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a b s t r a c t

Pearson diffusions are governed by diffusion equations with polynomial coefficients. Frac-
tional Pearsondiffusions are governedby the corresponding time-fractional diffusion equa-
tion. They are useful formodeling sub-diffusive phenomena, caused by particle sticking and
trapping. This paper provides explicit strong solutions for fractional Pearson diffusions, us-
ing spectral methods. It also presents stochastic solutions, using a non-Markovian inverse
stable time change.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The diffusion equation with constant coefficients

∂

∂t
p = −

∂

∂x


µp

+

∂2

∂x2

Dp


(1.1)

governs a Brownian motion with drift, the scaling limit of a random walk with finite variance jumps. The famous paper
of Einstein [13] details these connections. Sokolov and Klafter [40] discuss the modern theory, which involves fractional
derivatives. Particle sticking and trapping ismodeled using a fractional time derivative [19,28]. The resulting time-fractional
diffusion equations have found many applications in science, engineering and finance [17,24,30,31,37,38,41].

When the coefficients µ,D vary in space, the diffusion equation (1.1) governs a Markov process. Proving the existence of
strong solutions of time-fractional diffusion equations is a difficult problem [5,27] even on unbounded domains. If µ(x) and
D(x) are polynomials, the special structure allows explicit solutions. The normalized steady state solutions comprise a family
of probability density functions classified by Pearson [32]. The study of these Pearson diffusions beganwith Kolmogorov [20]
andWong [44], and continued in [2,3,15,22,23,39]. The Pearson diffusion equation governs several useful classes of Markov
processes, including the Ornstein–Uhlenbeck process [43], and the Cox–Ingersoll–Ross process [11], which are useful in
finance.

This paper considers fractional Pearson diffusions, where the first time derivative in (1.1) is replaced by a Caputo
fractional derivative [9] of order 0 < α < 1. Explicit strong solutions are developed, using spectral methods involving the
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Mittag-Leffler function. Stochastic solutions are then obtained, using a non-Markovian time change involving the inverse
stable subordinator. These solutions can be useful for particle tracking codes [25,45].

Time-fractional diffusion equations are important for applications to hydrology, finance, and physics, to name a few,
see [29] for full details. In hydrology, the fractional time derivative models sticking and trapping between mobile periods
for contaminant particles in a porous medium [38] or a river flow [10]. In finance, it models delays between trades [37],
and has been used to develop the Black–Scholes formalism in this context [24,41]. In statistical physics, the fractional
time derivative appears in the limit equation for a continuous time random walk, characterized by random waiting times
between particle jumps [28,30,31]. The methods of this paper provide concrete governing equations, explicit solutions,
and a stochastic interpretation for such situations, when the underlying diffusion has variable coefficients to model spatial
inhomogeneities. To the best of our knowledge, this is the only known case of a time-fractional diffusion with variable
coefficients for which one can explicitly compute the transition densities.

2. Pearson diffusions and their classification

2.1. Pearson diffusions

Pearson diffusions satisfy a stochastic differential equation of the form

dXt = µ(Xt)dt + σ(Xt)dW (t), t ≥ 0, (2.1)

where W (t), t ≥ 0, is a standard Brownian motion, and the drift µ(x) and diffusion (volatility) σ 2(x) are polynomials of at
most first and second degree, respectively:

µ(x) = a0 + a1x, D(x) =
σ 2(x)

2
= d0 + d1x + d2x2. (2.2)

Let (l, L) be an interval such that D(x) > 0 for all x ∈ (l, L). Given a Markov process X , let p = p(x, t; y, s) be the transition
density, i.e., the conditional density of x = Xt given y = Xs. We will only consider time-homogeneous processes, which
means that p(x, t; y, s) = p(x, t − s; y, 0) for t > s, and will write p(x, t; y) =

∂
∂xP(Xt ≤ x|X0 = y).

The Fokker–Planck operator L is defined as

Lg(x) = −
∂

∂x
[µ(x)g(x)] +

1
2

∂2

∂x2

σ 2(x)g(x)


,

and the Kolmogorov forward or Fokker–Planck equation is

∂p(x, t; y)
∂t

= −
∂

∂x
[µ(x)p(x, t; y)] +

1
2

∂2

∂x2

σ 2(x)p(x, t; y)


or

∂p
∂t

= Lp. (2.3)

The transition density satisfies this equation with the point source initial condition. The infinitesimal generator of the
diffusion (2.1) is:

Gg(y) =


µ(y)

∂

∂y
+

σ 2(y)
2

∂2

∂y2


g(y).

This operator appears on the right-hand side of Kolmogorov backward equation:

∂p(x, t; y)
∂t

= µ(y)
∂p(x, t; y)

∂y
+

σ 2(y)
2

∂2p(x, t; y)
∂y2

or
∂p
∂t

= Gp. (2.4)

If the stationary (invariant) densitym of the diffusion (2.1) exists, it satisfies a time-independent Fokker–Planck equation
(2.3) with zero on the left-hand side [18]. For Pearson diffusions, this equation reduces to

m′(x)
m(x)

=
µ(x) − D′(x)

D(x)
=

(a0 − d1) + (a1 − 2d2)x
d0 + d1x + d2x2

. (2.5)

Eq. (2.5) is the famous Pearson equation introduced by K. Pearson in 1914 [32] in order to unify some important classes of
distributions. Because of this connection to the Pearson equation, the processes that satisfy Eq. (2.1) are known as Pearson
diffusions.

A function h is an eigenfunction of (−G) if there exists a complex numberλ (the eigenvalue) such that the Sturm–Liouville
equation holds:

Gg = −λg.

