, µ̇
T
θ 〉 − 〈γk, µ̇

T
θ 〉 = 0.

Now we shall show that

(6.7) 〈Kγk,Kγk〉 = 〈γk, γk〉.

Using the notation

ρT
k (z) :=

∫

Az

γk(y)µ̇T
θ (y) C−1

z(y) dH(y), z ∈ R̄,

rewrite

〈Kγk,Kγk〉
= 〈γk, γk〉 − 2

∫

Rp

ρT
k (z(x))µ̇θ(x)γ(x) dH(x) +

∫

Rp

ρT
k (z(x))µ̇θ(x)µ̇T

θ (x)ρ(z(x))dH(x)

= 〈γk, γk〉 − 2

∫

z≤z0

ρT
k (z) Cz dρk(z) +

∫ ∞

−∞
ρT

k (z) dCz ρk(z)

= 〈γk, γk〉 − ρT
k (z) Cz ρk(z)

∣∣∣
∞

−∞
.

Because γk = γIAk
, the function ρk remains bounded as z →∞ and hence the substitution

in the above equals zero, thereby proving (6.7).
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Next, by definition, γk → γ, as k →∞. Let k →∞ in (6.7) to conclude that it remains

true for a general γ ∈ L2(Rp, H). ¤

Proof of Proposition 6.2. Using the definition of the operator K one can write

sup
B∈B0

|wn(B)− ξn(KIB, ϕ)|

≤ sup
B∈B0

|ξ̃n(IB, ϕ)− ξn(IB, ϕ)− Eϕ′E(IBµ̇T
θ ) n1/2(θ̃ − θ)|

+ sup
B∈B0

|ξ̃n(T IB, ϕ)− ξn(T IB, ϕ) + Eϕ′E(IBµ̇T
θ ) n1/2(θ̃ − θ)|.

However, Proposition 2.1 implies that the first supremum on the right hand side is op(1). To

deal with the second supremum, let us use the fact that IAz(x)
(y) = IAc

z(y)
(x) a.e. and change

the order of summation and integration:

ξn(T γ, ϕ) = n−1/2

n∑
i=1

∫

At(Xi)

γ(y)µ̇T
θ (y)C−1

z(y) dH(y) µ̇θ(Xi)ϕ(ei)

=

∫
γ(y)µ̇T

θ (y)C−1
z(y)ξn(IAc

t (y)µ̇θ, ϕ) dH(y).

Similar equality is certainly true for ξ̃n. Therefore, using Proposition 2.1 once again we

obtain

sup
B∈B0

|ξ̃n(T IB, ϕ)− ξn(T IB, ϕ)− Eϕ′ E(IBµ̇T
θ ) n1/2(θ̃ − θ)| = op(1). ¤

Proof of Proposition 6.3. First note that from the previous proof we have

w̃n(B)− wn(B) = ξ̃n(Tθ̃IB, ϕ)− ξ̃n(TθIB, ϕ).

Now, let ηT (y, ϑ) = µ̇T
ϑ (y)C−1

ϑ,z(y) and ξ̃n(z, ϑ) = ξ̃n(IAc
z(y)

µ̇ϑ, ϕ). Then we can rewrite

ξ̃n(TϑIB, ϕ) =

∫
IB(y)µ̇T

ϑ (y)C−1
ϑ,z(y)ξ̃n(IAc

z(y)
µ̇ϑ, ϕ)dH(y)

=

∫
IB(y)ηT (y, ϑ)ξ̃n(z(y), ϑ)dH(y).

