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Abstract. The Grünwald formula is used to numerically estimate fractional derivatives.
It is an extension of the finite difference formula for integer order derivatives. This paper
develops an extension of the Grünwald formula for vector fractional derivatives. This
result should be useful for numerical solution of fractional partial differential equations
where the space variable is a vector.

1. Introduction

Fractional derivatives have been around for centuries [22, 26] but recently they have
found new applications in physics [2, 6, 7, 9, 15, 18, 19, 29], hydrology [1, 4, 5, 10, 14, 28],
and finance [24, 25, 27]. Analytical solutions of ordinary fractional differential equations
[22, 23] and partial fractional differential equations [8, 16] are now available in some
special cases. But the solution to many fractional differential equations will have to rely
on numerical methods, just like their integer-order counterparts. Numerical solutions of
fractional differential equations require a numerical estimate of the fractional derivative.
In one dimension, this estimate is called the Grünwald formula [20, 22, 26]. A variant
of this formula has been used to develop practical numerical methods for solving certain
fractional partial differential equations that model flow in porous media [21, 30]. The
purpose of this paper is to develop a multivariable analogue of the Grünwald formula for
estimating multidimensional fractional derivatives, so that the results in [21, 30] can be
extended to two and three dimensional flow regimes.

The scalar Grünwald formula is a discrete approximation to the fractional derivative
by a fractional difference quotient

(1.1)
dαf(x)

dxα
= lim

h→0
h−α∆α

hf(x) = lim
h→0

h−α
∞∑

m=0

(−1)m

(
α
m

)
f(x−mh)

where for noninteger α > 0 the binomial coefficient

(1.2)

(
α
m

)
=

(−1)m−1αΓ(m− α)

Γ(1 − α)Γ(m+ 1)
,

see for example [20, 26]. When α is a positive integer, the sum terminates at m = α and
equation (1.1) reduces to the usual one-sided difference formula for the derivative. In this
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paper, we extend (1.1) to multivariable fractional derivatives, see Theorems 4.1 and 4.3
below.

The multivariable fractional derivative first appeared in [16] in connection with a model
of anomalous diffusion. Given f : Rd → R and using the Fourier transform convention
f̂(k) =

∫
ei〈k,x〉f(x)dx we specify this operator by requiring that D α

Mf(x) has Fourier
transform

(1.3)

[∫

‖θ‖=1

(−i〈k, θ〉)αM(dθ)

]
f̂(k)

where M(dθ) is an arbitrary probability measure on the unit sphere Sd−1 = {x ∈ Rd :
‖x‖ = 1}. If d = 1 then (1.3) reduces to

(
p(−ik)α + (1 − p)(ik)α

)
f̂(k)

so that

D α
Mf(x) = p

dαf(x)

dxα
+ (1 − p)

dαf(x)

d(−x)α
.

When α = 2 the integral in equation (1.3) reduces to

(1.4) −
∫

‖θ‖=1

( d∑

j=1

kjθj

)2

M(dθ) = (−ik) ·A(−ik)

where the matrix A = (aij) with aij =
∫
θiθjM(dθ). Then

D α
Mf(x) = ∇ · A∇f(x) =

d∑

i=1

d∑

j=1

aij
∂2f(x)

∂xi∂xj
.

The vector fractional derivative appears in the diffusion/dispersion term of evolution
equations as a generalization of this Laplacian term. The fractional order α speeds up
the diffusion of a cloud of particles as α decreases, and the mixing measure M governs
the direction of large particle jumps, allowing an asymmetric plume.

2. Preliminary Results

In this section, we show that the multivariable fractional derivative operator Dα
Mf(x)

defined by the Fourier transform in (1.3) above, for certain functions, can be represented
as a mixture of fractional directional derivatives Dα

θ f(x). This will enable us in the
next section to apply the scalar Grünwald formula in each radial direction. We assume
throughout this section that α > 0 is not an integer and that θ is a unit vector in Rd.

The directional derivative Dθf(x) = 〈θ,∇f(x)〉 =
∑

j θj∂f(x)/∂xj = dg/ds at s = 0

where g(s) = f(x + sθ). Its Fourier transform is

d∑

j=1

θj(−ikj)f̂(k) = (−i〈k, θ〉)f̂(k)
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since (−ikj)f̂(k) is the Fourier transform of ∂f(x)/∂xj . The scalar fractional derivative
can be defined by

Dα
+ g(s) =

1

Γ(n− α)

dn

dsn

∫ ∞

0

rn−α−1g(s− r)dr

where n = 1 + [α] is the smallest integer greater than α, and it is easy to check that
this convolution integral has Fourier transform (−iu)αĝ(u), see [3, 26]. The fractional
order directional derivative D α

θ f(x) is defined by Dα
+ g(s) evaluated at s = 0, where

g(s) = f(x + sθ). Then it is clear that D α
θ f(x) has Fourier transform (−i〈k, θ〉)αf̂(k)

which reduces to the classical case when α = 1. Now (1.3) is revealed as a mixture of
fractional directional derivatives. The next theorem will make this precise.