In the Pearson case, this equation can be written as a differential equation of hypergeometric type:

(d0 + d1x + d2x2)g ′′
+ (a0 + a1x)g ′

+ λg = 0. (2.6)
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Consider a system of polynomials {Qn(x), n ∈ N } , where Qn(x) is a polynomial in x of degree at most n, and the index
set is either N = N, the set of nonnegative integers (including zero), or N = {0, 1, 2, . . . ,N} for a finite nonnegative N . We
say that {Qn} is an orthogonal system, for some pdf (weight)m(x), if the following orthogonality relations hold:

S
Qn(x)Qm(x)m(x)dx = δm

n c
2
n , n,m ∈ N ,

where S is the support of the density m, c2n are nonzero constants, and δm
n is the Kronecker tensor. For Pearson diffusions,

the stationary density is the weight functionmwith respect to which the eigenfunctions are orthogonal [18, p. 331].
There are six basic types of solutions to (2.6), depending on whether the polynomial D(x) is constant, linear, or quadratic

and, in the last case, on whether the discriminant ∆ = d21 − 4d0d2 is positive, negative, or zero [2]. These solutions are the
classical orthogonal polynomials. Three types of solutions of (2.6) correspond to the casewhen the spectrumof the generator
G is discrete. In this case, N = N. The remaining three types correspond to mixed spectrum of the generator, when only
finitely many orthogonal polynomials exist (N = {0, 1, 2, . . . ,N} for a finite nonnegative N), and the remaining part of
the spectrum is continuous (see [2,3,22,23]). A useful summary of the six types of Pearson diffusions is given in [29]. In this
paper, we consider fractional Pearson diffusions with purely discrete spectrum. When the spectrum of the generator G is
discrete, the eigenvalues are given by the formula:

λn = −nµ′(x) −
1
2
n(n − 1)D′′(x) = −n[a1 + d2(n − 1)]. (2.7)

The associated eigenfunctions are of the form g(x) = Qn(x), where Qn is a polynomial of degree at most n. Next we briefly
describe the three classes of Pearson diffusions with discrete spectrum.

2.2. Ornstein–Uhlenbeck (OU) process

When D(x) in (2.2) is a constant, Eq. (2.1) takes the form

dXt = −θ (Xt − µ) dt +

√

2θσ 2 dWt , θ > 0, t ≥ 0,

with an obvious change of notation. For a stationaryOUprocess, θ is a correlation function parameter (corr(Xt , Xs) = e−θ |t−s|,
see [6]), and µ and σ are distribution parameters. The invariant distribution is normal:

m(x) =
1

σ
√
2π

e−
(x−µ)2

2σ2 , x ∈ R. (2.8)

When θ > 0, the diffusion is a stationary OU process when the initial distribution has density m. The eigenvalues are
λn = θn, n ≥ 0. The eigenfunctions of (−G) are Hermite polynomials:

Hn(x) = (−1)n [m(x)]−1 dn

dxn
m(x), x ∈ R, n = 0, 1, 2, . . .

and the normalized Hermite polynomials are

Qn(s) =
σ n

√
n!

Hn(x).

2.3. Cox–Ingersoll–Ross (CIR) process

WhenD(x) = d1x+d0, wemay suppose d0 = 0 (after normalizing,whichwould change a0 to a0−a1d0/d1). If d1 > 0 then
the process is a CIR (square root Feller) diffusion on the interval (0, ∞) [11]. If d1 < 0, then the state space is (−∞, 0), where
σ 2(x) is positive. This can be reduced to the case d1 > 0 by a simple reparametrization. Using the traditional parametrization
of the CIR process, Eq. (2.1) takes the form:

dXt = −θ


Xt −

b
a


dt +


2θ
a

Xt dWt , θ > 0, a > 0, b > 0, t ≥ 0.

Then we have the invariant density:

m(x) =
ab

Γ (b)
xb−1e−ax x > 0. (2.9)

With this parametrization,when the initial distribution has densitym, the stationary CIR process has the correlation function
corr(Xt , Xs) = e−θ |t−s|, see [6]. The eigenvalues are λn = θn, n ≥ 0. The orthogonal polynomials are Laguerre polynomials
given by the formula:

L(b−1)
n (ax), x > 0, n ∈ N with L(γ )

n (x) =
1
n!

x−γ ex
dn

dxn
xn+γ e−x, γ > −1.
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The normalized Laguerre polynomials are

Qn(x) =
L(b−1)
n (ax)

√
Γ (b + n)/(Γ (b)n!)

.

2.4. Jacobi diffusion

Suppose D(x) = d2(x − x1)(x − x2), and d2 < 0. Then the state space is (x1, x2) with x1 < x2. After rescaling we may
assume d2 = −1, and after a linear change of variables x̃ = 2x − (x1 + x2)/(x2 − x1), we can take D(x) = 1 − x2, µ(x) =

−(a+b+2)x+b−a. To separate the correlation and distribution parameters, use factor of θ/(a+b+2), andwrite Eq. (2.1)
in the form

dXt = −θ


Xt −

b − a
a + b + 2


+


2θ

a + b + 2
(1 − X2

t )dWt .

With this parametrization, the invariant density is (up to a normalizing constant)

m(x) ∝ (1 − x)a(1 + x)b

In the recurrent case a, b > −1, we obtain the Beta density:

m(x) = (1 − x)a(1 + x)b
Γ (a + b + 2)

Γ (b + 1)Γ (a + 1)2a+b+1
, x ∈ (−1, 1). (2.10)

When the initial distribution has density m, the stationary Jacobi diffusion has the correlation function corr(Xt , Xs) =

e−θ |t−s|, see [6]. The eigenvalues are λn = nθ(n + a + b + 1)/(a + b + 2), n ≥ 0. The orthogonal polynomials are Jacobi
polynomials given by the formula:

2nn!P (a,b)
n (x) = (−1)n(1 − x)−a(1 + x)−b dn

dxn

(1 − x)a+n(1 + x)b+n .

