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Abstract

This paper addresses the problem of fitting a known distribution to the innovation distribu-

tion in a class of stationary and ergodic time series models. The asymptotic null distribution of

the usual Kolmogorov-Smirnov test based on the residuals generally depends on the underlying

model parameters and the error distribution. To overcome the dependence on the underlying

model parameters, we propose that tests be based on a vector of certain weighted residual em-

pirical processes. Under the null hypothesis and under minimal moment conditions, this vector

of processes is shown to converge weakly to a vector of independent copies of a Gaussian process

whose covariance function depends only on the fitted distribution and not on the model. Un-

der certain local alternatives, the proposed test is shown to have nontrivial asymptotic power.

The Monte Carlo critical values of this test are tabulated when fitting standard normal and

double exponential distributions. The results obtained are shown to be applicable to GARCH

and ARMA-GARCH models, the often used models in econometrics and finance. A simulation

study shows that the test has satisfactory size and power for finite samples at these models.

The paper also contains an asymptotic uniform expansion result for a general weighted residual

empirical process useful in heteroscedastic models under minimal moment conditions, a result

of independent interest.

1 Introduction

Let {yi : i ∈ Z := 0,±1,±2, · · ·} be a strictly stationary and ergodic real time series. Often the

finite dimensional distributions of such series are characterized by the stationary distribution and

the conditional distribution of yi, given the past. One problem of interest is to fit this conditional

distribution. In general this is a difficult problem. However in some special time series models where

this conditional distribution is determined by the innovation distribution, it is possible to obtain

reasonable answers. In particular in this paper we shall focus on the generalized autoregressive

conditionally heteroscedastic (GARCH) and ARMA-GARCH models.
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To describe these models, let q, r be known positive integers and Θ1 (Θ2) be a subset of the

q (r) dimensional Euclidean space Rq (Rr), and let Θ = Θ1 × Θ2. In the models of interest one

observes the process yi such that for some sequences of past measurable functions µi from Θ1 to R

and hi from Θ to R+ := (0,∞), and for some θ′ = (θ′1, θ
′
2), θ1 ∈ Θ1, θ2 ∈ Θ2,

ηi :=
yi − µi(θ1)√

hi(θ)
, i ∈ Z,(1.1)

are independently and identically distributed (i.i.d.) standardized r.v.’s. Here, the ‘past measur-

able’ means that for every s := (s1, s2) ∈ Θ, s1 ∈ Θ1, the functions µi(s1) and hi(s) should be Fi−1

measurable, where Fi is the σ-field generated by {ηi, ηi−1, · · · , y0, y−1, · · ·}, i ∈ Z. Let F denote

the common distribution function (d.f.) of the errors {ηi}, and F0 be a known d.f. The problem of

fitting the conditional distribution of yi, given Fi−1, in the model (1.1) is now equivalent to testing

the goodness-of-fit hypothesis

H0 : F = F0 vs. H1 : F 6= F0.

The knowledge of the error distribution is important in statistics, in particular, in value at

risk (VaR). In economics and finance, VaR is a single number measuring the risk of a financial

position. For example, when yi is a process of daily returns, the VaR for a one-day horizon of a

portfolio is the 95th conditional quantile of the distribution of yi+1, given the information available

at time i. After estimating the parameter θ, the VaR for one day position of yi and probability 0.05

is µi(θ1) − 1.6449
√

hi(θ), provided ηi’s have the standard normal distribution and the estimated

parameter θ is correct. This means that, with probability 0.95, the potential loss of holding that

position next day is µi(θ1)−1.6449×
√

hi(θ). Clearly, the knowledge of the error distribution plays

a crucial role in determining this probability, and hence in evaluating VaR via model (1.1). Thus

it is important to test the hypothesis H0 in practice. For more on VaR, see e.g., Tsay (2002).

The goodness-of-fit testing problem under the i.i.d. set up has a long history, see, e.g., a

collection of papers in D’Agostino and Stephens (1986), and references therein. A commonly used

test is based on the Kolmogorov-Smirnov statistic. The primary reason for this is that this test is

distribution free, i.e., the null distribution of this statistic does not depend on F0. However, when

the i.i.d. sequence such as ηi in the model (1.1) is not observed and has to be estimated from a

special model, this property of being distribution free is lost even asymptotically. These kinds of

problems have been extensively investigated in the literature in various models including regression

models, see, e.g., Durbin (1973a, b), Loynes (1980), Koul (1992), among others.
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In the context of time series models, Boldin (1982) observed that for the zero mean linear

autoregressive (AR) models the tests based on the residual empirical process are asymptotically

distribution free (ADF) for fitting an error d.f. as long as it has zero mean, finite variance and

bounded second derivative. The condition of the bounded second derivative was later relaxed in

Koul (1991) to requiring having only uniformly continuous density while the condition of having

zero mean is crucial for the validity of the ADF property. Boldin (1990) and Koul (1992) observed

that similar facts hold true for the moving-average (MA) models. However, this is no longer true of

many nonlinear time series models like threshold AR models as noted in Koul (1996), nonstationary

AR models in Ling (1998), ARCH/GARCH models in Boldin (1998, 2002), Horváth et al (2001),

Koul (2002, Ch. 8), and Berk and Horváth (2003). For ARCH/GARCH models, Horváth et al.

(2004) proposed a parametric boostrap method for testing Gaussianity of the errors, but only

studied its validity via Monte Carlo experiments. Some of the results of Kulperger and Yu (2005)

can be used to test for the error moments but not for the error d.f.

