CORRECTION

LIMIT THEOREMS FOR COUPLED CONTINUOUS TIME RANDOM WALKS

BY PETER KERN, MARK M. MEERSCHAERT AND HANS-PETER SCHEFFLER

Heinrich Heine University, Michigan State University and University of Siegen

The converse portion of Theorem 2.2 requires an additional condition, that the probability measure \(\omega \) is such that (2.10) assigns finite measure to sets bounded away from the origin. The argument on page 735 must consider \(B_1 \) and \(B_2 \) such that at least one is bounded away from zero, not just the case where both are bounded away from zero. The condition on \(\omega \) ensures that the integral on page 735 l.–2 is finite, which is obviously necessary.

The limit process in Theorem 3.4 should read \(A(E(t)–) \). If \(A(t) \) and \(D(t) \) are dependent, this is a different process than \(A(E(t)) \). To clarify the argument, note that

\[
\lim_{h \downarrow 0} \frac{1}{h} P\{A(s) \in M, s < E(t) \leq s + h\} = P\{A(s–) \in M | E(t) = s\} p_t(s),
\]

where \(p_t \) is the density of \(E(t) \), since \(s < E(t) \) in the conditioning event. For an alternative proof, see Theorem 3.6 in Straka and Henry [3]. Theorem 4.1 in [1] gives the density of \(A(E(t)–) \). Examples 5.2–5.6 in [1] provide governing equations for the CTRW limit process \(M(t) = A(E(t)–) \) in some special cases with simultaneous jumps. Especially, Example 5.5 considers the case where \(Y_i = J_i \) so that \(A(t) \) is a stable subordinator and \(E(t) = \inf\{x > 0: A(x) > t\} \) is its inverse or first passage time process. The beta density for \(A(E(t)–) \) given in that example agrees with the result in Bertoin [2], page 82. Note that here we have \(A(E(t)–) < t \) and \(A(E(t)) > t \) almost surely for any \(t > 0 \), by [2], Chapter III, Theorem 4.

REFERENCES

Received August 2010; revised November 2010.

P. Kern
Mathematisches Institut
Heinrich Heine University
40225 Düsseldorf
Germany
E-mail: kern@math.uni-duesseldorf.de

M. M. Meerschaert
Department of Statistics and Probability
Michigan State University
E. Lansing, Michigan 48824
USA
E-mail: mcubed@stt.msu.edu

H.-P. Scheffler
Fachbereich Mathematik
University of Siegen
57068 Siegen
Germany
E-mail: scheffler@mathematik.uni-siegen.de