The orthonormal Jacobi polynomials are

Qn(x) =
P (a,b)
n (x)
cn

, (2.11)

where

c2n =
2a+b+1

2n + a + b + 1
Γ (n + a + 1)Γ (n + b + 1)
Γ (n + 1)Γ (n + a + b + 1)

.

3. Fractional Pearson diffusions

The Caputo fractional derivative of order 0 < α < 1 is defined by

∂αu(t, x)
∂tα

=
1

Γ (1 − α)


∂

∂t

 t

0
(t − τ)−α u (τ , x) dτ −

u (0, x)
tα


. (3.1)

When 0 < α < 1, and u is differentiable in t (or even absolutely continuous), the fractional derivative can also be
expressed as

∂αu(t, x)
∂tα

=
1

Γ (1 − α)

 t

0

∂u (τ , x)
∂τ

(t − τ)−α dτ , (3.2)

see for example [12]. Let ũ(s, x) =


∞

0 e−stu(t, x) dt be the usual Laplace transform. It is not hard to check that ∂αu(t, x)/∂tα

has Laplace transform sα ũ(s, x) − sα−1u(0, x), which reduces to the familiar form when α = 1.
For 0 < α < 1 and function p = p(x, t; y), t > 0, x ∈ (l, L), we consider a time-fractional Fokker–Planck equation of the

form

∂αp
dtα

=
∂

∂x
[−µ(x)p] +

∂2

∂x2


1
2
σ 2(x)p


or

∂αp
dtα

= Lp (3.3)

subject to point source initial condition. Note that, y is a constant in this equation. We also consider a fractional diffusion
(backward Kolmogorov) equation:

∂αp
dtα

= Gp = µ(y)
∂p
∂y

+
1
2
σ 2(y)

∂2p
∂y2

. (3.4)
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Note that, x is a constant in this equation. We use separation of variables approach and seek a solution of the fractional
backward equation (3.4) in the form pα(x, t; y) = T (t)ϕ(y), where the functions T and ϕ may depend on x and α. Then

dαT (t)
dtα

ϕ(y) = T (t)Gϕ(y) or
1

T (t)
dαT (t)
dtα

=
Gϕ(y)
ϕ(y)

if T and ϕ do not vanish. The last equation can hold only if both sides are equal to a constant. Denote this constant by −λ
(so that λ > 0) and consider two resulting equations:

Gϕ = −λϕ (3.5)

and

dαT (t)
dtα

= −λT (t). (3.6)

For Eq. (3.5), the eigenvalues are given by (2.7), and the eigenfunctions are either Hermite, Laguerre, or Jacobi polynomials,
as noted in Section 2. As for Eq. (3.6), it was shown in [26,27] that strong solutions (temporal eigenfunctions Tn(t)) have the
form:

Tn(t) = Eα (−λntα) =

∞
j=0

(−λntα)j

Γ (1 + αj)
(3.7)

where Tn(0) = 1, and Eα(·) is the Mittag-Leffler function. For α = 1, the standard exponential form of Tn is recovered:
Tn(t) = e−λnt . These considerations lead to a heuristic solution of the backward equation:

pα(x, t; y) =

∞
n=0

bnEα (−λntα)Qn(y),

where {Qn} represents the orthonormal system of Hermite, Laguerre or Jacobi polynomials in the case of OU, CIR, or Jacobi
diffusion, respectively (see Section 2 for details), and the constants bn may depend on x. The goal of this section is to make
this heuristic argument precise, and provide expressions for strong solutions for the fractional Cauchy problems associated
with (3.3) and (3.4).

Lemma 3.1. For the three classes of fractional Pearson diffusions (OU, CIR, Jacobi) whose invariant density m and system of
orthonormal polynomials {Qn, n ∈ N} were detailed in Section 2, for any 0 < α < 1, the series

pα(x, t; y) = m(x)
∞
n=0

Eα (−λntα)Qn(y)Qn(x) (3.8)

with Eα given by (3.7) converges for fixed t > 0, x, y ∈ (l, L).

Proof. For a Mittag-Leffler function with 0 < α < 1 (see [21], Eq. (3.5)):

Eα(−λntα) ≤
c

1 + λntα
,

and from [26, Eq. (5.26)]

Eα(−λntα) ∼
1

Γ (1 − α)λntα

as the argument λntα → ∞. Here f (t) ∼ g(t) means that limt→∞ f (t)/g(t) = 1. The eigenvalues are λn = θn in the
Hermite and Laguerre cases, and λn = nθ(n + a + b + 1)/(a + b + 2) in the Jacobi case. In the rest of the proof, we will
assume without loss of generality that, µ = 0 and σ = 1 in the OU case, and a = 1 in the CIR case.

Let us first deal with the OU case. From [36, p. 369]

|Qn(x)| ≤ Kex
2/4n−1/4


1 + |x/

√
2|5/2


, (3.9)

where K is a constant that does not depend on x, and the convergence of the series (3.8) follows from

|Eα (−λntα)Qn(y)Qn(x)| ≤
C(x, y, t, α)

n1+1/2
.

Above and in the later parts of the paper, we use notation C(x, y, t, α) for constants not all equal, but not dependent on n.
These constants may also depend on the parameters of the distributions (i.e. the coefficients of µ(x) and σ(x) in (2.2)).
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In the CIR case, the orthonormal Laguerre polynomials satisfy [36, p. 348]

|Qn(x)| = O


ex/2

x(2b−1)/4
n−1/4


,

uniformly for x in finite intervals [x1, x2], and therefore

|Eα (−λntα)Qn(y)Qn(x)| ≤
C(x, y, t, α)

n1+1/2

in this case. Finally, for orthonormal Jacobi polynomials from [42, p. 196] and [14] we have

Qn(x) = C(x, a, b) cos(Nθ + γ ) + O(n−1), (3.10)

where x = cos θ,N = n+ 1/2(a+ b+ 1), and γ = −(a+ 1/2)π/2, and O holds uniformly in θ on [ϵ, π − ϵ] for any ϵ > 0.
The convergence of the series (3.8) follows from

|Eα (−λntα)Qn(y)Qn(x)| ≤
C(x, y, t, α) cos(Nθ + γ )

n2
. �

The next result proves a strong solution for the fractional backward equation.

