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1. Introduction 

Given { X, } independent and identically distrib- 
uted random vectors on Rk with distribution p, 
let S, = Xi + . . . +X,. We say that p belongs to 
the vector-normed domain of attraction of Y if 
there exist a,, b, E lFtk with ur’ > 0 for all i = 
1, 2,. . .) k such that 

(Sn(i)/fq, . . . ) S;“‘/a;“‘) - b,, =a Y, (1 J> 

where Y is a nondegenerate random vector on IWk 
with distribution v. Vector-normed domains of 
attraction were first considered by Resnick and 
Greenwood (1979), who obtained a complete char- 
acterization in the case k = 2. Some connections 
with regular variation in Wk were examined in de 
Haan, Omey and Resnick (1984). In this paper we 
use regular variation in Rk to obtain a new char- 
acterization of vector-normed domains of attrac- 
tion, thereby extending the results of Feller (1971) 
in Iw’. 

2. Results 

Regular variation in IWk was defined in Meer- 
schaert (1988). If x, y E lRk we denote by xy the 

COmpOnentWise product (Xi_yi, . . . , xk yk). Let R: 
= {(Xlr...,Xk): all x,>O} and lRk= -tRk+. If 
h>Oand a~lW~ let xa=(Aal,...,A’Q). 

A function f : [A, co) + IR “, will be said to vary 
regularly with index (Y if it is Bore1 measurable 
and if for all X > 0 we have 

lim f( xr)f( T--’ = Aa”. (2-I) r+m 

Suppose now that F: Rk + [w + is Bore1 mea- 
surable. We will say that F is regularly varying at 
infinity (respectively, zero) if there exists f : Iw ++ 
IR: regularly varying with index (Y in W”, (respec- 
tively, IWk) and e z 0 such that whenever x, --* x 
# 0 we have 

rl~mF(f(r)~‘)/F(f(r)e) = Y(X) (2.2) 

for some y : Iw k - { 0} + Iw +. In this case the choice 
of e # 0 is arbitrary and effects the limit y only in 
terms of a multiplicative constant. It follows from 
(2.2) that R(r) = F(f(r)e) varies regularly with 
some index p E Iw and that for all X > 0, all x # 0 
we have 

XBy(x) = y(Px). 
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While CX, p are not uniquely determined by F, 
their ratio p = /3~--’ is uniquely determined, and 
we call p the index of regular variation of F. 

Let { X, } be as above and define the truncated 
second moment function 

F(y) = E(X,, Y)‘Z{ 1(x,, Y> I <I> (2.3) 

for y # 0. 

Theorem 2.1. p is in the vector-normed domain of 
attraction of a nondegenerate normal law if and only 

if the function F(y) defined by (2.3) varies regu- 

larly at zero with index (2, 2,. . . ,2). 

Now let II denote the class of u-finite Bore1 
measures on R“ - (0) which are finite on sets 
bounded away from the origin, and write vn + v if 
v~, v E II and v,,(A) + v(A) for all Bore1 subsets 
bounded away from the origin such that v( &4) = 0. 
We will say that ~1 E II is regularly varying at 
infinite (respectively, zero) if there exists f : R +--+ 
II3 “, regularly varying with index cx E R “, (respec- 
tively, Rk) and a Bore1 set E such that 

(2.4) 

for some measure 9 E II which cannot be sup- 
ported on any proper subspace of Rk. The set E is 
arbitrary and effects the limit + only in terms of a 
multiplicative constant. It follows from (2.3) that 
p { f (r)E } is a regularly varying function of r > 0 
with some index p E R, and that for all X > 0, 

ha+{dx} =+{P dx}. (2.5) 

One again we will call p = /3~’ the index of 
regular variation. 

Theorem 2.2. p belongs to the vector-normed do- 

main of attraction of a nondegenerate limit law 
having no normal component if and only if 1-1 varies 
regularly at infinity with index p = (pl, . . . , pk) 
where all pi E ( - 2, 0). 

If the limit distribution has both normal and 
nonnormal components, then according to Sharpe 
(1969) we can decompose v into the product of 
two marginals, one normal and one strictly non- 
normal. Let L, = Span{ e, : x normal and L, = 
Lt. Denote by n; the projection map onto Li. 
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Then GT~( Y) is normal, rZ( Y) has no normal com- 
ponent, and ri(Y), r*(Y) are independent. The 
following result allows us to treat the general limit 
case by reduction to the two cases considered 
above. 