The main difficulty is that the asymptotic null distribution of the empirical process of the

residuals in heteroscedastic time series model (1.1) depends not only on the distribution F0, but

also on the model functions µi and hi. Under certain regularity conditions, the dependence on µi

can be eliminated by using a vector of certain weighted residual empirical processes, as is shown

here. Roughly speaking, the weights in these processes are asymptotically orthogonal to the space

generated by the slopes of the functions µi. Moreover, under H0, this vector of processes is shown to

converge weakly to a vector of independent copies of a Gaussian process. The covariance function

of this Gaussian process depends only on F0 and is the same as that of the one arising when fitting a

d.f. up to an unknown scale parameter. The Monte Carlo critical values when F0 is either standard

normal or double exponential d.f. are tabulated. Under certain local alternatives, the proposed

test is shown to have nontrivial asymptotic power.

Section 2 describes the test statistic and the main results. Section 3 shows that our assumptions

are naturally satisfied by a class of GARCH and ARMA-GARCH models. Some simulation results

and an application of the proposed test to the Hang Seng Index in Hong Kong stock market is

also given in section 3. Section 4 contains some proofs. Theorem 1.1 of Koul and Ossiander (1994)

has been found very useful in many nonlinear homoscedastic time series models and has been

extended for the nonstationary time series in Ling and McAleer (2003b). Theorem 4.1 below gives

its extension to heteroscedastic time series models and is used to prove the main results of section

2.
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2 Test Statistics and the Main Results

This section describes the proposed test statistics and their asymptotic behavior.

Let p be a positive integer and Y0 denote either the vector (y0, y−1, · · · , y1−p)′ or the vector

(y0, y−1, · · · , )′. In either case Y0 is chosen to be independent of ηi, i ≥ 1. Let {y1, · · · , yn} be

observations obeying the model (1.1). We shall assume the following.

The functions µi, hi are twice continuously differentiable, for all i.(2.1)

Let εi(s1) = yi − µi(s1), ηi(s) := εi(s1)/
√

hi(s), 1 ≤ i ≤ n. For any differentiable function g on Θ,

let ġ denote its differential. Thus, e.g., µ̇i(s1) = ∂µi(s1)/∂s1, s1 ∈ Θ1. Moreover, for an s ∈ Θ, we

write

µ̇i(s) =


 µ̇i(s1)

0


 , ḣi(s) =


 ḣ1i(s)

ḣ2i(s)


 , ḣki(s) :=

∂hi(s)
∂sk

, k = 1, 2, 1 ≤ i ≤ n.

Thus, µ̇i(s) and µ̇i(s1) are (q + r) × 1 and q × 1 vectors, respectively. Similarly, ḣ1i(s) and ḣ2i(s)

are q × 1 and r × 1 vectors, respectively. We denote the true parameter by θ and ηi = ηi(θ).

We need the following additional assumptions:

F0 has an absolutely continuous density f0 with supx∈R |x|f0(x) < ∞ and having(2.2)

positive and finite Fisher information for location and scale, i.e.,

0 <

∫
(ḟ0/f0)2dF0 < ∞, 0 <

∫ (
1 +

xḟ0(x)
f0(x)

)2
dF0(x) < ∞.

Eψ0(η1)ϕ0(η1) = 0,(2.3)

where ψ0 := ḟ0/f0 and ϕ0(x) := (1 + xψ0(x))/2, x ∈ R.

For example, under (2.2), (2.3) holds whenever F0 symmetric around zero. Let

b1 := Eψ2
0(η1), b2 := Eϕ2

0(η1), B := E


 b1 0

0 b2


 ,

Wi(s) :=


 µ̇i(s1)/h

1/2
i (s) ḣ1i(s)/hi(s)

0 ḣ2i(s)/hi(s)


 =


 W11,i(s) W12,i(s)

0 W22,i(s)


 , say,

I(θ) := EθW1(θ)BW1(θ)′.

Under H0, B is known and I(θ) is the Fisher information matrix appropriate in the present set up.

We shall assume that under H0, I(θ) is positive definite. Let θ̂n be an estimator of θ satisfying

n1/2(θ̂n − θ) = −I(θ)−1n−1/2
n∑

i=1

Wi(θ)


 ψ0(ηi)

ϕ0(ηi)


 + op(1).(2.4)
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We are now ready to introduce the needed weighted empirical processes

Kn(x, s) :=
1

2
√

n

n∑

i=1

W22,i(s)[I(ηi(s) ≤ x)− F0(x)], x ∈ R, s ∈ Θ.

Note that this is an r × 1 vector of processes. The tests of H0 will be based on Kn(x, θ̂n). For

example, the Kolmogorov-Smirnov test statistic is

Kn = sup
x∈R

[Kn(x, θ̂n)′Î−1
n Kn(x, θ̂n)], În :=

1
4n

n∑

i=1

W22,i(θ̂n)W22,i(θ̂n)′.

The following theorem is useful in obtaining the limiting distribution of the tests based on the

process Kn(·, θ̂n). In it, the matrix of the second derivative of hi is denoted by ḧi and the matrix

norm is the Euclidean norm.

Theorem 2.1 Suppose the model (1.1) and (2.1)-(2.4) hold. In addition, suppose the following

holds. For an open neighborhood Uθ of θ,

Eθ sup
s∈Uθ

‖µ̇1(s)‖2

h1(θ)
< ∞, Eθ sup

s∈Uθ

‖ḣ1(s)‖2

h1(t)h1(θ)
< ∞.(2.5)

Eθ sup
s∈Uθ

‖ḧ1(s)‖
h1(s)

< ∞, Eθ sup
s∈Uθ

‖ḣ1(s)‖2

h2
1(s)

< ∞.(2.6)

Then, for every 0 < b < ∞,

Kn(x, θ + n−1/2t)(2.7)

= Kn(x, θ) +
1
2
n−1

n∑

i=1

W22,i(θ)
[ µ̇i(θ)′√

hi(θ)
f0(x) + xf0(x)

1
2

ḣi(θ)′

hi(θ)

]
t + up(1),

where up(1) is a sequence of stochastic processes tending to 0 uniformly in x ∈ R and ‖t‖ ≤ b, in

probability.