Theorem 3.2. Suppose that, the function g ∈ L2(m(x)dx) is such that


n gnQn with gn =
 L
l g(x)Qn(x)m(x)dx converges to g

uniformly on finite intervals [y1, y2] ⊂ (l, L). Then the fractional Cauchy problem

∂αu(t; y)
∂tα

= Gu(t; u) = µ(y)
∂u(t; y)

∂y
+

1
2
σ 2(y)

∂2u(t; y)
∂y2

(3.11)

with initial condition u(0; y) = g(y) has a strong solution u = u(t; y) given by

u(t; y) = uα(t; y) =

 L

l
pα(x, t; y)g(x)dx =

∞
n=0

Eα (−λntα)Qn(y)gn. (3.12)

The series in (3.12) converges absolutely for each fixed t > 0, y ∈ (l, L), and (3.11) holds pointwise.

Proof. Each term under the sum in (3.12) satisfies (3.11) because

GEα(−λntα)Qn(y)gn = −λngnEα(−λntα)Qn(y) =
∂α

∂tα
Eα(−λntα)Qn(y)gn.

To prove that (3.12) satisfies (3.11) pointwise, we need to show that, the series in (3.12) can be differentiated term by term,
and in view of standard results in analysis (e.g., see [35, Theorem 7.16, p. 151; Theorem 7.17, p. 152]), this would follow from
absolute and uniform convergence on finite intervals of the series


Qn(y)gn and the series that involve the derivatives:

∞
n=0

∂α

∂tα
Eα(−λntα)Qn(y)gn,

∞
n=0

Eα(−λntα)gnQ ′

n(y),

∞
n=0

Eα(−λntα)gnQ ′′

n (y).

For the series with the fractional time derivative,

∂α

∂tα
Eα(−λntα)Qn(y)gn = −λnEα(−λntα)Qn(y)gn.

Since Eα(−λntα) = O(λ−1
n t−α) when t > 0 and n → ∞ (Eq. (5.26) in [26]), the series with a fractional derivative in time

converges if


n Qn(y)gn converges. Under the conditions on the function g , the series


n Qn(y)gn converges (pointwise) to
g(y) uniformly on finite intervals [y1, y2] ⊂ (l, L).

Without loss of generality, assume that, µ = 0 and σ = 1 in the OU case, and a = 1 in the CIR case. In the OU case, we
use the relation ([1, p. 783]):

d
dx

Hn(x) = nHn−1(x).
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For orthonormal Hermite polynomials,

d
dx

Qn(x) =
√
nQn−1(x),

and Eα(−λntα)gnQ ′

n(y)
 ≤ C(t, y, α)n−3/4

|gn|.

Convergence of the series


n n
−3/4

|gn| follows by the Cauchy–Schwarz inequality:


n

n−3/4
|gn| ≤


n

n−3/2

1/2 
n

|gn|2
1/2

.

The series


|gn|2 converges because g ∈ L2(m(x)dx) and


|g(x)|2m(x)dx =


|gn|2.
For the second derivative in space, use the differential equation (2.6):

Q ′′

n (y) = yQ ′

n(y) − nQn(y).

The series involving the first derivative in space was treated above, and for the second term

Eα(−λntα)nQn(y)gn

we again use the asymptotics of Mittag-Leffler function (Eq. (5.26) in [26]) Eα(−λntα) ∼ 1/(Γ (1 − α)λntα) for t > 0 and
n → ∞, and the facts that λn = θn, and that


n Qn(y)gn converges uniformly on finite intervals.

In the CIR case, from [42, p. 102] we have

d
dx

L(b−1)
n (x) = −L(b)

n−1(x),

and for orthonormal Laguerre polynomials

d
dx

Q (b−1)
n (x) = −

(n − 1)b/2

n(b−1)/2
Q (b)
n−1(x).

The last quantity behaves like C(x, b)n1/4 uniformly on finite intervals (see [36, p. 348]). Therefore in this caseEα(−λntα)gnQ ′

n(y)
 ≤ C(t, y, α, b)n−3/4

|gn|,

and the rest of the argument for the series involving the first derivative in space is the same as in the OU case. The same
argument also applies to the second derivative in space because, for Laguerre polynomials, Eq. (2.6) has the form

y
d2

dy2
Qn(y) = (y − b)

d
dy

Qn(y) − nQn(y).

For Jacobi polynomials,

(2n + a + b)(1 − x2)
d
dx

P (a,b)
n (x) = n(a − b − (2n + a + b)x)P (a,b)

n (x) + 2(n + a)(n + b)P (a,b)
n−1 (x)

and for orthonormal Jacobi polynomials

d
dx

Qn(x) =
n(a − b − (2n + a + b)x)

(2n + a + b)(1 − x2)
Qn(x) +

2(n + a)(n + b)
(2n + a + b)(1 − x2)


n/(n − 1)Qn−1(x).

The first term in the last relation leads to the series
n

nEα(−λntα)Qn(x)gn

that converges, because it is dominated by the absolutely convergent series C(t, x, α, a, b)


n gn/n. The latter can be seen
from Cauchy–Schwarz inequality

n

|gn|/n

2

≤


n

|gn|2


n

1/n2


.

