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Abstract

The Pareto distribution is a simple model for nonnegative data
with a power law probability tail. In many practical applications,
there is a natural upper bound that truncates the probability tail.
This talk presents estimators for the truncated Pareto distribu-
tion, investigates their properties, and illustrates a way to check
for fit. Applications from finance, hydrology and atmospheric
science will be included.
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A typical data set from finance

Absolute change in Amazon, Inc. stock prices (US$) from Jan
1, 1998 to June 30, 2003 (n = 1378)
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Outliers - do not discard!

Absolute change in AMZN stock prices. The outliers are the
most important events.

Boxplot of AMZN
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T he Pareto distribution

If X is Pareto with y = P(X > z) = Cx~ ¢ then

logy = log(C' — alog .

If we order the data X(l) > X(Q) > e > X(n) (decreasing order
statistics) then we can estimate

y = P[X > x]

by taking y = i/n and x = X(i). A plot of the points (x,y) =
(log Xy, 109 i/n) should fit a straight line with slope —a.



Heavy tails in finance

Price changes and trading volume often have power law tails.
Upper tail of trading volume for AMZN fits a Pareto with a = 2.7.
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Hill’'s estimator

The most popular estimator (Hill 1975; Hall 1982) for « is the
Pareto MLE conditional on X > D.
—1

&H 7“_1 Z{InX(i)—lnX(r_H)}
1=1

C = (r/n)(X(g1)™

In practice we take D = X(,., 1) and we select » based on the
log-log plot to represent the Pareto tail.



Hill’'s estimator and regression

The slope of the best fitting line through the points

(log(i/n), Iog(X(Z-))) for 1<i<r

should be approximately equal to —1/a. This is not a classical
regression problem because deviations of the y variables Iog(X(Z-))
from their respective means are neither independent nor identi-
cally distributed.

Generalized linear regression (Aban and Meerschaert, 2004) shows
that Hill's estimator is also the BLUE and UMVUE for «.



More heavy tails in geophysics

Absolute difference in hydraulic conductivity (n = 2618) at the
MADE site (Rehfeldt et al. 1992).
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Graphical test

A plot of log(r) versus log X(T) shows that the upper tail of the
MADE data does not fit a simple power law.
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Extreme value test

A simple asymptotic level ¢ test (0 < ¢ < 1) based on extreme
value theory rejects the null hypothesis Hp : v = oo (Pareto) if
and only if

X1y < [(nC) /(= Ing)] M.

The corresponding approximate p-value of this test is given by
p = exp{—nCX(_lo)‘ :
In practice, we use Hill’s estimator for C and «.

For the MADE data we get p = 0.012, strong evidence that an
alternative distributional model is needed.



Truncated Pareto

The truncated Pareto distribution is P(X > xz) = C(x™% — v~ %)
for v+ < x < v. The MLE conditional on X > D is given by
V=X

—~

—1/a

v = rl/&(X(r—I—l)) [n —(n—1) (X(T+1)/X(1))&]

and a solves the equation

= i[ln Xy —InX(qy] - i (X<7“+1>/X<1>)&'” <X<r+p/X<1>)
= L= (Xean/ X))

| 3



Truncated Pareto model for MADE data

Pareto (ayg = 1.6) and TP (arp = 1.2) fit to the MADE data.
Possible source of truncation: volume averaging.
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Pareto and TP model for precipitation data

LLog-log plot for the 100 largest observations of daily total precip-
itation in Tombstone AZ between July 1893 to December 2001.
An upper bound called the “probable maximum precipitation” is
typically computed. Here ayg = 3.8, arp = 3.0, and p = 0.017.
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Pareto and TP model for AMZN data

Pareto (ay = 2.3) and TP (app = 1.7) fit to the AMZN price
change data. Here p = 0.007. One advantage of the truncated
Pareto model is that all moments exist.
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