Since

|ξ̃n(Tθ̃IB, ϕ)− ξ̃n(TθIB, ϕ)| ≤ I{‖θ̃−θ‖≤ε} sup
‖ϑ−θ‖≤ε

|ξ̃n(TϑIB, ϕ)− ξ̃n(TθIB, ϕ)|

+ I{‖θ̃−θ‖>ε}|ξ̃n(Tθ̃IB, ϕ)− ξ̃n(TθIB, ϕ)|

and θ̃ is consistent estimator, it is enough to prove that

sup
B∈B0,‖ϑ−θ‖≤ε

∫
IB(y)|ηT (y, ϑ)ξ̃n(z(y), ϑ)− ηT (y, θ)ξ̃n(z(y), θ)|dH(y) = op(1),
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as ε → 0 and n → ∞. Using the Cauchy - Schwarz inequality and the fact that B ⊂ A1−τ

we find that the left hand side of the above equality is bounded above by

sup
‖ϑ−θ‖≤ε

‖η(·, ϑ)− η(·, θ)‖H ‖ξ̃n(·, ϑ)‖H + ‖η(·, θ)‖H sup
‖ϑ−θ‖≤ε

‖ξ̃n(·, ϑ)− ξ̃n(·, θ)‖H ,

where ‖ · ‖H is the L2 norm with respect to H.

Since Cz is non-singular for z < 1 − τ , we have ‖η(·, θ)‖H < ∞. Moreover, µ̇ϑ being

continuous in ϑ in mean square sense (condition (2.4)), it follows that for all sufficiently small

ε, Cϑ,z is non-singular for all ‖ϑ− θ‖ ≤ ε, z < 1− τ, and that sup‖ϑ−θ‖≤ε ‖η(·, ϑ)− η(·, θ)‖H

is small. What remains therefore to show is that supB∈B0,‖ϑ−θ‖≤ε ‖ξ̃n(·, ϑ)‖H = op(1), and

that supB∈B0,‖ϑ−θ‖≤ε ‖ξ̃n(·, ϑ)− ξ̃n(·, θ)‖ = op(1) as n →∞ and ε → 0. These properties are

proved in Lemma 6.1 below. ¤
Proof of Lemma 6.1. First note that Symmetrisation Lemma (see, e.g., van der Vaart

and Wellner (1996), Sec.2.3.2) can be used to imply that

‖ξ̃n(z, ϑ1)− ξ̃n(z, ϑ2)‖ ≤ 2‖ξ̃0
n(z, ϑ1)− ξ̃0

n(z, ϑ2)‖,

where

ξ̃0
n(z, ϑ) = n−1/2

n∑
i=1

ei IAc
z
µ̇ϑ(Xi)ϕ(ε̃i),

and {ei}n
i=1 are Rademacher random variables independent of {(Xi, Yi)}n

i=1. Averaging first

over {ei}n
i=1 we obtain, for all t > 0,

E
[
exp

{
t−1‖ξ̃0

n(z, ϑ1)− ξ̃0
n(z, ϑ2)‖

}∣∣∣Dn

]

≤ E[exp{2t−2n−1

n∑
i=1

‖µ̇ϑ1(Xi)− µ̇ϑ2(Xi)‖2ϕ2(ε̃i)}|Dn]

≤ exp{2t−2(1 + c)ρ2(‖ϑ1 − ϑ2‖)}.

Following van der Vaart and Wellner (1996), Sec.2.2, denote ‖X‖ψ,Dn the Orlicz norm of the

random variable X induced by the function ψ(x) = ex − 1 – this is the smallest constant t,

such that E[exp(|X|/t)− 1|Dn] ≤ 1. Then the previous inequality implies that

‖ξ̃0
n(z, ϑ1)− ξ̃0

n(z, ϑ2)‖ψ,Dn ≤ C ρ(‖ϑ1 − ϑ2‖).

Since ex/t − 1 > (x/t)2/2!, it immediately follows that

E sup
‖ϑ−θ‖≤ε

‖ξ̃n(y, ϑ)− ξ̃n(y, θ)‖2 ≤ 2
∥∥∥ sup
‖ϑ−θ‖≤ε

‖ξ̃n(y, ϑ)− ξ̃n(y, θ)‖
∥∥∥

ψ,Dn

.

