Regular variation in \mathbb{R}^k and vector-normed domains of attraction

Mark M. Meerschaert

Department of Mathematics, Albion College, Albion, MI 49224, USA

Received May 1990

Abstract: An extension of the argument used by William Feller in the one variable case is applied to obtain a complete characterization of vectornormed domains of attraction in terms of regular variation.

AMS 1980 Subject Classifications: 60F05, 26B35.

Keywords: Regular variation, domains of attraction, stable laws, infinitely divisible laws.

1. Introduction

Given $\{X_n\}$ independent and identically distributed random vectors on \mathbb{R}^k with distribution μ , let $S_n = X_1 + \cdots + X_n$. We say that μ belongs to the vector-normed domain of attraction of ν if there exist $a_n, b_n \in \mathbb{R}^k$ with $a_n^{(i)} > 0$ for all $i = 1, 2, \ldots, k$ such that

$$\left(S_n^{(1)}/a_n^{(1)}, \dots, S_n^{(k)}/a_n^{(k)}\right) - b_n \Rightarrow Y,$$
 (1.1)

where Y is a nondegenerate random vector on \mathbb{R}^k with distribution ν . Vector-normed domains of attraction were first considered by Resnick and Greenwood (1979), who obtained a complete characterization in the case k = 2. Some connections with regular variation in \mathbb{R}^k were examined in de Haan, Omey and Resnick (1984). In this paper we use regular variation in \mathbb{R}^k to obtain a new characterization of vector-normed domains of attraction, thereby extending the results of Feller (1971) in \mathbb{R}^1 .

2. Results

Regular variation in \mathbb{R}^k was defined in Meerschaert (1988). If $x, y \in \mathbb{R}^k$ we denote by xy the

componentwise product (x_1y_1, \ldots, x_ky_k) . Let $\mathbb{R}_+^k = \{(x_1, \ldots, x_k): \text{ all } x_i > 0\}$ and $\mathbb{R}_-^k = -\mathbb{R}_+^k$. If $\lambda > 0$ and $\alpha \in \mathbb{R}^k$ let $\lambda^{\alpha} = (\lambda^{\alpha_1}, \ldots, \lambda^{\alpha_k})$.

A function $f: [A, \infty) \to \mathbb{R}^k_+$ will be said to vary regularly with index α if it is Borel measurable and if for all $\lambda > 0$ we have

$$\lim_{r \to \infty} f(\lambda r) f(r)^{-1} = \lambda^{\alpha}.$$
 (2.1)

Suppose now that $F: \mathbb{R}^k \to \mathbb{R}^+$ is Borel measurable. We will say that F is regularly varying at infinity (respectively, zero) if there exists $f: \mathbb{R}^+ \to \mathbb{R}^k_+$ regularly varying with index α in \mathbb{R}^k_+ (respectively, \mathbb{R}^k_-) and $e \neq 0$ such that whenever $x_r \to x \neq 0$ we have

$$\lim_{r \to \infty} F(f(r)x_r) / F(f(r)e) = \gamma(x)$$
(2.2)

for some $\gamma : \mathbb{R}^k - \{0\} \to \mathbb{R}^+$. In this case the choice of $e \neq 0$ is arbitrary and effects the limit γ only in terms of a multiplicative constant. It follows from (2.2) that R(r) = F(f(r)e) varies regularly with some index $\beta \in \mathbb{R}$ and that for all $\lambda > 0$, all $x \neq 0$ we have

$$\lambda^{\beta}\gamma(x)=\gamma(\lambda^{\alpha}x).$$

While α , β are not uniquely determined by F, their ratio $\rho = \beta \alpha^{-1}$ is uniquely determined, and we call ρ the index of regular variation of F.

Let $\{X_n\}$ be as above and define the truncated second moment function

$$F(y) = E\langle X_n, y \rangle^2 I\{ |\langle X_n, y \rangle| < 1 \}$$
(2.3)

for $y \neq 0$.

Theorem 2.1. μ is in the vector-normed domain of attraction of a nondegenerate normal law if and only if the function F(y) defined by (2.3) varies regularly at zero with index (2, 2, ..., 2).