A proof of this theorem is sketched in section 4. Here we shall now illustrate its usefulness in

obtaining the limiting null distribution of Kn.

Now, consider the coefficient of t/2 in the second term of the right hand side of (2.7). By the

Ergodic Theorem, uniformly in x ∈ R, it converges to

EθW22,1(θ)
[ µ̇1(θ)′√

h1(θ)
f0(x) + xf0(x)

1
2

ḣ1(θ)′

h1(θ)

]
.(2.8)

To reduce the effect of the location related parameters, v.i.z., of θ1 and µ1(θ1), on this expression,

it suffices to assume

Eθ

{
[W11,1(θ), W12,1(θ)]W22,1(θ)′

}
= 0.(2.9)
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Under this assumption the expression in (2.8) is equivalent to

1
2
xf0(x)[0′, EθW22,1(θ)W22,1(θ)′] =

1
2
xf0(x)[0′,H ′

θ], say.

Next, let I11(θ) := b1 EθW11,1(θ)W11,1(θ)′ + b2 EθW21,1(θ)W21,1(θ)′. Under (2.9),

I(θ) =




W21,1(θ)′ 0

I11(θ) 0

0 b2Hθ


 .

Moreover, the first term on the right hand side of the expansion (2.4) now becomes

−n−1/2
n∑

i=1


 I−1

11 (θ)(W11,iψ0(ηi) + W12,i(θ)ϕ0(ηi))

(b2Hθ)−1W22,i(θ)ϕ0(ηi)


 .

Upon combining these facts with (2.7), we obtain that uniformly in x ∈ R,

Kn(x, θ̂n) = Kn(x, θ)− xf0(x)
4b2
√

n

n∑

i=1

W22,i(θ)ϕ0(ηi) + op(1)

=
1

2
√

n

n∑

i=1

W22,i(θ)
[
I(ηi ≤ x)− F0(x)− xf0(x)

2b2
ϕ0(ηi)

]
+ op(1).

Let Zn(x) denote the vector of the leading process on the right hand side above, and

ρ(x, y) := [F0(x ∧ y)− F0(x)F0(y)− 1
4b2

xyf0(x)f0(y)], x, y ∈ R.

Let Z be a vector of r independent mean zero Gaussian processes, with Cov(Z(x), Z(y)) :=

ρ(x, y)Ir×r. Using a conditioning argument and the above weak convergence result, one readily

obtains that Cov(Zn(x), Zn(y)) = 1
4ρ(x, y)Hθ, and that 2H−1/2

θ Kn(x, θ̂n) =⇒ Z(x). This fact

together with the fact that ‖În −Hθ‖ = op(1), yields the following corollary

Corollary 2.1 Suppose the assumptions of Theorem 2.1 and H0 hold. If in addition (2.9) holds,

then Kn −→d supx∈R ‖Z(x)‖ =: K.

Observe that this limiting distribution depends only on the error d.f. F0. Thus, its critical

values can be approximated by the simulation method. When ηi ∼ N(0, 1), the corresponding

critical values are given in Table 1. This table is constructed as follows. First, we approximate

{Z(x) : x ∈ [−4.0, 4.0]} by {Z(xi) : i = 1, · · · , 2000} with xi+1 − xi = 8/2000. The distribution

of K is then approximated by sup1≤i≤2000 ‖Z(xi)‖. We use 10000 independent replications to

obtain the percentages of K. By increasing the range of x and the numbers of i and replications,
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the percentages of K have only ignorable differences from those in Table 1. In the case f0(x) =

e−|x|/2, x ∈ R, the corresponding critical values are in Table 2. The simulation method is the same

as that for Table 1 except now the range of x is taken to be [−8.0, 8.0], since this density has a

longer tail than the standard normal density. For other distributions, the critical values can be

obtained through a similar method.

TABLE 1

Upper percentage points of K with F0 = N(0, 1)

α\r 1 2 3 4 5 6 7 8 9 10

0.01 2.465 3.150 3.737 4.361 4.769 5.173 5.642 6.065 6.508 6.938

0.03 1.890 2.595 3.100 3.640 4.094 4.468 4.946 5.336 5.677 6.083

0.05 1.650 2.289 2.804 3.267 3.751 4.118 4.553 4.922 5.298 5.679

0.10 1.317 1.891 2.382 2.822 3.262 3.628 4.033 4.384 4.716 5.106

0.15 1.113 1.666 2.126 2.552 2.980 3.325 3.685 4.022 4.367 4.720

0.20 0.988 1.498 1.931 2.339 2.750 3.089 3.436 3.768 4.101 4.445

TABLE 2

Upper percentage points of K with F0 =double exponential distribution

α\r 1 2 3 4 5 6 7 8 9 10

0.01 2.402 3.149 3.702 4.298 4.809 5.173 5.683 5.937 6.360 6.845

0.03 1.876 2.523 3.073 3.569 4.015 4.399 4.872 5.260 5.611 6.015

0.05 1.630 2.250 2.781 3.218 3.680 4.067 4.500 4.865 5.247 5.607

0.10 1.299 1.873 2.344 2.788 3.222 3.605 3.969 4.335 4.680 5.051

0.15 1.098 1.640 2.092 2.533 2.933 3.279 3.639 3.991 4.317 4.691

0.20 0.961 1.464 1.902 2.314 2.703 3.046 3.399 3.729 4.065 4.046

We now indicate the behavior of the asymptotic power of this test under the local alternatives

H1n : Fn = (1 − n−1/2δ)F0 + n−1/2δF̃ , where 0 < δ < 1 and F̃ is a d.f. Assume that {ηi; i ≥ 1}
are independent of Y0 under H1n. Let P0n and P1n be the joint distributions of (y1, · · · , yn) under

H0 and H1n, respectively. In section 5, we show that P0n and P1n are contiguous in the sense of

Le Cam (1986). The following theorem gives the asymptotic power of the test statistic Kn against

these local alternatives .
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Theorem 2.2 In addition to the conditions of Theorem 2.1, assume that F̃ has zero mean and

finite variance. Then, under H1n, Kn(x, θ̂n) =⇒ 2H
1/2
θ Z̃(x), where Z̃(x) is an r-vector of Gaussian

processes with the mean vector mθ(x) := EθW22,1(θ)(F (x)−F̃0(x)), and the covariance matrix equal

to that of the process Z(x) in Corollary 2.1.