Definition 2.1. For any positive integer l, let W l,1(Rd) denote the collection of functions
f ∈ C l(Rd) whose partial derivatives up to order l are in L1(Rd) and whose partial
derivatives up to order l − 1 vanish at infinity.

Theorem 2.2. For f ∈ W l,1(Rd) with l = [α] + 2 we have

(2.1) D α
Mf(x) =

∫

‖θ‖=1

D α
θ f(x)M(dθ) a.e.

Remark 2.3. If we define D α
Mf by (2.1), then the proof below shows

(D α
Mf)̂(k) =

∫

‖θ‖=1

(−i〈k, θ〉)αM(dθ)f̂(k)

so no a.e. is needed in (2.1).

Before we prove Theorem 2.2 we need the following technical result. Recall that the
Gamma function defined for t > 0 by Γ(t) =

∫∞
0
xt−1e−xdx can be extended to the rest

of the complex plane, less the non-positive integers, by analytic continuation, and that
consequently the formula Γ(t+1) = tΓ(t) holds for all real t, less the non-positive integers.

Lemma 2.4. For f ∈ W l,1(Rd) with l = [α] + 2 we have

(2.2) D α
θ f(x) =

−1

Γ(1 − α)

∫ ∞

0

[
f(x− rθ) −

[α]∑

p=0

(−r)p

p!
Dp

θf(x)
]
αr−α−1 dr

a.e., where [α] denotes the integer part of α. Moreover, there exists a constant C > 0
(independent of θ) such that

(2.3)

∫

Rd

|Dα
θ f(x)|dx ≤ C

for all θ ∈ Sd−1.
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Proof. Let g(x, θ) denote the right hand side of (2.2). We first show that for some constant
C > 0 (independent of θ) we have

(2.4)

∫

Rd

|g(x, θ)|dx ≤ C

for all θ ∈ Sd−1.
Note that by Taylor expansion with integral form of the remainder we obtain

(2.5) f(x− rθ) −
[α]∑

p=0

(−r)p

p!
Dp

θf(x) =
(−1)[α]+1

[α]!

∫ r

0

D
[α]+1
θ f(x− sθ)(r − s)[α] ds

Write for any δ > 0

∫

Rd

|g(x, θ)| dx ≤ |Cα|
∫

Rd

∫ δ

0

∣∣∣f(x− rθ) −
[α]∑

p=0

(−r)p

p!
Dp

θf(x)
∣∣∣αr−α−1 dr dx

+ |Cα|
∫

Rd

∫ ∞

δ

∣∣∣f(x− rθ) −
[α]∑

p=0

(−r)p

p!
Dp

θf(x)
∣∣∣αr−α−1 dr dx

= |Cα|(I1 + I2)

(2.6)

where Cα = −1/Γ(1 − α). Now by Tonelli we have

I2 ≤
∫ ∞

δ



∫

Rd

|f(x− rθ)| dx+

[α]∑

p=0

rp

p!

∫

Rd

|Dp
θf(x)| dx


αr−α−1 dr

= ‖f‖1

∫ ∞

δ

αr−α−1 dr +

[α]∑

p=0

1

p!
‖Dp

θf‖1

∫ ∞

δ

αrp−α−1 dr <∞

(2.7)

since p− α− 1 ≤ [α] − α− 1 < −1 for all 0 ≤ p ≤ [α].
For I1 we obtain by using (2.5)

I1 ≤
∫

Rd

∫ δ

0

∣∣∣∣
1

[α]!

∫ r

0

D
[α]+1
θ f(x− sθ)(r − s)[α] ds

∣∣∣∣αr−α−1 dr dx

≤ 1

[α]!

∫

Rd

∫ δ

0

∫ r

0

∣∣∣D [α]+1
θ f(x− sθ)

∣∣∣ (r − s)[α] ds αr−α−1 dr dx

=
1

[α]!

∫ δ

0

∫ r

0

∫

Rd

∣∣∣D [α]+1
θ f(x− sθ)

∣∣∣ dx(r − s)[α] ds αr−α−1 dr

= ‖D [α]+1
θ f‖1

1

[α]!

∫ δ

0

∫ r

0

(r − s)[α] ds αr−α−1 dr

= ‖D [α]+1
θ f‖1

α

([α] + 1)!