Theorem 2.3. p is in the vector-normed domain of 

attraction of v if and only if for i = 1, 2, 

q(a;‘%-b,) *T(Y). (2.6) 

3. Proofs 

In this section we prove the theorems stated in 
Section 2 characterizing vector-normed domains 
of attraction in terms of regular variation. We will 
proceed by extending the arguments Feller em- 
ployed in R’. Using the notation introduced in the 
beginning of Section 2, we may rewrite (1.1) in the 
abbreviated form 

a,‘$,-b,,* Y. (3.1) 

Proof of Theorem 2.1. Without loss of generality 
EX, = 0. For all y E lRk we have 

+ Q(Y). (3.2) 

for all E > 0. Since Y is nondegenerate normal, $I 
is the zero measure and Q is positive definite. As 
n -+ co the second integral in (3.2) tends to zero, 
and so (3.2) remains true with this term deleted. 
Taking E = 1 we have 

nF(G’y) + Q(Y). (3.3) 

It follows that F varies regularly at zero, and 
since Q( ry) = r2Q( y) the index of F is (2, . . . ,2). 

Conversely suppose F varies regularly at zero 
with index (2,. . . ,2). Letting a;’ = f( r,,) where 
r” = sup{ r > 0: nF( f(r)e) < l} we arrive at (3.3). 
Since EX, = 0 this is again equivalent to (3.2), and 
now we need only show that np( a,, dx} + 0. 
This follows easily from (3.3) by a reduction to the 
one variable case: nF( e,/at)) + Q( ei) and so the 
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truncated second moment of XJi) varies slowly at 
infinity. Hence np{ a,A} + 0 for sets of the form 
A={x: I~~(>~}.ButanysubsetofIW“ whichis 
bounded away from the origin is contained in the 
union of a finite number of these. q 

Proof of Theorem 2.2. Suppose that (3.1) holds 
and Y has no normal component. Then Q = 0 and 
Q cannot be supported on any proper subspace of 
IWk. From the standard convergence criteria for 

triangular arrays of random vectors we obtain 
immediately that I_L varies regularly at infinity. 

Since I#J is a Levy measure, and in particular 

J o<,X,<rlx12~{dx~ <co (3.4) 

we must have - 2 < pi < 0. 
Conversely suppose p varies regularly at infin- 

ity with index p, all pi E (- 2, 0). Let a, =f( r,,) 
where r, = sup{ r > 0: np{ f(r)E} a l}, so that 
np{a, dx} -+{dx}. To show that (3.1) holds, 
by an application of Schwartz inequality it will 
suffice to show that for all y, 

lim lim sup n 
e+e “+m / 

(x, y)‘p { a, dx} = 0. (3.5) 
IXI<E 

Clearly it suffices to show (3.5) for y = ei; i = 

1,. . . , k. And once again, this follows directly by a 
reduction to the one variable case. 17 

Proof of Theorem 2.3. The direct half is obvious. 
As to the converse, suppose that (2.6) holds for 
i = 1, 2. Since (p{ riel (dx)} is the Levy measure 
of rjY we have for i = 1, 2, 

np { a,rr-t(dx)} -+ 9 { r;-‘(dx)} ; (3.6) 

and since the limit in (3.6) is the zero measure 
when i=l, this implies that ny { a, dx} + 
+{dx}. We also have 

lim lim sup n 
e-0 n+* i[ 

/ (x7 y)‘~l{a, dx) 
IXI<& 

- 
(x> r>cl{a, dxl 

(3.7) 

for all y EL, and y EL,. Suppose then that 
y =y, + y, where both y, E L, and y, E L, are 
nonzero. We need to show that 

lim lim sup n 
E-+0 n-+m / (x> ~t>(x, Y~YZ)PL(~, dx) =O, 

lXI<E 

lim lim sup n 
e-0 n+m / (x9 y,)/~L(a, dx1 

IXI<E 

-/ (x, Y&P { a, dx} = 0. (3.8) 
Id<& 

Both integral expressions are dominated by 

n 
/ (x3 Y,)*I+, dx) 

IXI<E 

an 
/ 

(x> ~z)*~{a,, dx). 

bI-=E 
(3.9) 

The proof of Theorem 2.1 shows that the first 
term is bounded. Apply (3.5). 0 
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