We now show that the Orlicz norm on the right hand side is small for small ε. We will do this

slightly adjusting the chaining argument. Let N(δ) be the covering number (the cardinality

of the minimal δ−net N (δ)) of the unit ball in Rq. Let each ζk+1 ∈ N (2−k−1) be linked to
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unique ζk ∈ N (2−k) in such a way that ‖ζk+1 − ζk‖ ≤ 2−k. Then using the Fundamental

Lemma 2.2 of van der Vaart and Wellner (1996), Sec.2.2, one can write (with ϑ = εζ)

∥∥∥ max
ϑk,ϑk+1

‖ξ̃n(y, ϑk)− ξ̃n(y, ϑk+1)‖
∥∥∥

ψ,Dn

≤ C ln N(2−k)ρ(ε 2−k).

Hence,
∥∥∥ sup
‖ϑ−θ‖≤ε

‖ξ̃0
n(y, ϑ)− ξ̃0

n(y, θ)‖
∥∥∥

ψ,Dn

(6.8)

≤
∞∑

k=1

∥∥∥ max
ϑk,ϑk+1

‖ξ̃n(y, ϑk)− ξ̃n(y, ϑk+1)‖
∥∥∥

ψ,Dn

≤ C
∞∑

k=1

ln N(2−k)ρ(ε 2−k) ≤ C q
∞∑

k=1

kρ(ε 2−k),

where the last inequality follows from obvious estimation from above N(δ) ≤ C δ−q. Since

ρ(ε 2−k) → 0 as ε → 0 and the series converges for some ε > 0 it tends to 0 as ε → 0.

Finally combine the symmetrisation and Markov inequalities to obtain

P
(

sup
‖ϑ−θ‖≤ε

‖ξ̃n(y, ϑ)− ξ̃n(y, θ)‖ > x
∣∣∣Dn

)

≤ P
(

sup
‖ϑ−θ‖≤ε

‖ξ̃0
n(y, ϑ)− ξ̃0

n(y, θ)‖ >
x

2

∣∣∣Dn

)

≤ E
[
exp

{
t−1 sup

‖ϑ−θ‖≤ε

‖ξ̃0
n(y, ϑ)− ξ̃0

n(y, θ)‖
}∣∣∣Dn

]
exp(− x

4t
).

From the definition of Orlicz norm ‖ sup‖ϑ−θ‖≤ε ‖ξ̃0
n(y, ϑ)− ξ̃0

n(y, θ)‖ ‖ψ,Dn and the inequality

(6.8) it follows that the expectation above does not exceed 2 for t = q
∑∞

k=1 kρ(ε 2−k). Hence

the inequality of the lemma. ¤
We end this section by pointing out that the conditions (6.5) and (6.6) are trivially

satisfied in the case µ(x, ϑ) ≡ ϑ′S(x), where S(x) is a vector of functions of x with finite

second moment E‖S(X)‖2.

7 Some simulations

This section presents some simulations to see how well the finite sample level of significance

is approximated by the asymptotic level for the supremum of the absolute values of the

transformed processes defined at (5.3) and (6.3). It is noted that when fitting a standard

normal distribution to the errors with a rapidly changing regression function, or when fitting

a 2-variable linear regression model with standard normal errors and using the least square

residuals, this approximation is very good even for the sample size 40, especially in the right

tail.
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The lack of an analytical form of the distribution of the supremum of the Brownian motion

on [0, 1]2 created an extra difficulty here. We had to first obtain simulated approximation to

this distribution. This was done by simulating an appropriate two time parameter Poisson

process of the sample of size 5K, 20K times. Selected quantiles based on this simulation are

presented in Tables 2 - 4 of the sub-section 7.2. This should be of independent interest also.