∫ δ

0

r−α+[α] dr <∞ (since − α + [α] > −1)

(2.8)
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Then (2.6) along with (2.7) and (2.8) prove (2.4).

Recall that the Fourier transform of f(x−a) is ei〈k,a〉f̂(k). In view of (2.4) we compute
using Fubini’s theorem

ĝ(k, θ) =

∫

Rd

ei〈k,x〉g(x, θ)dx

= Cα

∫ ∞

0

[
eir〈k,θ〉 −

[α]∑

p=0

(ir〈k, θ〉)p

p!

]
αr−α−1drf̂(k).

By letting t = 〈k, θ〉 we have to compute

J(α) =

∫ ∞

0

[
eirt −

[α]∑

p=0

(irt)p

p!

]
αr−α−1dr.

The argument is similar to the case 1 < α < 2 proved in [17], Lemma 7.3.8. We only
sketch the argument. For s > 0 let

(2.9) Js(α) =

∫ ∞

0

[
e(it−s)r −

[α]∑

p=0

((it− s)r)p

p!

]
αr−α−1dr.

If 0 < α < 1 then by (7.27) in [17] we obtain

Js(α) =

∫ ∞

0

[
e(it−s)r − 1

]
αr−α−1dr = −Γ(1 − α)(s− it)α.

If α > 1 then we integrate by parts to obtain

Js(α) = (it− s)

∫ ∞

0

[
e(it−s)r −

[α]−1∑

p=0

((it− s)r)p

p!

]
r−αdr

=
it− s

α− 1
Js(α− 1)

= · · · =
(it− s)[α]

(α− 1) · · · (α− [α])
Js(α− [α]).

Now, since 0 < α− [α] < 1, by (7.27) of [17] we have Js(α− [α]) = C1(s− it)α−[α] where
C1 = −Γ(1 − (α− [α])). Using the property Γ(t+ 1) = tΓ(t) we get

Js(α) =
−Γ([α] − α + 1)

(α− 1) · · · (α− [α])
(it− s)[α](s− it)α−[α]

=
−Γ([α] − α + 1)

(1 − α) · · · ([α] − α)
(s− it)α

= −Γ(1 − α)(s− it)α.
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Note that the absolute value of the integrand in (2.9) is bounded by C2r
[α]−α−1 as

r → ∞ and by C3r
[α]−α as r → 0, so by dominated convergence we get Js(α) → J(α) as

s→ 0. Hence J(α) = (−it)α and then

ĝ(k, θ) = (−i〈k, θ〉)αf̂(k) = (Dα
θ f) ̂ (k).

Hence, by the uniqueness of the Fourier transform we have Dα
θ f(x) = g(x, θ) a.e. and

(2.4) holds true. This concludes the proof. �

Proof of Theorem 2.2. Let h(x) =
∫
‖θ‖=1

D α
θ f(x)M(dθ) where D α

θ f(x) is given by (2.2)

and hence (D α
θ f)̂(k) = (−i〈k, θ〉)αf̂(k). Since by Lemma 2.4

∫

‖θ‖=1

∫

Rd

|D α
θ f(x)| dxM(dθ) <∞

we can apply Fubini’s theorem to obtain

ĥ(k) =

∫

Rd

ei〈k,x〉
∫

‖θ‖=1

D α
θ f(x)M(dθ) dx

=

∫

‖θ‖=1

∫

Rd

ei〈k,x〉D α
θ f(x) dxM(dθ)

=

∫

‖θ‖=1

(D α
θ f)̂(k)M(dθ)

=

∫

‖θ‖=1

(−i〈k, θ〉)αM(dθ)f̂(k) = (D α
Mf)̂(k)

(2.10)

and the uniqueness of the Fourier transform yields (2.1). This concludes the proof. �

3. A multivariable Grünwald formula

In this section we derive, using Theorem 2.2 above, a multivariable analogue of the
scalar Grünwald formula (1.1). Furthermore, generalizing a result in [31], a speed of
convergence result is also obtained. Speed of convergence results are critical for numerical
applications.

Tuan and Gorenflo [31] show that for certain functions f

dαf(x)

dxα
= h−α∆α

hf(x) +O(h)

as h → 0. We now apply a similar argument to the fractional directional derivative.
Recall that the Fourier transform of D α

θ f(x) is (−i〈k, θ〉)αf̂(k). Further define

(3.1) h−α∆α
h,θf(x) = h−α

∞∑

m=0

(−1)m

(
α
m

)
f(x−mhθ)
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Theorem 3.1. For f ∈ W l,1(Rd) with l = [α] + d+ 2

(3.2) D α
θ f(x) = h−α∆α

h,θf(x) +O(h)

independent of θ ∈ S d−1 and x ∈ Rd.