The second term in the expression for the derivative, in the case of Jacobi polynomials, behaves in the same way as the first,
and finally, the expression for the second derivative from (2.6) is

(1 − y2)
d2

dy2
Qn(y) = −((b − a) − (a + b − 2)y)

d
dy

Qn(y) − n(n + a + b + 1)Qn(y).
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The term with the first derivative was treated above. The second term leads to the series
n

Eα(−λntα)n(n + a + b + 1)Qngn,

which converges since the series


n Qngn converges by assumption and λn = nθ(n + a + b + 1)/(a + b + 2) in this case.
Thus in all the three cases, (3.12) can be differentiated term by term, and it satisfies the fractional backward Kolmogorov

equation (3.11). The initial condition is satisfied since u(0; y) =


∞

n=0 Qn(y)gn = g(y) pointwise for y ∈ (l, L) for g that
satisfies conditions of the theorem. �

Now, we consider the fractional Fokker–Planck (forward) equation. Because of the prefactor m(x) in (3.14) below, here
we use an eigenfunction expansion of f (x)/m(x) in L2(m(x)dx). Note that, f (x)/m(x) is well defined because m does not
vanish on the interval (l, L).

Theorem 3.3. Suppose that, the function f /m ∈ L2(m(x)dx), and that


n fnQn with fn =
 L
l f (y)Qn(y)dy converges to f /m

uniformly on finite intervals [y1, y2] ⊂ (l, L). Then the fractional Cauchy problem

∂αu(x, t)
∂tα

= Lu(x, t) = −
∂

∂x
[µ(x)u(x, t)] +

1
2

∂2

∂x2

σ 2(x)u(x, t)


(3.13)

with the initial condition u(x, 0) = f (x) has a strong solution u = u(x, t) given by

u(x, t) = uα(x, t) =

 L

l
pα(x, t; y)f (y)dy = m(x)

∞
n=0

Eα (−λntα)Qn(x)fn. (3.14)

The series in (3.14) converges absolutely for each t > 0, x ∈ (l, L), and Eq. (3.13) holds pointwise (u is a strong solution).

Proof. To demonstrate that each term in (3.14) satisfies (3.13), recall thatm satisfies the time-independent Fokker–Planck
equation (2.5), and som(x)µ(x) =

d
dx (σ

2(x)m(x)/2). We have

L(m(x)Eα(−λntα)fnQn(x)) = Eα(−λntα)fn


−

d
dx

(µ(x)m(x)Qn(x)) +
d2

dx2
(σ 2(x)m(x)Qn(x)/2)


= Eα(−λntα)fnm(x)GQn(x) = −λnEα(−λntα)fnm(x)Qn(x).

The same expression is obtained for the Caputo fractional derivative in time applied to each term in (3.14):

∂α

∂tα
(m(x)Eα(−λntα)fnQn(x)) = −λnEα(−λntα)fnm(x)Qn(x).

The proof that series in (3.14) can be differentiated term-by-term with respect to the time and space variables is similar to
the proof in Theorem 3.2. The conditions on f ensure that the series

∞
n=0

∂α

∂tα
Eα(−λntα)Qn(x)fn,

∞
n=0

Eα(−λntα)Q ′

n(x)fn,

∞
n=0

Eα(−λntα)Q ′′

n (x)fn,

converge absolutely and uniformly on finite intervals.
Finally, under the assumptions on f , substitution of t = 0 into (3.14) gives

u(x, 0) = m(x)


fnQn(x).

Since


n fnQn(x) = f (x)/m(x) pointwise for x ∈ (l, L), we see that u(x, 0) = f (x). �

Remark 3.4. Here we provide some sufficient conditions for convergence of the eigenfunction expansions that were
assumed in Theorems 3.2 and 3.3. Assume that, g ∈ L2(m(x)dx) is continuous on (l, L) and has bounded variation on any
finite interval [y1, y2] ⊂ (l, L) (or that g is differentiable on (l, L)). Then the conditions of the equiconvergence theorems
[42, pp. 245–248] are sufficient to ensure that


n gnQn converge to g uniformly on finite intervals [y1, y2] ⊂ (l, L): for the

case of Hermite series, it suffices that, the function g is absolutely integrable on any finite interval:
 a
−a |g(y)|dy < ∞ for

every a > 0, and
∞

n
e−x2/4x−5/3(|g(x)| + |g(−x)|)dx = o(n−1), n → ∞.
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Sansone [36, p. 381] gives a different sufficient condition:


∞

−∞
g(x)

√
m(x)dx converges. For the Laguerre series, it suffices

that the integrals
 1
0 xb−1

|g(x)|dx and
 1
0 x(b−1)/2−1/4

|g(x)|dx exist and
∞

n
e−x/2x(b−1)/2−13/12

|g(x)|dx = o(n−1/2), n → ∞.

For the Jacobi series, it suffices that, the integrals 1

−1
(1 − x)a(1 + x)b|g(x)|dx and

 1

−1
(1 − x)a/2−1/4(1 + x)b/2−1/4

|g(x)|dx

exist. For a different sufficient condition in the Jacobi case, see [33]. For Theorem 3.3, these sufficient conditions need to
apply to the function f /m.

Remark 3.5. If α = 1, then (3.8) becomes

p1(x, t; y) = m(x)
∞
n=0

e−λntQn(x)Qn(y). (3.15)

The series (3.15) converges pointwise, can be differentiated term-by-term, and its sum satisfies both forward and backward
Kolmogorov equations (Eqs. (2.2) and (2.3), respectively) with point source initial conditions. The functions defined in (3.12)
and (3.14) with α = 1 solve the respective Cauchy problems under the conditions of Theorems 3.2 and 3.3.

For OU and CIR diffusions, (3.15) can be written in closed form. The transition density of the OU process was given in [18,
p. 332] for a special case. In general,

p1(x, t; y) =
1

σ

2π(1 − e−2θ t)

exp


−


x − µ − (y − µ)e−θ t

2
2σ 2(1 − e−2θ t)


, t ≥ 0.