This theorem shows that the test statistic Kn has nontrivial asymptotic power under the specified

local alternatives provided mθ(x) 6= 0, for some x ∈ R.

3 Some Applications

This section verifies the applicability of the results in the previous section to the GARCH and

ARMA-GARCH models. These models are among the most important models in the field of time

series, econometrics and finance.

3.1 GARCH models

This subsection considers Bollorslev’s GARCH (p1, p2) model defined by the equations

yi = ηi

√
hi and hi = α0 +

p1∑

j=1

αjy
2
j−i +

p2∑

j=1

βjhj−i,(3.1)

where ηi is standardized i.i.d. r.v.’s. Clearly it is an example of the model (1.1) with µi ≡ 0 = q,

hi as given above, and s = s2 = (α0, α1, · · · , αp1 , β1, · · · , βp2)
′ is the unknown parameter vector

and its true value is θ = θ2 = (α00, α01, · · · , α0p1 , β01, · · · , β0p2)
′. The parameter space is Θ = {s :

∑p1
j=1 αj +

∑p2
j=1 βj ≤ ρ0, β

0
≤ α0 ≤ β̃0, and β ≤ αi, βi ≤ β̃, i = 1, . . . , p1, j = 1, . . . , p2} for

some constants ρ0 ∈ (0, 1), 0 < β
0
≤ β̃0 and 0 < β ≤ β̃ < 1. Note that Θ is compact. Assume

that θ is an interior point of Θ and
∑p1

j=1 αjz
j and 1−∑p2

j=1 βjz
j have no common zeros for each

s ∈ Θ. Bougerol and Picard (1992) have shown that under these conditions the model (3.1) is

strictly stationary and ergodic with Eθy
2
0 < ∞. We now verify the remaining assumptions of the

previous section. Let

(
1−

p2∑

j=1

βjB
j
)−1( p1∑

j=1

αjB
j
)

=
∞∑

j=1

β0j(s)Bj ,
(
1−

p2∑

j=1

βjB
j
)−1

=
∞∑

j=1

β1j(s)Bj ,

where B denotes the backward shift operator. Then from (3.1), one has

hi(s) =
(
1−

p2∑

j=1

βjB
j
)−1( p2∑

j=1

αjB
j
)
y2

i =
∞∑

j=1

β0j(s)y2
i−j , say,
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∂hi(s)
∂α0

= 1 +
p2∑

j=1

βj
∂hi−j(s)

∂α0
=

(
1−

p2∑

j=1

βj

)−1
,

∂hi(s)
∂αk

= yi−k +
p2∑

j=1

βj
∂hi−j(s)

∂αk
= (1−

p2∑

j=1

βjB
j)−1yi−k,

∂hi(s)
∂βk

= hi−k(s) +
p2∑

j=1

βj
∂hi−j(s)

∂βk
=

(
1−

p2∑

j=1

βjB
j
)−1

hi−k(s),
∂2hi(s)

∂α2
0

= 0,

∂2hi(s)
∂β2

k

= 2
∂hi(s)
∂βk

+
p2∑

j=1

βj
∂2hi−j(s)

∂β2
k

= 2(1−
p2∑

j=1

βjB
j)−1 ∂hi(s)

∂βk
.

Similar expressions can be obtained for ∂2hi(s)/∂α2
k and ∂2hi(s)/∂αk∂βk′ , 1 ≤ k ≤ p1, 1 ≤ k′ ≤ p2.

From these expressions it follows that the above {hi(s)} satisfy (2.1). From Lemma 2.1 in Ling

(1999) and the compactness of Θ, it follows that for some 0 < ρ < 1, sups∈Θ β0j(s) = O(ρj), as

j →∞.

Next, note that here W11,i(s) ≡ 0, W12,i(s) ≡ 0, and

W22,i(s) =
1

hi(s)

[
∂hi(s)
∂α0

,
∂hi(s)
∂α1

, · · · , ∂hi(s)
∂αp1

,
∂hi(s)
∂β1

, · · · , ∂hi(s)
∂βp2

]′
=

1
hi(s)

∂hi(s)
∂s

.

Thus, (2.9) is a priori satisfied. Further assume that Eη4
1 < ∞. Francq and Zaköıan (2004) show

that the quasi-MLE is
√

n−consistent. Using this quasi-MLE as an initial estimator and one-step

iteration as in (3.1) in Ling (2003b), we can obtain a new estimator θ̂n. Ling (2003b) showed that

this θ̂n satisfies the condition (2.4) under (2.2).

Next, we verify (2.5)-(2.6). Because µi ≡ 0, the first part of (2.5) is a priori satisfied. By

Lemma A.2 in Ling (2005), there is a neighborhood Uθ of θ and a finite universal constant C and

a ρ ∈ (0, 1) such that for any γ > 0, and for all i,

max
(

sup
s∈Uθ

∥∥∥ 1
hi(s)

∂2hi(s)
∂s∂s′

∥∥∥, sup
s∈Uθ

∥∥∥ 1
hi(s)

∂hi(s)
∂s

∥∥∥
)
≤ C(1 +

∞∑

j=1

ρj |yi−j |)γ .