Proof. Let f̂(k) =
∫
ei〈k,x〉f(x)dx be the Fourier transform of f(x) so that ei〈k,a〉f̂(k) is

the Fourier transform of f(x− a).
Note the well known result that

(3.3) (1 + z)α =

∞∑

m=0

(
α
m

)
zm

for any complex |z| ≤ 1 and any α > 0. Further, the binomial series is absolutely
convergent (page 180, [13]).

It is readily verified that
∫

Rd

∣∣∣∣∣
∞∑

m=0

(−1)m

(
α
m

)
f(x−mhθ)

∣∣∣∣∣ dx ≤ ‖f‖1

∞∑

m=0

|(−1)m

(
α
m

)
| <∞

Consequently, the right hand side of (3.1) defines an element of L1(Rd). Thus we can
take Fourier transforms in (3.1) to obtain

(
h−α∆α

h,θf
)̂(k) = h−α

∞∑

m=0

(−1)m

(
α
m

)
ei〈k,mhθ〉f̂(k)

= h−α

(
∞∑

m=0

(
α
m

)
(−ei〈k,hθ〉)m

)
f̂(k)

= h−α
(
1 − ei〈k,hθ〉)α f̂(k)

= h−α

(
(−i〈k, hθ〉)α

(
1 − ei〈k,hθ〉

−i〈k, hθ〉

)α)
f̂(k)

= (−i〈k, θ〉)αw(−i〈k, hθ〉)f̂(k)

(3.4)

where

w(z) =

(
1 − e−z

z

)α

= 1 − α

2
z +O(|z|2).

Note that |w(−ix) − 1| ≤ C|x| for all x ∈ R for some C > 0. Then
(
h−α∆α

h,θf
)̂(k) = (−i〈k, θ〉)αf̂(k) + (−i〈k, θ〉)α(w(−i〈k, hθ〉) − 1)f̂(k)

=
(
D α

θ f
)̂(k) + ϕ̂(h, k)

(3.5)

where ϕ̂(h, k) = (−i〈k, θ〉)α(w(−i〈k, hθ〉) − 1)f̂(k). Since f ∈ W l,1(Rd) the Riemann-
Lebesgue Lemma allows us to conclude that

|f̂(k)| ≤M/(1 + ‖k‖)l
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for some M ([12] Theorem 8.22) and thus

(1 + ‖k‖)α+1|f̂(k)| ≤ M(1 + ‖k‖)α+1

(1 + ‖k‖)[α]+d+2
=

M

(1 + ‖k‖)[α]−α+d+1

which yields the integrability result

(3.6)

∫

Rd

(1 + ‖k‖)α+1|f̂(k)|dk <∞.

Now since
|ϕ̂(h, k)| ≤ ‖k‖αC‖hk‖ |f̂(k)| ≤ C h (1 + ‖k‖)α+1|f̂(k)|

ϕ̂(h, ·) ∈ L1(Rd) for each h. Taking inverse Fourier transforms of

ϕ̂(h, k) =
(
h−α∆α

h,θf
)̂(k) −

(
D α

θ f
)̂(k)

we conclude that for some constant cd > 0

|h−α∆α
h,θf(x) −D α

θ f(x)| =

∣∣∣∣cd
∫

Rd

e−i〈k,x〉ϕ̂(h, k) dk

∣∣∣∣

≤ cd

∫

Rd

|ϕ̂(h, k)| dk

≤ Kh

(3.7)

for some constant K independent of θ ∈ S d−1 and x ∈ Rd. This shows that

(3.8) D α
θ f(x) = h−α∆α

h,θf(x) +O(h)

independent of θ ∈ S d−1 and x ∈ Rd and the theorem is proven. �
As a consequence of (2.1) and (3.2) we obtain

Corollary 3.2. For f ∈ W l,1(Rd) with l = [α] + d + 2 there exists a constant C > 0
independent of x such that

(3.9)

∣∣∣∣D α
Mf(x) −

∫

‖θ‖=1

h−α∆α
h,θf(x)M(dθ)

∣∣∣∣ ≤ Ch.