The transition density for the CIR process is

p1(x, t; y) =


x
y

 b−1
2 a

(1 − e−θ t)Γ (b)
exp


θ(b − 1)t

2
− ax −

a(y + x)
eθ t − 1


I(b−1)


a
√
yx

sinh (0.5θ t)


, t ≥ 0,

where I(b−1)(·) is the modified Bessel function of the first kind.

Remark 3.6. For the OU case (when σ 2(x) is a constant), the physical interpretation of Eq. (3.8) was provided in
[30, Eqs. (117) and (119)]. The expansion (3.8) in the CIR and Jacobi cases can be interpreted similarly.

Remark 3.7. It is easy to see that the solutions (3.12) in Theorem 3.2 are unique. If there are two solutions u1, u2 with the
same initial condition ui(0; y) = g(y) that satisfies the conditions of the theorem, then u = u1 − u2 is a solution with initial
condition g(y) ≡ 0. Then every gn = 0, and hence it follows from (3.12) that u(t; y) ≡ 0, proving uniqueness. The proof for
Theorem 3.3 is similar.

4. Stochastic model for fractional Pearson diffusion

The Pearson diffusions defined by (2.1) have transition densities that solve the Fokker–Planck equation (2.3). Theorem3.3
provides the corresponding solution to the fractional Fokker–Planck equation (3.13). In this section, we construct the
fractional Pearson diffusion process, whose transition densities solve (3.13). This construction involves a non-Markovian
time change, by way of the inverse (or first passage time) of a stable subordinator. Since the negative generator of a stable
subordinator with index 0 < α < 1 is a (Riemann–Liouville) fractional derivative of order α, the appearance of the
stable subordinator here is somewhat natural. Our approach extends the results of [4,28] to the case of variable coefficient
diffusions. Because the fractional Pearson diffusion is non-Markovian, the transition densities do not determine the process.
Hence the stochastic solution provides additional information about themovement of particles that diffuse under thismodel.

Let Dt be a standard stable subordinator with Laplace transform

E[e−sDt ] = exp{−tsα}, s ≥ 0 (4.1)

and define the inverse (hitting time, first passage time) process

Et = inf{x > 0 : Dx > t}. (4.2)

Let X1(t) be a Pearson diffusion given by Eq. (2.1) whose transition densities solve the forward Fokker–Planck equation (2.3)
with the point source initial condition. We take X1(t) to be independent of the subordinator Dt , and define the fractional
Pearson diffusion process

Xα(t) = X1(Et), t ≥ 0. (4.3)
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We say that, the non-Markovian process Xα(t) has a transition density pα(x, t; y) if

P(Xα(t) ∈ B|Xα(0) = y) =


B
pα(x, t; y)dx

for any Borel subset B of (l, L).

Lemma 4.1. The fractional Pearson diffusion (4.3) of OU, CIR, or Jacobi type has transition density defined by Eq. (3.8) from
Lemma 3.1.

Proof. Let p1(x, t; y) be the transition density (3.15) for a Pearson diffusion of OU, CIR, or Jacobi type. Since {Et ≤ x} =

{Dx ≥ t}, a straightforward argument [28, Corollary 3.1] shows that the density of Et is

ft(x) =
t
α
x−1− 1

α gα


tx−

1
α


, (4.4)

where gα is the density of D(1). Bingham [7] and Bondesson, Kristiansen, and Steutel [8] show that Et has a Mittag-Leffler
distribution with

E(e−sEt ) =


∞

0
e−sxft(x) dx = Eα(−stα).

Since the Pearson diffusion X1(t) is independent of the time change Et , a Fubini argument along with (3.15) yields

P(Xα(t) ∈ B|Xα(0) = y) =


∞

0
P(X1(τ ) ∈ B|X1(0) = y)ft(τ ) dτ

=


∞

0


B
p1(x, τ ; y)dx ft(τ ) dτ

=


B
m(x)

∞
n=0

Qn(x)Qn(y)


∞

0
e−λnτ ft(τ )dτdx

=


B
m(x)

∞
n=0

Qn(x)Qn(y)Eα(−λntα)dx (4.5)

which shows that (3.8) is the transition density of Xα(t).
The justification for term-by-term integration in

∞

0

∞
n=0

Qn(x)Qn(y)e−λnτ ft(τ )dτ

is as follows. For ϵ > 0, consider
∞

ϵ

∞
n=0

Qn(x)Qn(y)e−λnτ ft(τ )dτ .

The series


∞

n=0 Qn(x)Qn(y)e−λnτ converges absolutely and uniformly for τ ∈ [ϵ, ∞), and
∞

ϵ

e−λnτ ft(τ )dτ <


∞

0
e−λnτ ft(τ )dτ = Eα(−λntα)

is finite for all n. Therefore
∞

ϵ

∞
n=0

Qn(x)Qn(y)e−λnτ ft(τ )dτ =

∞
n=0

Qn(x)Qn(y)


∞

ϵ

e−λnτ ft(τ )dτ .

The last series converges because
∞
n=0

|Qn(x)Qn(y)|


∞

ϵ

e−λnτ ft(τ )dτ ≤

∞
n=0

|Qn(x)Qn(y)|e−λnϵ,

and the behavior of orthonormal polynomials was detailed in the proof of Lemma 3.1. Now, we let ϵ → 0. On the right hand
side, the limit as ϵ → 0 can be brought inside the summation by the dominated convergence argument:

∞

ϵ

e−λnτ ft(τ )dτ <


∞

0
e−λnτ ft(τ )dτ = Eα(−λntα),
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and the series
∞
n=0

Eα(−λntα)Qn(x)Qn(y)

converges absolutely for all t > 0 and x, y ∈ (l, L) as was shown in Lemma 3.1. �
The next result shows that, (4.3) gives a stochastic solution to the fractional backward equation (3.11).