Thus, (2.6) holds. By Lemma A.1 (ii) and A.5 in Ling (2005), there exists a constant ι̃ ∈ (0, 1)

such that sups∈Uθ
[hi(s)/hi(θ)] ≤ C(1 +

∑∞
j=1 ρj |εi−j |)2−2ι̃. Taking γ ≤ ι̃, it follows that

Eθ sup
s∈Uθ

‖ḣ1(s)‖2

h1(s)h1(θ)
<

C

α0
Eθ sup

s∈Uθ

[
h1(s)
h1(θ)

‖(1 +
∞∑

j=1

ρj |y−j |)2γ ] < ∞.

Thus, (2.5) holds. This completes the verification of all the assumptions of Corollary 2.1. 2

3.2 ARMA(1,1)-GARCH(1,1) Models

Consider the ARMA (1,1)-GARCH(1,1) model defined by the equations

yi = ayi−1 + bεi−1 + εi, εi = ηi

√
hi, and hi = α0 + αε2

i−1 + βhi−1,(3.2)

9



where ηi is a sequence of i.i.d. standardized r.v.’s and symmetric around zero. We shall assume the

usual condition: α, β ∈ (0, 1), a, b ∈ (−1, 1), and a + b 6= 0. This model is an example of the model

(1.1) with q = 2, r = 3, s1 = (a, b)′, s2 = (α0, α, β)′, s = (s1, s2)′, εi(s1) = yi − ayi−1 − bεi−1(s1),

µi(s1) ≡ yi− εi(s1), and hi(s) = α0 +αε2
i−1(s1)+βhi−1(s). We shall assume that for some positive

numbers a0, ã0, a1, ã1, a0 ≤ α0 ≤ ã0, a1 ≤ α ≤ ã1, a1 ≤ β ≤ ã1, and α + β ≤ ρ0 with ρ0 ∈ (0, 1).

The parameter space Θ is now the subset of R5 whose members satisfy these conditions and is a

priori compact. The true parameter values is θ′ = (θ′1, θ
′
2) is taken to be in the interior of Θ, where

θ1 = (a0, b0)′, θ2 = (α00, α0, β0)′. From Ling and Li (1997), it follows that under these conditions

the model (3.2) is strictly stationary, ergodic, and that Eθy
2
0 < ∞.

To verify the remaining assumptions of the previous section for this model, proceed as follows.

From (3.2) one obtains

εi(s1)
∂a

= −yi−1 + b
εi−1(s1)

∂a
= −

∞∑

j=1

bj−1yi−j ,

εi(s1)
∂b

= −εi−1(s1) + b
εi−1(s1)

∂b
= −

∞∑

j=1

bj−1εi−j(s1),

∂hi(s)
∂a

= 2αεi−1(s1)
εi−1(s1)

∂a
+ β

∂hi−1(s)
∂a

= 2α
∞∑

j=1

βj−1εi−j(s1)
εi−j(s1)

∂a
,

∂hi(s)
∂b

= 2αεi−1(s1)
εi−1(s1)

∂b
+ β

∂hi−1(s)
∂b

= 2α
∞∑

j=1

βj−1εi−j(s1)
εi−j(s1)

∂b
,

∂hi(s)
∂α0

= (1− β)−1,
∂hi(s)

∂α
= ε2

i−1(s1) + β
∂hi−1(s)

∂α
=

∞∑

j=1

βj−1ε2
i−j(s1),

∂hi(s)
∂β

= hi−1(s) + β
∂hi−1(s)

∂β
=

∞∑

j=1

βj−1hi−j(s).

Thus, here

W11,i(s) =
1√
hi(s)

[
∂εi(s1)

∂a
,

∂εi(s1)
∂b

]
=

1√
hi(s)

∂µi(s)
∂s1

,

W21,i(s) =
1

hi(s)

[
∂hi(s)

∂a
,

∂hi(s)
∂b

]′
=

1
hi(s)

∂hi(s)
∂s1

,

W22,i(s) =
1

hi(s)

[
∂hi(s)
∂α0

,
∂hi(s)

∂α
,

∂hi(s)
∂β

]′
=

1
hi(s)

∂hi(s)
∂s2

.

The symmetry of F0 around zero implies (2.9) here. Further assume that Eη4
1 < ∞. Ling (1995)

showed that the self-weighted quasi-MLE is
√

n−consistent. Using this estimator as an initial

estimator and one-step iteration as in (3.1) in Ling (2003b), we can obtain a new estimator θ̂n. Ling
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(2003b) showed that this θ̂n satisfies the condition (2.4) under (2.2) for a more general fractional

FARIMA-GARCH models, which includes (3.2) as a special case.

Next, we verify (2.5) and (2.6). Since Eε2
i (θ1) < ∞, there exist some 0 < C < ∞ and 0 < ρ < 1,

Eθ sup
s∈Uθ

‖µ̇1(s)‖2

h1(θ)
≤ Eθ sup

s∈Uθ

‖µ̇1(s)‖2 ≤ CEθ(
∞∑

k=1

ρk|εi−k|)2 < ∞,(3.3)

Eθ sup
s∈Uθ

∥∥∥ 1√
hi(s)

∂hi(s)
∂s1

∥∥∥
2
≤ CEθ

[
sup
s∈Uθ

∞∑

j=1

β(j−1)/2
∥∥∥εi−j(s1)

∂s1

∥∥∥
]2

(3.4)

≤ CEθ

[ ∞∑

k=1

ρk|εi−k|
]2

< ∞.

