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Research Area 1: Theory of non-local operators

• Fractional calculus and hyperdiffusion

• Semi-fractional calculus

• Some new books

• PhD project: Fractional calculus and turbulence

• PhD project: Fractional phase field model of failure



Area 2: Numerical solution of fractional PDEs

• Petrov-Gelerkin spectral methods (update)

• Numerical methods for Zolotarev diffusion

• Fractional Neumann boundary conditions

• Tempered fractional Neumann boundary conditions



Fractional calculus in a nutshell

The nth derivative dnf(x)
dxn has FT (ik)nf̂(k), using the FT

f̂(k) =
∫ ∞

−∞
e−ikxf(x) dx.

The fractional derivative dαf(x)
dxα has FT (ik)αf̂(k).

The negative frac dvt dαf(x)
d(−x)α

has FT (−ik)αf̂(k).

If α = n, an integer, then dnf(x)
d(−x)n

= (−1)nd
nf(x)
dxn .

A useful model for power law behavior...



Hyperdiffusion

The simplest hyperdiffusion equation (here α > 2):

∂u(x, t)

∂t
= pD

∂αu(x, t)

∂xα
+ qD

∂αu(x, t)

∂(−x)α

The hyperdiffusion term is useful in CFD, turbulence, image pro-

cessing, cosmic rays, and calcium sparks.

Fractional diffusion with 0 < α < 2 is well-understood with many,

many applications.

It governs a stochastic process with power law jumps: The

chance of jumping further than a distance x falls off like x−α

There is no known stochastic model or physical interpretation

for hyperdiffusion with α > 2.



Hyperdiffusion is not diffusion (here p = 0)
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Point source solution with α = 2.5 and p = 0 goes negative for

x < 0. Same holds for any α > 2, except even integers.



A physical understanding

Our hyperdiffusion equation with 2 < α < 3 is ∂tu = Aα
xu where

Aα
xu(x) =











∂αu(x)
∂(−x)α

x > 0

∂αu(x)
∂xα x < 0

If α = n is even, then Aα
xu = ∂nu(x)

∂xn as usual.

If n is odd, Aα
xu = −sgn(x)∂

nu(x)
∂xn

Now solutions stay positive, model subdiffusion: they spread like

t1/α and show a sharp peak at x = 0.

Equivalent model uses fractional time derivatives of order 1/α



Semi-fractional diffusion

Power law scaling at a discrete set of scales appears frequently

in physics and finance.

We propose a new model for discrete scale invariance using semi-

fractional derivatives.

The simplest semi-fractional derivative has FT (±ik)α−icf̂(k)

where c > 0 establishes the discrete scale.

Semi-fractional diffusion equation models power law jumps with

log-periodic fluctuations.



A finite difference formula

To estimate a fractional derivative, we use

dαf(x)

dxα
= lim

h→0
h−α

∞
∑

j=0

(

α
j

)

(−1)jf(x− jh).

which reduces to the usual one-sided difference quotient when

α = n.

The semi-fractional derivative

D
α,cf(x) = lim

h→0
h−α+ic

∞
∑

j=0

(

α− ic
j

)

(−1)jf(x− jh).

A shifted formula with f(x− (j− p)h) yields a useful finite differ-

ence code.

A special case solves an open problem from last year...



Semi-fractional diffusion α=0.5 

Note oscillations on the right tail, characteristic of DSI. 



 
• Stochastic and Computational Models for 

Fractional Calculus 
• By M.M. Meerschaert, A. Sikorskii, and M. Zayernouri 
• Random walk models for fractional diffusion 
• Vector models 
• Numerical methods and codes 

• Handbook of Fractional Calculus and Applications 
• Fractional Advection Dispersion Equation 
• Continuous Time Random Walks 
• Inverse Subordinators and Time Fractional Equations 
• Particle Tracking 