Remark 3.3. The vector fractional derivative D α
M is the negative generator of a multivari-

able stable semigroup on Rd. A stable probability distribution ν on Rd has characteristic
function

(3.10) ν̂(k) = exp

(
−C

∫

‖θ‖=1

(−i〈k, θ〉)αM(dθ)

)

for some C > 0. This follows from the Lévy representation by a straightforward but
lengthy calculation, see for example [17] Section 7.3. Then it follows that the generator
Aν = −D α

M . In one variable this idea has been used to prove (1.1) by discretizing the
Lévy measure of the stable probability distribution, see [20]. The same approach also
works for vector fractional derivatives, but that method makes it more difficult to obtain
the rate of convergence.
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4. Vector Grünwald formula on a regular grid

Finite difference algorithms for solving fractional partial differential equations require
a method for estimating fractional derivatives using only the function values on a regular
grid. In this section, we modify the Grünwald approximation formula for vector fractional
derivatives developed in Section 3 to operate on a rectangular grid, and we also establish
order of convergence. In view of Corollary 3.2, for functions f ∈ W [α]+d+2,1(Rd), we can
approximate the multivariable fractional derivative Dα

Mf(x) uniformly in x ∈ Rd by

(4.1) Dα
Mf(x) = h−α

∞∑

m=0

(−1)m

(
α
m

)∫

‖θ‖=1

f(x−mhθ)M(dθ) +O(h).

In order to apply this formula numerically we have to approximate
∫
‖θ‖=1

f(x−mhθ)M(dθ)

in such a way that the order O(h) in (4.1) is preserved. We will only consider the case
when M is a discrete measure or when M has a Lipschitz-continuous density with respect
to the surface measure on Sd−1. This is usually sufficient for most practical purposes.
Usually the function f is only known (or stored) on a regular grid Gh = u(h)Zd ⊂ Rd for
some u(h) > 0. Typically one has u(h) = h or u(h) = hβ for some β > 0. Since x−mhθ
is not a grid point, we have to evaluate f on a grid point close to x −mhθ and then we
have to control the error.

Recall that M is a probability measure on Sd−1.
Case I: (discrete M)
Assume that

(4.2) M =

∞∑

l=1

alεθl

for some al ≥ 0, ‖θl‖ = 1, where εa denotes the point mass in a ∈ Rd. In view of Theorem
3.1 and (4.1) we have

(4.3) Dα
Mf(x) = h−α

∞∑

l=1

al

∞∑

m=0

(−1)m

(
α
m

)
f(x−mhθl) +O(h)

uniformly in x ∈ Rd for f ∈ W [α]+d+2,1(Rd).
Now let Gh = h1+αZd be the grid of mesh size h1+α. Given any vector v ∈ Rd let

g(v) ∈ Gh denote the nearest grid point close to v. Then, for some constant Cd > 0 we
have

(4.4) ‖v − g(v)‖ ≤ Cdh
1+α for all v ∈ Rd.

Ties can be broken arbitrarily, and in fact, all of the ensuing arguments apply equally
well for any function g : Rd → Gh such that (4.4) holds.
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Theorem 4.1. If f ∈ W [α]+d+2,1(Rd) and (4.2) holds, then

(4.5) Dα
Mf(x) = h−α

∞∑

l=1

al

∞∑

m=0

(−1)m

(
α
m

)
f(x− g(mhθl)) +O(h)

uniformly in x ∈ Rd, especially in x ∈ Gh.

Proof. Since f ∈ W [α]+d+2,1(Rd), f is continuously differentiable and all first order partial
derivatives are bounded. Hence f is Lipschitz-continuous, that is, there exists a constant
K > 0 such that

(4.6) |f(x) − f(y)| ≤ K‖x− y‖ for all x, y ∈ Rd.

Hence, by (4.4) and (4.6), for some constant C > 0 and any l ≥ 1 we have

h−α
∣∣∣

∞∑

m=0

(−1)m

(
α
m

)
f(x−mhθl) −

∞∑

m=0

(−1)m

(
α
m

)
f(x− g(mhθl))

∣∣∣

≤h−α
∞∑

m=0

∣∣(−1)m

(
α
m

)∣∣ · |f(x−mhθl) − f(x− g(mhθl))|

≤KCdh
−αh1+α

∞∑

m=0

∣∣(−1)m

(
α
m

)∣∣

=Ch.

Then (4.5) follows from (4.3) and the proof is complete. �
Case II: (M has a Lipschitz-continuous density)

Assume that there exists a function ψ : Sd−1 → R+ which is Lipschitz-continuous, that
is, for some L > 0

(4.7) |ψ(θ1) − ψ(θ2)| ≤ L‖θ1 − θ2‖ for all θ1, θ2 ∈ Sd−1,

such that M(dθ) = ψ(θ)σ(dθ), where σ denotes the surface measure on Sd−1. We intro-
duce standard polar coordinates on Sd−1 (see, e.g., [11] p. 218). Let X = [0, π)d−2× [0, 2π)
and denote the elements of X by Φ = (φ1, . . . , φd−1). Define the diffeomorphism

T (Φ) = T (φ1, . . . , φd−1) =




cosφ1

sinφ1 cosφ2
...

sinφ1 sin φ2 · · · sin φd−2 cosφd−1

sin φ1 sinφ2 · · · sinφd−2 sinφd−1




and note that σ(dθ) = λd−1(T
−1(dθ)) where λd−1 is the Lebesgue product measure on X.