7.1 supz |ŵn1(z)| of (5.3)

This sub-section presents some selected empirical percentiles of the transformed statistic

Dn := supz |ŵn1(z)| of (5.3) for testing H0 : F is the standard normal d.f. The regression

function is taken to be µ(x, ϑ) = eϑx, with true θ = 0.25, the regressors Xi, i = 1, . . . , n,

are chosen to be uniformly distributed on [2, 4], and the errors εi ≡ εi(θ), i = 1, . . . , n are

standard Gaussian. In this case the Γ function of section 5.3 becomes

Γ−1
F (y) =

1

[1− F (y)][ya(y) + 1− a2(y)]

(
1 + ya(y) a(y)

a(y) 1

)
,

where a(y) = f(y)/(1 − F (y)) with f and F denoting standard normal density and d.f.,

respectively. Consequently, the vector-function G of (5.3) is now equal to

GT (z) =

∫ z

−∞
(1,−y)Γ−1

F (y)f(y)dy =

∫ z

−∞

1

ya(y) + 1− a2(y)
(1, a(y)− y)a(y)dy.

and, eventually, the transformed process of (5.3) has the form

ŵn1(t)

= n−1/2

n∑
i=1

[
I{εi(θ̂ ) ≤ z} −

∫ z∧εi(θ̂)

−∞

1 + εi(θ̂)(a(y)− y)

ya(y) + 1− a2(y)
a(y)dy

]
, t = F (z)(7.1)

Although the form of the regression function does not participate in the martingale

transformation L it still may affect the finite sample behavior of the transformed process as

far as it affects εi(θ̂), i = 1, . . . , n, where θ̂ is the MLE under the null hypothesis. It was thus

of interest to see whether the estimation of θ will not affect the values of εi(θ̂), i = 1, . . . , n,

too much and worsen the convergence of the transformed process to its limit. For this reason

we chose a more or less rapidly changing regression function. On the other hand there was no

point in choosing multidimensional regressors Xi here, since the transformed process depends

solely on εi(θ̂), i = 1, . . . , n.

We simulated {(Xi, Yi = e0.25Xi +εi), 1 ≤ i ≤ n} for sample sizes n = 40, 100 and for each

sample calculated the value of Kolmogorov-Smirnov statistic Dn := sup{|ŵn1(t)|; 0 ≤ t ≤ 1},
with ŵn1(t) as in (7.1). This was done m = 10K times. In the Table 1, dα is the 100(1−α)%

percentile of the limiting distribution of Dn. They are obtained by approximating the d.f. of

the supremum of the Brownian motion over [0, 1] by G(z) := P (sup0≤t≤1 |ξn(t)−nt|/√n ≤ z),
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Figure 1: Edf of Dn for n = 40, 100, m = 10K and G.

with n = 5K, where ξn(t), t ∈ [0, 1] is a Poisson process with intensity n. The d.f. G was

calculated using the exact recurrent formulas and code given in Khmaladze and Shinjikashvili

(2001). The values obtained are accurate to 5× 10−3.

Table 1 also gives the Monte Carlo estimates of P (Dn > dα) for n = 40 and n = 100

based on m = 10K replications. The resulting (simulated) distribution functions of Dn along

with G as solid line are shown in Figure 1. The quality of approximation appears to be quite

close to what one has in the classical case of empirical process and the limiting Brownian

bridge. Especially, in the upper tail where we need it the most.

Table 1: Selected quantiles of P (Dn > dα)

α 0.2 0.1 0.05 0.025 0.01
n \ dα 1.64 1.96 2.24 2.50 2.81
40 0.168 0.084 0.046 0.029 0.019
100 0.178 0.093 0.052 0.029 0.014
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7.2 supB |wn(B)| of (6.3)

Here the regressors Xi, i = 1, . . . , n are two-dimensional Gaussian random vectors with

standard normal marginal distributions and correlation r. The regression function being

fitted is chosen to be linear:

µ(x, ϑ) = ϑ1x1 + ϑ2x2,(7.2)

with the true parameter θ′ = (1, 1), while the scanning family A = {Az : z ∈ R} is just

one of the examples mentioned in section 6: Az = {x ∈ R2 : x1 ≤ z}. Let wn, wH be as in

section 6.