Theorem 4.2. For any function g that satisfies the conditions of Theorem 3.2 (see also Remark 3.4), the function

u(t; y) = E[g(Xα(t))|Xα(0) = y] (4.6)

solves the fractional Cauchy problem (3.11) with initial condition u(0; y) = g(y).
Proof. The proof is an application of Theorem 3.1 in [4] along with some ideas from [28]. Let p1(x, t; y) be the transition
density (3.15) for a Pearson diffusion of OU, CIR, or Jacobi type. For a t > 0, define the operator

T (t)g(y) = E[g(X1(t))|X1(0) = y] =

 L

l
p1(x, t; y)g(x)dx

for bounded continuous functions g that vanish at infinity in the OU case, bounded continuous functions on [0, +∞)
that vanish at infinity in the CIR case, or bounded and continuous functions on [−1, 1] in the Jacobi case. The
Chapman–Kolmogorov equation for the transition density p1 implies that the operators {T (t), t ≥ 0} form a semigroup:
T (t)T (s) = T (t + s). In view of [16, Theorem 3.4, p. 112], the operators T (t) form a uniformly bounded semigroup on the
respective Banach space of continuous functions, with the supremum norm. In addition, for any fixed y ∈ (l, L)

T (t)g(y) − g(y) =

 L

l
p1(x, t; y)(g(x) − g(y))dx

=


|x−y|≤ϵ∩(l,L)

p1(x, t; y)(g(x) − g(y))dx +


|x−y|>ϵ∩(l,L)

p1(x, t; y)(g(x) − g(y))dx

≤ sup
|x−y|≤ϵ∩(l,L)

|g(x) − g(y)|


|x−y|≤ϵ∩(l,L)
p1(x, t; y)dx + C


|x−y|>ϵ∩(l,L)

p1(x, t; y)dx

since function g is bounded. From the properties of the diffusion processes,

|x−y|>ϵ∩(l,L) p1(x, t; y)dx → 0 as t → 0 for

any ϵ > 0 [18], therefore the second term in the above expression tends to zero as t → 0. The first term is bounded by
sup|x−y|≤ϵ∩(l,L) |g(x) − g(y)|, which tends to zero as ϵ → 0 because of the continuity of g . Therefore we have a pointwise
continuity of the semigroup in the sense that, for every fixed y ∈ (l, L), T (t)f (y) → f (y) as t → 0. Lemma 6.7, p. 241
in [34] yields strong continuity of the semigroup: ∥T (t)g − g∥ → 0 as t → 0. Therefore, {T (t), t ≥ 0} is a Feller–Dynkin
semigroup in the sense of [34, Definition 6.5, p. 241]: a strongly continuous and uniformly bounded contraction semigroup
on the respective Banach space of continuous functions.

In the notation of Theorem 3.2, T (t)g(y) = u1(t; y) solves the Cauchy problem

∂u
∂t

= Gu, u(0; y) = g(y). (4.7)

Since T (t) is a uniformly bounded and strongly continuous semigroup, Theorem 3.1 in [4] shows that

Stg(y) =


∞

0
T ((s/t)α)g(y) gα(s)ds = uα(t; y) (4.8)

solves the corresponding fractional Cauchy problem:

∂αu
∂tα

= Gu, u(0; y) = g(y). (4.9)

Then a change of variables (t/s)α = τ in (4.8), together with the density formula (4.4) for the time change Et , yields

Stg(y) =
t
α


∞

0
T (τ )g(y)gα(tτ−1/α)τ−1−1/αdτ

=


∞

0
T (τ )g(y)ft(τ )dτ

=


∞

0
E[g(X1(τ ))|X1(0) = y]ft(τ )dτ

= E[g(X1(Et))|X1(0) = y]

which is equivalent to (4.6), since E0 = 0 almost surely. �
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Remark 4.3. An alternative proof of Theorem 4.2 uses Theorem 3.2 along with the fact that

E[g(Xα(t))|Xα(0) = y] =

 L

l
pα(x, t; y)g(x)dx

in view of Lemma 4.1.

Next, we apply this transition density to solve the fractional forward equation (3.13).

Corollary 4.4. Let pα(x, t; y) be the transition density (3.8) of a fractional Pearson diffusion of OU, CIR, or Jacobi type. For any
function f that satisfies the conditions of Theorem 3.3 (see also Remark 3.4), the function

pα(x, t) =

 L

l
pα(x, t; y)f (y)dy (4.10)

solves the fractional Cauchy problem (3.13) with initial condition pα(x, 0) = f (x).

Proof. This follows immediately from Theorem 3.2 and Lemma 4.1. �

Remark 4.5. If the initial function f in Corollary 4.4 is the probability density of Xα(0), then the solution (4.10) of the forward
(Fokker–Planck) equation gives the probability density of Xα(t). Furthermore, the function

fα(t, x, y) = pα(x, t; y)f (y) = m(x)
∞
n=0

Eα(−λntα)Qn(x)Qn(y)f (y)

gives the joint density of x = Xα(t) and y = Xα(0). For instance, when f = m, the conditions of Theorem 3.3 are satisfied
(see Remark 3.4).

The fractional OU process is obtained when the drift is linear and the diffusivity is constant:
µ(x) = θµ − θx, θ > 0,
σ 2(x) = 2θσ 2.

(4.11)

The stationary density (2.8) is normal with mean µ and variance σ 2. The process Xα is not Gaussian, even if the initial
function is Gaussian, due to the random time change. However, the next result shows that, the stationary distribution of the
fractional OU process is the same as the traditional OU process.