New books coming in 2019… 



Kinetic Theory 
Derivation of Scalar Transport 

𝝏𝝓
𝝏𝝏 + 𝑽 .𝛁𝝓 = 𝑫 ∆𝝓 −  𝑪𝟏 −∆ 𝜷𝝓 − 𝐶2 −∆ 𝛽 𝛻𝛻.𝑽 − 𝑽. −∆ 𝛽 𝛻𝛻 , 

 For 𝛽 = 1 :   −∆ 𝛽 . = 0,     𝜕𝜙
𝜕𝜕 + 𝑽 .𝛻𝜙 = 𝐷 ∆𝜙 

Fractional order (𝛽) inference 

Lévy jumps of particles at a specific instant are depending on 
  

• Flow properties (Re) 

Scalar transport equation with the fractional Laplacian: 

• Scalar diffusion (Sc) 

 Unit check:   𝐶1 = −𝑈2𝛽𝓉𝑠2𝛽−1Γ 1 − 2𝛽 : 𝐿2𝛽

𝑇
,   𝐶2 = 2Γ 2 + 2𝛽 𝑈2𝛽 𝓉𝑠2𝛽: 𝐿2𝛽  

𝛽 𝜖(0,1)   

Small displacements  
of scalar particles 

Large displacements  
of scalar particles 



Numerical Simulation 
Eulerian-Lagrangian Approaches 

Eulerian Approach 

Lagrangian Approach  
(Lévy Walk) 

𝑑𝑿 = 𝑼𝒑 𝛿𝑡 
        + 2𝐷 𝛿𝑡 1/2 𝜼𝐺 𝑡  − 2𝐶1 𝛿𝑡 1/𝛽  𝜼𝛽 𝑡  

𝜼𝐺(𝑡): Gaussian noise generator 
𝑼𝒑: Particle velocity (𝑼𝒑 = 𝑽)  

𝝏𝝓
𝝏𝝏 + 𝑽 .𝛁𝝓 = 𝑫 ∆𝝓 − 𝑪𝟏 −∆ 𝜷𝝓 

2-D Freely decaying isotropic turbulence 

 Fourier spectral method 
 Adams-Bashforth scheme 
 Crank-Nicolson for diffusive terms 

𝑆𝑆 = 1,𝛽 = 0.9 

t = 1 sec t = 2.5 sec 

𝜼𝛽(𝑡): 𝐿𝐿𝑣𝑣 − 𝛽 stable noise generator 



Stochastic Phase-Field Modeling of Failure 

Governing Equations 

Rate of change of damage Fatigue coefficients 

Fatigue potentials 

Stochastic damage and 
fatigue phase-field 

model 

Assessment and tuning 
of model form 

Uncertainty Quantification 

Sensitivity Analysis 

Discretization 
• Finite element method 
• Semi-implicit time integration 

scheme 

Operator uncertainty: parameters that multiply them will 
be more sensitive and influential in total output uncertainty 



Single-Edge Notched Tensile Test 

Geometry and BCs 

1D PCM of damage field with respect to γ 

Expectation 

Standard deviation 

5D PCM of damage field: total deviation and global sensitivity indices 

5D PCM of damage field: expectation and deviation 
profiles at crack path 



Specimen Tensile Test 

Geometry and BCs 

5D PCM of damage field 

Expectation Standard deviation 

5D PCM of damage field: total 
deviation and global sensitivity indices 



Area 2: Numerical solution of fractional PDEs

• Petrov-Gelerkin spectral methods (update)

• Numerical methods for Zolotarev diffusion

• Fractional Neumann boundary conditions

• Tempered fractional Neumann boundary conditions



Petrov-Gelerkin spectral methods (update)

Distributed order space-time diffusion in d dimensions.

Jacobi poly-fractonomials are temporal basis/test functions.

Legendre polynomials are spatial basis/test functions.

Numerical implementation for fast linear solver.

Well-posedness, stability and error analysis.

Theory based on distributed-order Sobolev spaces.

Now in review at SIAM Journal on Numerical Analysis.



Discontinuity in the fractional diffusion equation
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Fractional diffusion equation:
∂u(x, t)

∂t
=

∂αu(x, t)

∂xα

Point source solution for α = 1.3, 1.1, 1.06, 1.04 (right to left)

and t = 1. Solution has mean zero for all 1 < α ≤ 2, but peak

drifts to −∞ as α ↓ 1.