Now let Π denote the class of σ -finite Borel measures on $\mathbb{R}^k - \{0\}$ which are finite on sets bounded away from the origin, and write $\nu_n \to \nu$ if ν_n , $\nu \in \Pi$ and $\nu_n(A) \to \nu(A)$ for all Borel subsets bounded away from the origin such that $\nu(\partial A) = 0$. We will say that $\mu \in \Pi$ is regularly varying at infinite (respectively, zero) if there exists $f: \mathbb{R}^+ \to \mathbb{R}^k_+$ regularly varying with index $\alpha \in \mathbb{R}^k_+$ (respectively, \mathbb{R}^k_-) and a Borel set E such that

$$\mu\{f(r) dx\}/\mu\{f(r)E\} \to \phi\{dx\}$$
(2.4)

for some measure $\phi \in \Pi$ which cannot be supported on any proper subspace of \mathbb{R}^k . The set *E* is arbitrary and effects the limit ϕ only in terms of a multiplicative constant. It follows from (2.3) that $\mu\{f(r)E\}$ is a regularly varying function of r > 0 with some index $\beta \in \mathbb{R}$, and that for all $\lambda > 0$,

$$\lambda^{\beta} \phi \{ dx \} = \phi \{ \lambda^{\alpha} dx \}.$$
(2.5)

One again we will call $\rho = \beta \alpha^{-1}$ the index of regular variation.

Theorem 2.2. μ belongs to the vector-normed domain of attraction of a nondegenerate limit law having no normal component if and only if μ varies regularly at infinity with index $\rho = (\rho_1, \dots, \rho_k)$ where all $\rho_i \in (-2, 0)$.

If the limit distribution has both normal and nonnormal components, then according to Sharpe (1969) we can decompose ν into the product of two marginals, one normal and one strictly nonnormal. Let $L_1 = \text{Span}\{e_i: Y_i \text{ normal and } L_2 = L_1^{\perp}$. Denote by π_i the projection map onto L_i . Then $\pi_1(Y)$ is normal, $\pi_2(Y)$ has no normal component, and $\pi_1(Y)$, $\pi_2(Y)$ are independent. The following result allows us to treat the general limit case by reduction to the two cases considered above.

Theorem 2.3. μ is in the vector-normed domain of attraction of ν if and only if for i = 1, 2,

$$\pi_i \left(a_n^{-1} S_n - b_n \right) \Rightarrow \pi_i(Y). \tag{2.6}$$

3. Proofs

In this section we prove the theorems stated in Section 2 characterizing vector-normed domains of attraction in terms of regular variation. We will proceed by extending the arguments Feller employed in \mathbb{R}^1 . Using the notation introduced in the beginning of Section 2, we may rewrite (1.1) in the abbreviated form

$$a_n^{-1}S_n - b_n \Rightarrow Y. \tag{3.1}$$

Proof of Theorem 2.1. Without loss of generality $EX_n = 0$. For all $y \in \mathbb{R}^k$ we have

$$n \left[\int_{|\langle x, y \rangle| < \varepsilon} \langle x, y \rangle^2 \mu \{ a_n \, \mathrm{d}x \} - \left(\int_{|\langle x, y \rangle| < \varepsilon} \langle x, y \rangle \mu \{ a_n \, \mathrm{d}x \} \right)^2 \right] \to Q(y). \quad (3.2)$$

for all $\varepsilon > 0$. Since Y is nondegenerate normal, ϕ is the zero measure and Q is positive definite. As $n \to \infty$ the second integral in (3.2) tends to zero, and so (3.2) remains true with this term deleted. Taking $\varepsilon = 1$ we have

$$nF(a_n^{-1}y) \to Q(y). \tag{3.3}$$

It follows that F varies regularly at zero, and since $Q(ry) = r^2 Q(y)$ the index of F is (2, ..., 2).

Conversely suppose F varies regularly at zero with index (2, ..., 2). Letting $a_n^{-1} = f(r_n)$ where $r_n = \sup\{r > 0: nF(f(r)e) \le 1\}$ we arrive at (3.3). Since $EX_n = 0$ this is again equivalent to (3.2), and now we need only show that $n\mu\{a_n dx\} \to 0$. This follows easily from (3.3) by a reduction to the one variable case: $nF(e_i/a_n^{(i)}) \to Q(e_i)$ and so the Volume 11, Number 4

truncated second moment of $X_n^{(i)}$ varies slowly at infinity. Hence $n\mu\{a_nA\} \to 0$ for sets of the form $A = \{x : |x_i| > \varepsilon\}$. But any subset of \mathbb{R}^k which is bounded away from the origin is contained in the union of a finite number of these. \Box

Proof of Theorem 2.2. Suppose that (3.1) holds and Y has no normal component. Then $Q \equiv 0$ and ϕ cannot be supported on any proper subspace of \mathbb{R}^k . From the standard convergence criteria for triangular arrays of random vectors we obtain immediately that μ varies regularly at infinity. Since ϕ is a Lévy measure, and in particular

$$\int_{0 < |x| < 1} |x|^2 \phi\{dx\} < \infty$$
 (3.4)

we must have $-2 < \rho_i < 0$.