Further we define the standard metric on X by

d(Φ, Φ̄) =
(d−1∑

j=1

|φj − φ̄j|2
)1/2

.
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Then it is easy to see that for some constant C > 0

‖T (Φ) − T (Φ̄)‖ ≤ Cd(Φ, Φ̄) for all Φ, Φ̄ ∈ X.

Hence, in view of (4.7) we get for some constant C > 0 that

(4.8) |ψ(T (Φ)) − ψ(T (φ̄))| ≤ Cd(Φ, Φ̄) for all Φ, Φ̄ ∈ X.

Note that in
∫
‖θ‖=1

f(x−mhθ)M(dθ) in (4.1) we integrate f over a sphere with radius

mh around x. In order to get an approximation error that is O(h) we need to approximate
M in a way that depends on both m and h. When m is larger, the sphere of radius mh is
larger, and so we need to use a finer discretization of the density to get the same accuracy.
Now we define the grid points we will use to approximate the measure M . Given any
m ≥ 1 and h > 0 define for 1 ≤ i ≤ d− 2

φ
(h,m,j)
i = j

h1+α

m
for 0 ≤ j ≤ Ji(h,m) =

[ πm
h1+α

]
and φ

(h,m,Ji(h,m)+1)
i = π

and

φ
(h,m,j)
d−1 = j

h1+α

m
for 0 ≤ j ≤ Jd−1(h,m) =

[2πm
h1+α

]
and φ

(h,m,Jd−1(h,m)+1)
i = 2π

and set

θ
(h,m)
j1,...,jd−1

= T
(
φ

(h,m,j1)
1 , φ

(h,m,j2)
2 , . . . , φ

(h,m,jd−1)
d−1

)

for 0 ≤ ji ≤ Ji(h,m) + 1 and 1 ≤ i ≤ d− 1. Note that ∆φ
(h,m,j)
i = φ

(h,m,j+1)
i − φ

(h,m,j)
i =

h1+α/m for 0 ≤ j < Ji(h,m) while 0 ≤ ∆φ
(h,m,j)
i ≤ h1+α/m for j = Ji(h,m). Define

(4.9) Mh,m =

J1(h,m)∑

j1=0

· · ·
Jd−1(h,m)∑

jd−1=0

ψ
(
θ

(h,m)
j1,...,jd−1

)
∆φ

(h,m,j1)
1 · · ·∆φ(h,m,jd−1)

d−1 ε
θ
(h,m)
j1,...,jd−1

.

Then we have

Theorem 4.2. Assume M has a density such that (4.7) holds. Then for any f ∈
W [α]+d+2,1(Rd) there exists a constant C > 0 (independent of x and h) such that

(4.10)
∣∣Dα

Mf(x) − h−α

∞∑

m=0

(−1)m

(
α
m

)∫

‖θ‖=1

f(x−mhθ)Mh,m(dθ)
∣∣ ≤ Ch

for all x ∈ Rd and h > 0.
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Proof. In view of Theorem 2.2 we write

∣∣Dα
Mf(x) − h−α

∞∑

m=0

(−1)m

(
α
m

)∫

‖θ‖=1

f(x−mhθ)Mh,m(θ)
∣∣

≤
∣∣∣
∫

‖θ‖=1

Dα
θ f(x)M(dθ) −

∫

‖θ‖=1

h−α∆α
h,θf(x)M(dθ)

∣∣∣

+
∣∣∣
∫

‖θ‖=1

h−α∆α
h,θf(x)M(dθ) − h−α

∞∑

m=0

(−1)m

(
α
m

)∫

‖θ‖=1

f(x−mhθ)Mh,m(dθ)
∣∣∣

=E1(h) + E2(h).