For the above regression function and the scanning family the matrix C−1 has the form

C−1
z =

1

[1− r2][1− F (z)]

(
r2 −r

−r 1

)
+

1

1− F (z)

(
(za(z) + 1)−1 0

0 0

)

and the integral in (6.3) becomes
∫ x1∧Xi1

−∞

ya(y)

ya(y) + 1
F (

x2 − ry√
1− r2

)dy X1i −
∫ x1∧Xi1

−∞
a(y)

1√
1− r2

dy (Xi2 − rXi1)

Here, as above, f and F denote the standard normal density and distribution function,

respectively. In our simulations the class of sets B were chosen to be (−∞, x], x ∈ R2. Write

wn(x), wH(x) for wn(B), wH(B), whenever B = (−∞, x], x ∈ R2, respectively. Choosing

ϕ(y) = y and θ̃ to be the leat square estimator, the transformed process (6.3) becomes

wn(x)

= n−1/2

n∑
i=1

[
I(Xi ≤ x)−

∫ x1∧Xi1

−∞

ya(y)

ya(y) + 1
F (

x2 − ry√
1− r2

)dy X1i

−
∫ x1∧Xi1

−∞
a(y)

1√
1− r2

dy (Xi2 − rXi1)

](
Yi − µ(Xi, θ̃ )

)
.

Let Vn := supx |wn(x)|, VH := supx |wH(x)|.
In order to demonstrate how well the null distribution of Vn is approximated by the

distribution of VH , we had to first understand the form of the latter distribution. We thus

first obtained an approximation for the distribution of this r.v. as follows.

Let H(x1, x2; r), x = (x1, x2)
′ ∈ R2, denote the d.f. of the bivariate normal distribution

with standard marginals and correlation r. Let

Hr(s, t) := H(F−1(s), F−1(t); r), 0 ≤ s, t ≤ 1,(7.3)

be the corresponding copula function, and let w(s, t) := wH(F−1(s), F−1(t)). The d.f.

P (sup0≤s,t≤1 |w(s, t)| ≤ v), is the limit as n tends to infinity of, and is approximated by

Lr(v) := P ( sup
0≤s,t≤1

|ξnHr(s, t)− nHr(s, t)|/
√

n ≤ v),
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where ξnHr(s, t) is a Poisson process on [0, 1]2 with expected value nHr(s, t). Tables 2 -

4 give the simulated values of these probabilities for r = −0.5, 0, 0.5 and n = 5K with

m = 20K replications. All these tables are based on the tables and graphs of the dis-

tribution function Lr and percentile points, prepared by Dr R. Brownrigg, at the address

http://www.mcs.vuw.ac.nz/r̃ay/Brownian.

Table 2: Selected values of (v, Lr(v)) for r= -0.5

x 0.71 0.88 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25
Lr(x) 0.00 0.01 0.05 0.25 0.50 0.69 0.82 0.91 0.95 0.98 0.99 0.995

Table 3: Selected values of (v, Lr(v)) for r=0

x 0.66 0.84 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25
Lr(x) 0.00 0.01 0.07 0.30 0.53 0.72 0.84 0.91 0.95 0.98 0.99 0.995

Table 4: Selected values of (v, Lr(v)) for r=0.5

x 0.59 0.79 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25
Lr(x) 0.00 0.01 0.11 0.35 0.57 0.74 0.85 0.92 0.96 0.98 0.99 0.996

Although the distribution of VH depends on the copula function Hr the first useful ob-

servation is that relatively sharp changes in Hr do not appear to change the distribution of

this r.v. by much. Table 5 summarizes a few selected percentiles to readily assess the effect

of r on them. It contains the values of vα defined by the relation 1 − Lr(vα) = α. One

readily sees that these values are very stable across the three chosen values of r, especially

for α ≤ 0.1.