By Lemma A.2 in Ling (2005), there is a neighbor Uθ of θ and universal constants 0 < C <

∞, 0 < ρ < 1, such that for any γ > 0, and uniformly in i and s, ‖ 1
hi(s)

∂hi(s)
∂s2

∥∥∥ ≤ C(1 +
∑∞

j=1 ρj |yi−j |)γ . By Lemma A.1 (ii) and A.5 in Ling (2005), there exists a constant ι̃ ∈ (0, 1)

such that sups∈Uθ
[hi(s)/hi(θ)] ≤ C(1 +

∑∞
j=1 ρj |εi−j |)2−2ι̃. Thus, taking γ ≤ ι̃, it follows that

E sup
s∈Uθ

1
hi(θ)hi(s)

∥∥∥∂hi(s)
∂s2

∥∥∥
2

< ∞.(3.5)

From (3.3)-(3.5), we thus obtain that Eθ sups∈Uθ

‖ḣ1(s)‖2
h1(s)h1(θ) ≤ Eθ sups∈Uθ

‖ḣ1(s)‖2
h1(s) < ∞, thereby

verifying (2.5) in the present case. The condition (2.6) is verified similarly, thereby completing the

verification of the assumptions of Corollary 2.1 in this example. 2

3.3 Empirical Results

This section first examines the performance of the test statistic Kn in finite samples through Monte

Carlo experiments. The following AR(1)-GARCH(1,1) model is used:

yi = ayi−1 + εi, εi = ηi

√
hi, hi = α0 + αε2

i−1 + βhi−1,(3.6)

where the true parameters are (a, α0, α, β) = (0.5, 0.025, 0.25, 0.5) and ηi are i.i.d. In the experi-

ments, we take the sample sizes n = 200 and 400. One thousand replications are used. The null

distribution of ηi is standard normal and its alternatives are given as follows.

A1 :
√

3/5 t5, A2 :
√

1/2 t4, A3 :
√

1/3 t3,

A4 : double exponential, A5 : [0.5N(−3, 1) + 0.5N(3, 1)]/
√

10.

The experiments are carried out using Fortran 77 and the optimization algorithm from the Fortran

subroutine DBCOAH in the IMSL library. From Table 2 , we can see that the size of Kn-test
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is somewhat conservative when n = 200. However, when the sample size n increases to 400, the

size is very close to the nominal significance level, for all selected levels. The power of this test

depends on the shape of the alternative distribution. It increases as one moves from A1 to A3.

This is reasonable since the difference between the shapes of N(0, 1) and A3 is more than that

of the shapes of N(0, 1) and A1, and similarly for A2 and A3. At the alternative A4, the power

ranges between its values at the alternatives A2 and A3. The test reaches its highest power when

the alternative is mixed-normal, i.e. A5. Some simulations results not reported here show that the

empirical size and power of Kn changes a little when the true parameters (a, α0, α, β) are changed

in the stationary region. These simulations indicate that the proposed test has satisfactory size

and power behavior in the finite samples, and should be useful in practice.

TABLE 2

Size and Power of Test Statisitc Kn

for ηi in AR(1)- GARCH(1,1) Models: 1000 replications

n=200 n=400

ηi ∼\α 0.1 0.05 0.01 0.1 0.05 0.01

Size:

N(0, 1) .089 .041 .006 .102 .053 .008

Power:

A1 .171 .086 .021 .348 .226 .058

A2 .309 .180 .056 .590 .453 .200

A3 .570 .434 .201 .909 .882 .581

A4 .407 .247 .060 .793 .640 .283

A5 1.00 1.00 1.00 1.00 1.00 1.00

We next use model (3.6) to investigate the Hong Seng Index (HSI) in Hong Kong stock market.

Each period of two years from 1/6/1988-31/5/1996 is considered. The results are summarized in

Table 3. In this table, the values in the parenthesis are the corresponding asymptotic standard

deviations of the estimated parameters, LF is the value of log-likelihood function and QM is the

portmanteau test statistic as in Li and Make (1994). Both statistics, QM(6) and QM(12), suggest

that this model fits the data adequately. All these estimators of the parameters (α, β) satisfy the

12



finite fourth moment condition: 3α2 +2αβ +β2 < 1. We use the statistic Kn to test the hypothesis

H0 : ηi ∼ N(0, 1). Upon comparing the values of Kn in Table 3 with the critical values obtained in

Table 1, one observes that the test Kn rejects H0 at the significance level 0.01 during the first two

periods, while it accepts H0 at the significance level 0.10 during other two periods. Note that Tian

An Men Square event occurred during the summer of 1989. This event used to have a big impact

on the Hong Kong stock market such that HSI has some non-normal factors during this period.

This event affected the Hong Kong stock market until 1992 and after that, its effect has gradually

disappeared. No other exciting event occurred and the HSI was a little bit silent during 1992-1996.

Our findings here seem to match this real circumstance very well.

TABLE 3

Empirical Results for Hong Seng Index Fitted

AR(1)- GARCH(1,1) Models

Periods n a α0 α β LF QM(6) QM(12) Kn

1/6/88−31/5/90 493 .242 .083 .223 .772 -117.9 5.6 12.3 6.44

(.055) (.027) (.048) (.031)

1/6/90−31/5/92 495 .186 .526 .203 .442 -131.7 2.9 7.6 4.67

(.056) (.162) (.070) (.145)

1/6/92−31/5/94 498 .117 .322 .242 .664 25.5 6.3 14.5 1.74

(.050) (.108) (.057) (.068)

1/6/94−31/5/96 497 .128 .053 .069 .900 -95.6 7.9 12.9 2.16

(.048) (.029) (.025) (.034)

4 Some general results

This section contains some general results useful for obtaining various approximations in hereroscedas-

tic nonlinear time series. The first result is an extension of Theorem 1.1 in Koul and Ossiander

(1994) (KO). To state these extensions, let (ηni, γni, τni, ξni), 1 ≤ i ≤ n be an array of 4-tuple

r.v.’s defined on a probability space such that {ηni, 1 ≤ i ≤ n} are i.i.d. according to a d.f. H,

and ηni is independent of (γni, τni, ξni), 1 ≤ i ≤ n. Furthermore, let {Ani} be an array of sub

σ-fields such that Ani ⊂ Ani+1, 1 ≤ i ≤ n, n ≥ 1; (γn1, δn1, ξn1) is An1 measurable, the r.v.’s