Conversely suppose μ varies regularly at infinity with index ρ , all $\rho_i \in (-2, 0)$. Let $a_n = f(r_n)$ where $r_n = \sup\{r > 0 : n\mu\{f(r)E\} \ge 1\}$, so that $n\mu\{a_n dx\} \rightarrow \phi\{dx\}$. To show that (3.1) holds, by an application of Schwartz inequality it will suffice to show that for all y,

$$\lim_{\varepsilon \to 0} \limsup_{n \to \infty} n \int_{|x| < \varepsilon} \langle x, y \rangle^2 \mu \{ a_n \, \mathrm{d} x \} = 0.$$
 (3.5)

Clearly it suffices to show (3.5) for $y = e_i$; i = 1, ..., k. And once again, this follows directly by a reduction to the one variable case. \Box

Proof of Theorem 2.3. The direct half is obvious. As to the converse, suppose that (2.6) holds for i = 1, 2. Since $\phi\{\pi_i^{-1}(dx)\}$ is the Lévy measure of $\pi_i Y$ we have for i = 1, 2,

$$n\mu\{a_n\pi_i^{-1}(\mathrm{d}x)\} \to \phi\{\pi_i^{-1}(\mathrm{d}x)\};$$
 (3.6)

and since the limit in (3.6) is the zero measure when i = 1, this implies that $n\mu\{a_n dx\} \rightarrow \phi\{dx\}$. We also have

$$\lim_{\varepsilon \to 0} \limsup_{n \to \infty} \left\{ n \left[\int_{|x| < \varepsilon} \langle x, y \rangle^2 \mu \{ a_n \, \mathrm{d}x \} - \left(\int_{|x| < \varepsilon} \langle x, y \rangle \mu \{ a_n \, \mathrm{d}x \} \right)^2 \right] - Q(y) \right\} = 0$$
(3.7)

for all $y \in L_1$ and $y \in L_2$. Suppose then that $y = y_1 + y_2$ where both $y_1 \in L_1$ and $y_2 \in L_2$ are nonzero. We need to show that

$$\lim_{\epsilon \to 0} \limsup_{n \to \infty} n \int_{|x| < \epsilon} \langle x, y_1 \rangle \langle x, y_2 \rangle \mu \{ a_n \, \mathrm{d}x \} = 0,$$
$$\lim_{\epsilon \to 0} \limsup_{n \to \infty} n \int_{|x| < \epsilon} \langle x, y_1 \rangle \mu \{ a_n \, \mathrm{d}x \}$$
$$\cdot \int_{|x| < \epsilon} \langle x, y_2 \rangle \mu \{ a_n \, \mathrm{d}x \} = 0.$$
(3.8)

Both integral expressions are dominated by

$$n \int_{|x| < \varepsilon} \langle x, y_1 \rangle^2 \mu \{ a_n \, \mathrm{d}x \}$$

$$\cdot n \int_{|x| < \varepsilon} \langle x, y_2 \rangle^2 \mu \{ a_n \, \mathrm{d}x \}.$$
(3.9)

The proof of Theorem 2.1 shows that the first term is bounded. Apply (3.5). \Box

References

- Aurajo, A. and E. Giné (1980), The Central Limit Theorem for Real and Banach Valued Random Variables (Wiley, New York).
- Feller, W. (1971), An Introduction to Probability Theory and its Applications, Vol. II (Wiley, New York, 2nd ed.).
- Haan, L. de, E. Omey and S. Resnick (1984), Domains of attraction and regular variation in \mathbb{R}^d , J. Multivariate Anal. 14, 17-33.
- Meerschaert, M. (1988), Regular variation in \mathbb{R}^{k} , Proc. Amer. Math. Soc. 102, 341-348.
- Resnick, S. and P. Greenwood (1979), A bivariate stable characterization and domains of attraction, J. Multivariate Anal. 9, 206-221.
- Sharpe, M. (1969), Operator-stable probability distributions on vector groups, *Trans. Amer. Math. Soc.* 136, 51-65.