Note that by (3.9) we already have E1(h) = O(h) uniformly in x ∈ Rd. Moreover

E2(h) =
∣∣∣h−α

∞∑

m=0

(−1)m

(
α
m

)[∫

‖θ‖=1

f(x−mhθ)M(dθ) −
∫

‖θ‖=1

f(x−mhθ)Mh,m(dθ)
]∣∣∣

≤ h−α
∞∑

m=0

∣∣(−1)m

(
α
m

)∣∣
∣∣∣
∫

‖θ‖=1

f(x−mhθ)M(dθ) −
∫

‖θ‖=1

f(x−mhθ)Mh,m(dθ)
∣∣∣

Recall that σ(dθ) = λd−1(T
−1(dθ)). Now substitute θ = T (Φ) and apply the mean value

theorem for integrals d− 1 times to obtain
∫

‖θ‖=1

f(x−mhθ)M(dθ) =

∫

X

f
(
x−mhT (Φ)

)
ψ
(
T (Φ)

)
dΦ

=

∫ π

0

· · ·
∫ π

0

∫ 2π

0

f
(
x−mhT (φ1, . . . , φd−1)

)
ψ
(
T (φ1, . . . , φd−1)

)
dφd−1dφd−2 . . . dφ1

=

J1(h,m)∑

j1=0

· · ·
Jd−1(h,m)∑

jd−1=0

∫ φ
(h,m,j1+1)
1

φ
(h,m,j1)
1

· · ·
∫ φ

(h,m,jd−1+1)

d−1

φ
(h,m,jd−1)

d−1

f
(
x−mhT (φ1, . . . , φd−1)

)
ψ
(
T (φ1, . . . , φd−1)

)
dφd−1 . . . dφ1

=

J1(h,m)∑

j1=0

· · ·
Jd−1(h,m)∑

jd−1=0

∆φ
(h,m,jd−1)
d−1

∫ φ
(h,m,j1+1)
1

φ
(h,m,j1)
1

· · ·
∫ φ

(h,m,jd−2+1)

d−2

φ
(h,m,jd−2)

d−2

f
(
x−mhT (φ1, . . . , φd−2, φ̄

(jd−1)
d−1 )

)
ψ
(
T (φ1, . . . , φd−2, φ̄

(jd−1)
d−1 )

)
dφd−2 . . . dφ1

...

=

J1(h,m)∑

j1=0

· · ·
Jd−1(h,m)∑

jd−1=0

∆φ
(h,m,j1)
1 · · ·∆φ(h,m,jd−1)

d−1

f
(
x−mhT (φ̄

(j1)
1 , . . . , φ̄

(jd−1)
d−1 )

)
ψ
(
T (φ̄

(j1)
1 , . . . , φ̄

(jd−1)
d−1 )

)
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for some φ
(h,m,ji)
i ≤ φ̄

(ji)
i ≤ φ

(h,m,ji+1)
i and 1 ≤ i ≤ d− 1. Moreover, by (4.9)

∫

‖θ‖=1

f(x−mhθ)Mh,m(dθ)

=

J1(h,m)∑

j1=0

· · ·
Jd−1(h,m)∑

jd−1=0

∆φ
(h,m,j1)
1 · · ·∆φ(h,m,jd−1)

d−1

f
(
x−mhT (φ

(m,h,j1)
1 , . . . , φ

(m,h,jd−1)
d−1 )

)
ψ
(
T (φ

(m,h,j1)
1 , . . . , φ

(m,h,jd−1)
d−1 )

)
.

Hence ∣∣∣
∫

‖θ‖=1

f(x−mhθ)M(dθ) −
∫

‖θ‖=1

f(x−mhθ)Mh,m(dθ)
∣∣∣

≤
J1(h,m)∑

j1=0

· · ·
Jd−1(h,m)∑

jd−1=0

∆φ
(h,m,j1)
1 · · ·∆φ(h,m,jd−1)

d−1

∣∣∣f
(
x−mhT (φ̄

(j1)
1 , . . . , φ̄

(jd−1)
d−1 )

)
ψ
(
T (φ̄

(j1)
1 , . . . , φ̄

(jd−1)
d−1 )

)

− f
(
x−mhT (φ

(m,h,j1)
1 , . . . , φ

(m,h,jd−1)
d−1 )

)
ψ
(
T (φ

(m,h,j1)
1 , . . . , φ

(m,h,jd−1)
d−1 )

)∣∣∣

(4.11)

It follows as in the proof of Theorem 4.1 that f is Lipschitz continuous, that is (4.6) holds.
Moreover ‖ψ‖∞ <∞ and ‖f‖∞ <∞ and (4.8) holds. Using the inequality

|f(u)ψ(u) − f(v)ψ(v)| ≤ ‖ψ‖∞|f(u) − f(v)| + ‖f‖∞|ψ(u) − ψ(v)|
we obtain for some constants C1, C2, C > 0 that∣∣∣f

(
x−mhT (φ̄

(j1)
1 , . . . , φ̄

(jd−1)
d−1 )

)
ψ
(
T (φ̄

(j1)
1 , . . . , φ̄

(jd−1)
d−1 )

)

− f
(
x−mhT (φ

(m,h,j1)
1 , . . . , φ

(m,h,jd−1)
d−1 )