{ηn1, · · · , ηnj−1; (γni, τni, ξni), 1 ≤ i ≤ j} are Anj-measurable, 2 ≤ j ≤ n; and ηnj is in dependent
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of Anj , 1 ≤ j ≤ n. Define, for x ∈ R,

Ṽn(x) := n−1/2
n∑

i=1

γniI(ηni ≤ x + xτni + ξni), J̃n(x) := n−1/2
n∑

i=1

γniH(x + xτni + ξni),

Vn(x) := n−1/2
n∑

i=1

γniI(ηni ≤ x + ξni), Jn(x) := n−1/2
n∑

i=1

γniH(x + ξni),

V ∗
n (x) := n−1/2

n∑

i=1

γniI(ηni ≤ x), J∗n(x) := n−1/2
n∑

i=1

γniH(x),

Ũn(x) := Ṽn(x)− J̃n(x), Un(x) := Vn(x)− Jn(x), U∗
n(x) := V ∗

n (x)− J∗n(x).

Next, we introduce some assumptions.

H has a.e. positive density h with ‖h‖∞ := supx∈R h(x) < ∞.(4.1) ∫
|x|h(x)dx < ∞.(4.2)

(a) n−1
n∑

i=1

γ2
ni = Op(1), (b) max

1≤i≤n
n−1/2|γni| = op(1).(4.3)

(a) max
1≤i≤n

|ξni| = op(1), (b) max
1≤i≤n

|τni| = op(1).(4.4)

A close inspection of the proof Theorem 1.1 of KO and the discussion on the bottom of page

544 there shows that if (4.1), (4.3), and (4.4(a)) hold, then

sup
x∈R

|Un(x)− U∗
n(x)| = op(1).(4.5)

This result has played a pivotal role in the development of a unified approach to the asymptotic

distribution analysis of numerous inference procedures in homoscedastic time series models under

minimal moment assumptions, cf. Koul (1996, 2002). We now state an analog of (4.5) suitable for

heteroscedastic models.

Theorem 4.1 Under the above setup and under the assumptions (4.1) - (4.4),

sup
x∈R

|Ũn(x)− U∗
n(x)| = op(1),(4.6)

The proof of (4.5) used a chaining argument with respect to the pseudo-metric db(x, y) :=

sup|z|≤b |H(x + z) − H(y + z)|1/2, x, y ∈ R, b > 0 appropriate for the location problem. If we let

N (δ, b) denote the cardinality of the minimal δ-net of (R, db), then the crucial condition needed for

this chaining argument is that for some 0 < b0 < 1,
∫ 1
0 {lnN (u, b0)}1/2du < ∞. On page 544 of the

KO paper it is argued that (4.1) implies this condition.
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The analog of the above metric that works in the current set up, i.e., for the location-scale set

up, is defined as follows. Let |z| := |z1| ∨ |z2|, for any z := (z1, z2)′ ∈ R2, and define

ρb(x, y) = sup
|z|≤b

|H(x(1 + z1) + z2)−H(y(1 + z1) + z2)|1/2, x, y ∈ R, b > 0.

Let N(δ, b) be the cardinality of the minimal δ−net of (R, ρb) and let

I(b) :=
∫ 1

0
{ln N(u, b)}1/2du.

We shall now show that (4.1) and (4.2) imply

I(b) < ∞, ∀ 0 ≤ b < 1.(4.7)

Fix a 0 < δ, b < 1. Since H is continuous, there exists 0 < M1δ, M2δ < ∞ such that

H(−M1δ) = δ2/2 and 1−H(M2δ) = δ2/2.

When x, y ∈ (−∞,−(b + M1δ)/(1− b)],

ρb(x, y) ≤ |H(x(1− b) + b) + H(y(1− b) + b)|1/2 ≤ {2H(−M1δ)}1/2 < δ.

For x, y ∈ [(b + M2δ)/(1− b),∞), using the monotonicity of H,

ρb(x, y) = sup
|z|≤b

|H(x(1 + z1) + z2)−H(y(1 + z1) + z2)|1/2

≤ [|1−H(x(1− b)− b)|+ |1−H(y(1− b)− b)|]1/2 ≤ {2(1−H(M2δ))}1/2 < δ.

Partition the interval [−(b + M1δ)/(1 − b), (b + M2δ)/(1 − b)] as −(b + M1δ)/(1 − b) = x1 < x2 <

· · · < xNδ
= (b + M2δ)/(1− b) with xk − xk−1 = δ2/(2‖h‖∞) and Nδ = [2(2b+M1δ+M2δ)‖h‖∞

(1−b)δ2 ], where

[z] is the integer part of z ∈ R. For each x, y ∈ (xk−1, xk], using (4.1), we obtain

ρb(x, y) = sup
|z|≤b

|H(x(1 + z1) + z2)−H(y(1 + z1) + z2)|1/2

≤ [‖h‖∞|x− y|(1 + b)]1/2 < δ, (because b < 1).

With µ := E|ηn1|, by (4.2) and the Markov inequality, M1δ + M2δ ≤ 4µ/δ2, because

δ2

2
= H(−M1δ) ≤ P (|ηn1| ≥ M1δ) ≤ µ

M1δ
,

δ2

2
= 1−H(M2δ) ≤ P (|ηn1| ≥ M2δ) ≤ µ

M2δ
,

Hence, using δ < 1, we have

N(δ, b) ≤ 2 + Nδ ≤ 2 +
2(2b + M1δ + M2δ)‖h‖∞

(1− b)δ2

≤ 2 +
2(2bδ2 + 4µ)‖h‖∞

(1− b)δ4
≤ 2(1− b)δ4 + 2(2bδ2 + 4µ)‖h‖∞

(1− b)δ4

≤ 2(1− b) + 2(2b + 4µ)‖h‖∞
(1− b)δ4

=
Cb

δ4
.
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Note that Cb := 2 + [(4b + 8µ)‖h‖∞/(1 − b)] is an increasing function of b, with sup0≤b≤b1 Cb =

Cb1 < ∞, for any b1 < 1. This proves (4.7).