New Zolotarev fractional diffusion equation
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The new Zolotarev fractional diffusion equation for 0 < α ≤ 2 is

continuous through α = 1. Semi-fractional diffusion theory

yields a stable numerical method.



Fractional BC: Mass balance approach

   + 1 + 2 + 31 …

…

= 1

Markov Chain transition model

∂u(x, t)

∂t
=

∂αu(x, t)

∂xα
⇒ uk,j+1 = ukj+h−α∆t

[x/h]+1
∑

i=0

gαi uk−i+1,j



Reflecting boundary conditions (p = 1)
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Numerical solution to fractional diffusion equation with α = 1.5

on 0 < x < 1 with zero flux BC at time t = 0 (solid), t = 0.05

(dashed), t = 0.1 (dash dot), t = 0.5 (dotted).



Reflecting boundary conditions (p = 0.75)
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Numerical solution to fractional diffusion equation with α = 1.5

on 0 < x < 1 with zero flux BC at time t = 0 (solid), t = 0.05

(dashed), t = 0.1 (dash dot), t = 0.5 (dotted).



Reflecting boundary conditions (p = 0.5)
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Numerical solution to fractional diffusion equation with α = 1.5

on 0 < x < 1 with zero flux BC at time t = 0 (solid), t = 0.05

(dashed), t = 0.1 (dash dot), t = 0.5 (dotted).



Reflecting boundary conditions (p = 0.25)
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Numerical solution to fractional diffusion equation with α = 1.5

on 0 < x < 1 with zero flux BC at time t = 0 (solid), t = 0.05

(dashed), t = 0.1 (dash dot), t = 0.5 (dotted).



Fractional Neumann boundary conditions

The reflecting boundary conditions are written as

F (x) = −pD
∂α−1u(x, t)

∂xα−1
+ qD

∂α−1u(x, t)

∂(−x)α−1
= 0

at the boundary points x = 0,1. This is a zero flux BC because

pD
∂αu(x, t)

∂xα
+ qD

∂αu(x, t)

∂(−x)α
= −

∂

∂x
F (x, t).

When α = 2 this reduces to the usual first derivative condition

F (x) = −D
∂u(x, t)

∂x
= 0,

since p+ q = 1 and

∂u(x, t)

∂(−x)
= −

∂u(x, t)

∂x

The resulting solutions are mass-preserving.



Steady state solutions

The two-sided fractional diffusion equation with Neumann BC

has steady state solution

u∞(x) = C(1− x)µ(1 + x)ν

where µ+ ν = α− 2 and

p− q = cot

(

π

(

α− 1

2
− µ

))

tan

(

α− 1

2
π

)

.

If p = q = 0.5 (symmetric) this reduces to

u∞(x) = C(1− x2)α/2−1

If p = 1 (positive skew) we get Cxα−2

If q = 1 (negative skew) we get C(1− x)α−2



Tempered fractional diffusion

Fractional diffusion profiles have power law tails, so some mo-

ments are divergent.

Tempering u(x, t) 7→ e−λxu(x, t) cools the largest jumps, all mo-

ments exist.

Many applications in turbulence, geophysics, astronomy, and fi-

nance exhibit a tempered power law profile.

The tempered fractional derivative has FT [(λ+ ik)α − λα]f̂(k).

Reflecting BC and stable numerical schemes are developed.



Steady state solutions

The tempered fractional diffusion equation with Neumann BC

has steady state solution

u∞(x) = Ce−λx
[

(λx)α−2Eα,α−1((λx)
α)− (λx)α−1Eα,α((λx)

α)
]

where the two-parameter Mittag-Leffler function

Eα,β(x) =
∞
∑

k=0

xk

Γ(αk + β)

for any α > 0 and β ∈ C.

Mass-preserving solutions converge to steady state for any IC.



Tempered fractional diffusion 
(α=1.5, λ=0.1) 



Tempered fractional diffusion 
(α=1.5, λ=1.0) 



Tempered fractional diffusion 
(α=1.5, λ=10) 
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