)
ψ
(
T (φ

(m,h,j1)
1 , . . . , φ

(m,h,jd−1)
d−1 )

)∣∣∣

≤C1mh‖T (φ̄
(j1)
1 , . . . , φ̄

(jd−1)
d−1 )) − T (φ

(m,h,j1)
1 , . . . , φ

(m,h,jd−1)
d−1 )‖ + C2

h1+α

m

≤C1mh
h1+α

m
+ C2

h1+α

m
≤ Ch1+α

for all m ≥ 1, x ∈ Rd and 0 < h ≤ 1. Then the right hand side of (4.11) is bounded from
above by

Ch1+α

J1(h,m)∑

j1=0

· · ·
Jd−1(h,m)∑

jd−1=0

∆φ
(h,m,j1)
1 · · ·∆φ(h,m,jd−1)

d−1 = 2πd−1Ch1+α

for all x ∈ Rd and 0 < h ≤ 1. Finally, we obtain for some constant C̄ > 0 that

E2(h) ≤ h−α
∞∑

m=0

∣∣(−1)m

(
α
m

)∣∣2πd−1Ch1+α = C̄h
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for all x ∈ Rd and 0 < h ≤ 1. This concludes the proof. �

As in Case I we now move the evaluation of f to grid points. Recall that g(v) denotes
the nearest grid point close to v ∈ Rd and that (4.4) holds.

Theorem 4.3. Under the assumptions of Theorem 4.2 we have

Dα
Mf(x) = h−α

∞∑

m=0

(−1)m

(
α
m

) J1(h,m)∑

j1=0

· · ·
Jd−1(h,m)∑

jd−1=0

ψ
(
θ

(h,m)
j1,...,jd−1

)
f
(
x− g(mhθ

(h,m)
j1,...,jd−1

)
)
∆φ

(h,m,j1)
1 · · ·∆φ(h,m,jd−1)

d−1 +O(h)

uniformly in x ∈ Rd (and especially in x ∈ Gh).

Proof. Using (4.4) and (4.6) we have

∣∣f(x−mhθ
(h,m)
j1,...,jd−1

) − f(x− g(mhθ
(h,m)
j1,...,jd−1

))
∣∣ ≤ Ch1+α

and then for some C4 > 0

∣∣∣h−α
∞∑

m=0

(−1)m

(
α
m

)∫

‖θ‖=1

f(x−mhθ)Mh,m(dθ)

− h−α
∞∑

m=0

(−1)m

(
α
m

) J1(h,m)∑

j1=0

· · ·
Jd−1(h,m)∑

jd−1=0

ψ
(
θ

(h,m)
j1,...,jd−1

)
f
(
x− g(mhθ

(h,m)
j1,...,jd−1

)
)
∆φ

(h,m,j1)
1 · · ·∆φ(h,m,jd−1)

d−1

∣∣∣

=
∣∣∣h−α

∞∑

m=0

(−1)m

(
α
m

) J1(h,m)∑

j1=0

· · ·
Jd−1(h,m)∑

jd−1=0

∆φ
(h,m,j1)
1 · · ·∆φ(h,m,jd−1)

d−1

ψ
(
θ

(h,m)
j1,...,jd−1

) (
f
(
x−mhθ

(h,m)
j1,...,jd−1

)
− f

(
x− g(mhθ

(h,m)
j1,...,jd−1

)
)) ∣∣∣

≤ h−α

∣∣∣∣∣
∞∑

m=0

(−1)m

(
α
m

)∣∣∣∣∣

J1(h,m)∑

j1=0

· · ·
Jd−1(h,m)∑

jd−1=0

∆φ
(h,m,j1)
1 · · ·∆φ(h,m,jd−1)

d−1 ‖ψ‖∞Ch1+α

= h−α

∣∣∣∣∣
∞∑

m=0

(−1)m

(
α
m

)∣∣∣∣∣ 2π
d−1‖ψ‖∞Ch1+α ≤ C4h.

Now Theorem 4.2 together with (4.9) gives the desired result. �
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Remark 4.4. If the step size h is chosen so that π/h1+α is an integer, then the Grünwald
approximation formula in Theorem 4.2 becomes simpler. In this case, we have

Dα
Mf(x) = h(1+α)(d−1)−α

∞∑

m=0

(−1)m

(
α
m

)
1

md−1

J1(h,m)−1∑

j1=0

· · ·
Jd−1(h,m)−1∑

jd−1=0

ψ
(
θ

(h,m)
j1,...,jd−1

)
f
(
x− g(mhθ

(h,m)
j1,...,jd−1

)
)

+O(h)

uniformly in x ∈ Rd (and especially in x ∈ Gh).
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