Thus one can now repeat the arguments in KO verbatim using the metric ρb instead of db.

No details are given here. However we mention one typo that appears in the statement of the

Proposition 2.1 of the KO paper on page 552. The event [maxi |γni| ≤ δ/(1 + ln N(δ, b))1/2] at

(2.5) there has n1/2 missing. It should be [maxi |γni| ≤ n1/2δ/(1 + lnN(δ, b))1/2].

The above Theorem 4.1 is not enough to cover the cases where the weights γni and the dis-

turbances τni, ξni are functions of certain parameters and where one desires to obtain various

approximations uniformly in these parameters, as is needed in the previous sections. The next

result gives the needed extension of this theorem to cover these cases. Accordingly, let m ≥ 1 be

a fixed integer, lni, vni, uni be measurable functions from Rm to R such that for every t ∈ Rm,

(lni(t), vni(t), uni(t)) are independent of ηni, and Ani - measurable, for each 1 ≤ i ≤ n. Let, for

x ∈ R, t ∈ Rm,

V(x, t) := n−1/2
n∑

i=1

lni(t)I
(
ηni ≤ x + xvni(t) + uni(t)

)
,(4.8)

J (x, t) := n−1/2
n∑

i=1

lni(t) H
(
x + xvni(t) + uni(t)

)
,

Ũ(x, t) := V(x, t)− J (x, t), U∗(x, t) := n−1/2
n∑

i=1

lni(t)
[
I(ηni ≤ x)−H(x)

]
.

To state the needed result we need the following assumptions. For each t ∈ Rm,

n−1
n∑

i=1

l2ni(t) = Op(1), max
1≤i≤n

n−1/2|lni(t)| = op(1),(4.9)

max
1≤i≤n

{|vni(t)|+ |uni(t)|} = op(1),(4.10)

n−1/2
n∑

i=1

|lni(t)| [|vni(t)|+ |uni(t)|] = Op(1).(4.11)

∀ ε > 0, ∃ δ > 0, and an n1 3 ∀ 0 < b < ∞, ∀ ‖s‖ ≤ b, ∀n > n1,(4.12)

P
(
n−1/2

n∑

i=1

|lni(s)|
{

sup
‖t−s‖<δ

|vni(t)− vni(s)|+ sup
‖t−s‖<δ

|uni(t)− uni(s)|
}
≤ ε

)

> 1− ε,

P
(

sup
‖t−s‖<δ

n−1/2
n∑

i=1

|lni(t)− lni(s)| ≤ ε
)

> 1− ε.(4.13)

The following lemma gives the needed result.

Lemma 4.1 Under the above set up and under the assumptions (4.1), and (4.9) - (4.13), for every

0 < b < ∞, supx∈R,‖t‖≤b |Ũ(x, t)− U∗(x, t)| = op(1).
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Proof. The proof of this lemma is similar to that of the Lemma 8.3.2 in Koul (2002) with the

proviso that one uses the above Theorem 4.1 instead of Theorem 2.2.5 of Koul (2002), whenever

needed. 2

Proof of Theorem 2.1 follows from Lemma 4.1 applied as follows. Fix a 1 ≤ j ≤ r, and let W22j,i

denote the jth component of the vector W22,i. Now in the above set up take

uni(t) :=
µi(θ + n−1/2t)− µi(θ)√

hi(θ)
, vni(t) :=

√
hi(θ + n−1/2t)−

√
hi(θ)√

hi(θ)
,(4.14)

`ni(t) := W22j,i(θ + n−1/2t), 1 ≤ i ≤ n, t ∈ Rq+r, m = q + r.

Rewrite in terms of the above notation

I(ηi(θ + n−1/2t) ≤ x) ≡ I(ηi ≤ x + xvni(t) + uni(t)),

Kn(x, θ + n−1/2t) = Ũ(x, t) + n−1/2
n∑

i=1

`ni(t)[F0(x + xvni(t) + uni(t))− F0(x)],

where in Ũ , the d.f. H is replaced by F0.

The rest of the proof consists of verifying the conditions (4.9)-(4.13) for the entities given at

(4.14), the details of which are similar to those appearing in the proof of Lemma 8.3.1 in Koul

(2002), hence left out for the sake of brevity.

Proof of Theorem 2.2. The result follows using Le Cam’s third lemma, cf. Van der Vaart and

Wellner (1996: Theorem 3.10.7), as soon as we verify the contiguity of P1n to P0n. The sequence of

the probability measures {P1n} here depends on n through the change in the direction of the error

distribution, while in Drost et al. (1997), analogous alternative sequences depend on n through the

change in a Euclidean parameter. Thus their results of LAN are inapplicable.

Now, let fc = f + c(f̃ − f) and ζ = (f̃ − f)/
√

f , |c| < 1 and f̃ is the density of F̃ . Assume

that 0 < σ2 ≡ ∫
ζ2(x)f(x)dx < ∞. Let λn(c) :=

∑n
i=1 log(fc(ηi)/f(ηi)) denote the log-LR of P c

1n

to P0n. Verify that c−2
∫ [√

fc(x)−
√

f(x)− 1
2cζ(x)

√
f(x)

]2
dx → 0, as c → 0. From the proof of

Theorem 2.1 in Ling and McAleer (2003a), under P0n, it follows that

λn(n−1/2δ) = δ n−1/2
n∑

i=1

ζi(ηi(θ))− 1
2
δ2σ2 + op(1).

By the central limit theorem, it now readily follows that under P0n, n−1/2
∑n

i=1 ζi(ηi(θ)) →d

N(0, σ2), which in turn implies that P1n is contiguous to P0n. 2
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