Table 5: Selected values of vα for r = −0.5, 0, 0.5

r \ α 0.5 0.25 0.20 0.10 0.05 0.025 0.01
-0.5 1.50 1.86 1.95 2.23 2.50 2.74 3.03
0.0 1.46 1.81 1.91 2.21 2.46 2.70 3.03
0.5 1.42 1.77 1.88 2.17 2.43 2.70 2.98

We illustrate the closeness of the distribution of Vn for finite n to the limiting distribution

with the graphs of edfs for n = 40, 100, with m = 10K replications. Figures 2-4 show the

(simulated) d.f.’s of Vn for n = 40, 100; m = 10K, and the approximating d.f. Lr (solid

line) for Hr as in (7.3) above with r = −0.5, 0 and 0.5. One readily notes the remarkable

closeness of these d.f.’s, especially in the right tail.

Table 6 gives the simulated values of P (Vn > vα) for several values of α and sample sizes

n = 40 and n = 100, based on m = 10K replications. From this table one also sees that
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Figure 2: Edf of Vn, n = 40, 100, with m = 10K, and d.f. Lr, r = −0.5

the large sample approximation is reasonably good for even the sample size of 40 and fairly

stable across the chosen values of r.

Table 6: P (Vn > vα), m = 20K

n r \ α 0.2 0.1 0.05 0.01
40 -0.5 0.166 0.084 0.045 0.012
40 0.0 0.166 0.085 0.045 0.011
40 0.5 0.162 0.084 0.042 0.008
100 -0.5 0.179 0.092 0.046 0.009
100 0.0 0.183 0.092 0.048 0.008
100 0.5 0.178 0.093 0.046 0.009
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Figure 3: Edf of Vn, n = 40, 100, with m = 10K, and d.f. Lr, r = 0
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Figure 4: Edf of Vn, n = 40, 100, with m = 10K, and d.f. Lr, r = 0.5



ADF goodnes-of-fit tests 37

Acknowledgement. The authors thank Dr. Ray Brownrigg for his invaluable help with

the numerical calculations in section 7, and the two referees and the Associte Editor for their

constructive comments.

8 References

An, H. Z. and Cheng, B. (1991). A Kolmogorov-Smirnov type statistic with application

to test for nonlinearity in time series. Int. Statist. Rev., 59, 287-307.

Bickel, P.J., Klaassen, C.A.J., Ritov, Y. and Wellner, J. (1998). Efficient and

adaptive estimation for semi-parametric models. Springer-Verlag, New York, NY.

Boldin, M. V. (1982). Estimation of the distribution of noise in autoregression scheme.

Theor. Probab. Appl. 27, 866-871.

Cox, D., Koh, E., Wahba, G. and Yandell, B.S. (1988). Testing the parametric

null model hypothesis in semiparametric partial and generalized spline models. Ann.

Statist., 16, 113-119.

D’Agostino, R. B. and Stephens, M. A. (1986). Goodness-of-fit techniques. Edited by

D’Agostino and Stephens. Statistics: Textbooks and Monographs, 68. Marcel Dekker,

Inc., New York.

Durbin, J. (1973). Distribution theory for test based on the sample d.f. SIAM, Philadel-

phia.

Durbin, J., Knott, M. and Taylor, C.C. (1975). Components of Cramér-von Mises

statistics. II. J. Roy. Statist. Soc. B, 37, 216 - 237.

Eubank, R.L. and Hart, J.D. (1992). Testing goodness-of-fit in regression via order

selection criteria. Ann. Statist., 20, 1412-1425.

Eubank, R.L. and Hart, J.D (1993). Commonality of CUSUM, von Neumann and

smooth-ing based goodness-of-fit tests. Biometrika, 80, 89-98.

Eubank, R. L. and Spiegelman, C. H. (1990). Testing the goodness of fit of a linear

model via nonparametric regression techniques. J. Amer. Statist. Assoc. 85, 387–392.
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