Theorem 4.6. Let X1(t) be an Ornstein–Uhlenbeck process, the solution of Eq. (2.1)with coefficients given by Eq. (4.11). Let Et be
the inverse (4.2) of a standard stable subordinator given by Eq. (4.1) independent of the process X1. Given any initial density f (x) for
Xα(0) that satisfies the conditions of Theorem 3.3 (see also Remark 3.4), the density (4.10) of the fractional Ornstein–Uhlenbeck
process Xα(t) = X1(Et) is asymptotically normal:

pα(x, t) → m(x) =
1

σ
√
2π

e−
(x−µ)2

2σ2 as t → ∞. (4.12)

Proof. In the OU case, the eigenvalues are λn = θn, and the orthonormal polynomials are normalized orthogonal Hermite
polynomials given by the Rodrigues formula

H̄n(x) = (−1)n
σ n

√
n!

e
(x−µ)2

2σ2
dn

dxn


e−

(x−µ)2

2σ2


. (4.13)

For example, the first four normalized Hermite polynomials are:

H̄0(x) = 1,

H̄1(x) = −
1
σ

(−x + µ),

H̄2(x) =
1

σ 2
√
2


(x − µ)2 − σ 2 ,

H̄3(x) = −
1

σ 3
√
6


−(x − µ)3 + 3σ 2(x − µ)


.

The fractional Fokker–Planck equation (2.3) becomes

∂αp
dtα

=
∂

∂x
[θ(x − µ)p] +

∂2

∂x2

σ 2θp


, t > 0, 0 < α < 1, x ∈ R, (4.14)
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and its solution satisfying the initial condition f has the form

pα(x, t) =


∞

−∞

pα(x, t; y)f (y)dy = m(x)
∞
n=0

Eα(−θntα)H̄n(x)fn

= m(x)f0H̄0(x) + m(x)
∞
n=1

Eα(−θntα)H̄n(x)fn. (4.15)

Since H̄0(x) = 1, we have f0 =


∞

0 f (x)dx = 1, so the first term in (4.15) is m(x). For n ≥ 1, use the asymptotic behavior of
the Mittag-Leffler function (Eq. (5.26) in [26]) and Hermite polynomials [36, p. 369] to get

|Eα(−θntα)H̄n(x)fn| ≤ C(x, α)
1
tα

|fn|/n5/4
→ 0 as t → ∞.

Then a dominated convergence argument yields (4.12), since


∞

n=1 |fn|/n5/4 < ∞. �

The drift and the squared diffusion parameters of the fractional CIR process are given by

µ(x) = −θ


x −

b
a


and σ 2(x) =

2θ
a

x. (4.16)

The invariant density (2.9) is a gamma.

Theorem 4.7. Let X1(t) be a CIR process, the solution of Eq. (2.1)with coefficients given by Eq. (4.16). Let Et be the inverse (4.2) of
a standard stable subordinator given by Eq. (4.1) independent of the process X1. Given any initial density f for Xα(0) that satisfies
the conditions of Theorem 3.3, the density (4.10) of the fractional CIR process Xα(t) = X1(Et) satisfies

pα(x, t) → m(x) =
ab

Γ (b)
xb−1e−ax, x > 0 as t → ∞. (4.17)

Proof. The eigenvalues are λn = θn, θ > 0, and the orthonormal Laguerre polynomials are given by the Rodrigues formula:

L̄(b−1)
n (x) = (−1)n


Γ (b)

n!Γ (b + n)
x1−beax

dn

dxn

xn+b−1e−ax , n ≥ 0. (4.18)

The first three normalized Laguerre polynomials are:

L̄(b−1)
0 (x) = 1,

L̄(b−1)
1 (x) =


1
b

(ax − b),

L̄(b−1)
2 (x) =


1

2b(b + 1)


a2x2 − 2a(b + 1)x + b(b + 1)


.

The solution of the fractional Fokker–Planck equation

∂αp
dtα

=
∂

∂x


θ


x −

b
a


p


+
∂2

∂x2


xθ
a
p


, t > 0, x > 0, 0 < α < 1

with the initial condition f takes the form

pα(x, t) = m(x)
∞
n=0

Eα(−θntα)L̄(b−1)
n (x)fn.

Then (4.17) follows as in the proof of Theorem 4.6. �

The drift and squared diffusion parameters for the Jacobi diffusion are

µ(x) =
θ

a + b + 2
(−(a + b + 2)x + b − a) and σ 2(x) =

2θ
a + b + 2


1 − x2


, (4.19)

and the stationary density (2.10) is a beta.
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Theorem 4.8. Let X1(t) be a Jacobi process, the solution of Eq. (2.1) with coefficients given by Eq. (4.19). Let Et be the
inverse (4.2) of a standard stable subordinator given by Eq. (4.1) independent of the process X1. Given any initial density f for
Xα(0) that satisfies the conditions of Theorem 3.3, the density (4.10) of the fractional Jacobi process Xα(t) = X1(Et) satisfies

pα(x, t) → m(x) = (1 − x)a(1 + x)b
Γ (a + b + 2)

Γ (b + 1)Γ (a + 1)2a+b+1
, x ∈ (−1, 1) (4.20)

as t → ∞.

Proof. Here the eigenvalues are λn = nθ(n+a+b+1)/(a+b+2) and the orthonormal polynomials are Jacobi polynomials
given by the formula (2.11). The fractional Fokker–Planck equation has the form

∂αp
dtα

=
∂

∂x


θ


x −

b − a
a + b + 2


p


+
∂2

∂x2


θ(1 − x2)
a + b + 2

p


, (4.21)

for t > 0, −1 < x < 1, 0 < α < 1, and its solutions with the initial condition f can be represented as

pα(x, t) = m(x)
∞
n=0

Eα(−tαnθ(n + a + b + 1)/(a + b + 2))P̄ (a,b)
n (x)fn. (4.22)

Then (4.20) follows as in the proof of Theorem 4.6. �
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