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Abstract

We develop a unified Petrov-Galerkin spectral method for a class of frac-
tional partial differential equations with two-sided derivatives and constant
coefficients of the form 0D2τ

t u+
∑d

i=1[cli aiD
2µi
xi
u+ cri xiD

2µi
bi
u] +γ u =

∑d
j=1[

κlj ajD
2νj
xj u+κrj xjD

2νj
bj
u] +f , where 2τ ∈ (0, 2), 2µj ∈ (0, 1) and 2νj ∈ (1, 2),

in a (1 +d)-dimensional space-time hypercube, d = 1, 2, 3, · · · , subject to ho-
mogeneous Dirichlet initial/boundary conditions. We employ the eigenfunc-
tions of the fractional Sturm-Liouville eigen-problems of the first kind in [1],
called Jacobi poly-fractonomials, as temporal bases, and the eigen-functions
of the boundary-value problem of the second kind as temporal test functions.
Next, we construct our spatial basis/test functions using Legendre polynomi-
als, yielding mass matrices being independent of the spatial fractional orders
(µj, νj, j = 1, 2, · · · , d). Furthermore, we formulate a novel unified fast linear
solver for the resulting high-dimensional linear system based on the solution
of generalized eigen-problem of spatial mass matrices with respect to the cor-
responding stiffness matrices, hence, making the complexity of the problem
optimal, i.e., O(Nd+2). We carry out several numerical test cases to exam-
ine the CPU time and convergence rate of the method. The corresponding
stability and error analysis of the Petrov-Galerkin method are carried out in
[2].
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1. Introduction

Fractional calculus seamlessly generalizes the notion of standard integer-
order calculus to its fractional-order counterpart, leading to a broader class
of mathematical models, namely fractional ordinary differential equations
(FODEs) and fractional partial differential equations (FPDEs) [3, 4, 5, 6,
7]. Such non-local models appear as tractable mathematical tools to de-
scribe anomalous transport, which manifests in memory-effects, non-local
interactions, power-law distributions, sharp peaks, and self-similar struc-
tures [8, 4, 9, 10]. Although anomalous, such phenomena are observed in
a range of applications e.g., bioengineering [11, 12, 13, 14], turbulent flows
[15, 16, 17, 18, 19], porous media [20, 21, 22], viscoelastic materials [23].

Due to their history dependence and non-local character, the discretiza-
tion of such problems becomes computationally challenging. Numerical meth-
ods, developed to discretize FPDEs, can be categorized in two major classes:
i) local methods, e.g., finite difference method (FDM), finite volume method
(FVM), and finite element method (FEM), and ii) global methods, e.g., single
and multi-domain spectral methods (SM).

Local schemes have been studied extensively in the literature. Lubich
introduced the discretized fractional calculus within the spirit of FDM [24].
Sugimoto employed a FDM scheme for approximating fractional Burger’s
equation [25, 26]. Meerschaert and Tadjeran [27] developed finite difference
approximations to solve one-dimensional advection-dispersion equations with
variable coefficients on a finite domain. Tadjeran and Meerschaert [28] em-
ployed a practical alternating directions implicit (ADI) method to solve a
class of fractional partial differential equations with variable coefficients in
bounded domain. Hejazi et al., [29] developed a finite-volume method uti-
lizing fractionally shifted grunwald formula for the fractional derivatives for
space-fractional advection-dispersion equation on a finite domain. To solve
the two-dimensional two-sided space-fractional convection diffusion equa-
tion, Chen and Deng [30] proposed a practical alternating directions im-
plicit method. Zeng et al., [31] constructed a finite element method and a
multistep method for unconditionally stable time-integration of sub-diffusion
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problem. In addition, Zhao et al., developed second-order FDM for the
variable-order FPDEs in [32]. Li et al., [33] proposed an implicit finite
difference scheme for solving the generalized time-fractional Burger’s equa-
tion. Recently, Feng et al., [34] proposed a second-order Crank-Nicolson
scheme to approximate the Riesz space-fractional advection-dispersion equa-
tions (FADE). Moreover, two compact non-ADI FDMs have been proposed
for the high-dimensional time-fractional sub-diffusion equation by Zeng et al.,
[35]. Recently, Zayernouri and Matzavinos [36] have developed an explicit
fractional adams/Bashforth/Moulton and implicit fractional Adams-Moulton
finite difference methods, applicable to high-order time-integration of nonlin-
ear FPDEs and amenable for formulating implicit/explicit (IMEX) splitting
methods.

Regarding global methods, Sugimoto [25, 26] used Fourier SM in a frac-
tional Burger’s equation. Shen and Wang [37] constructed a set of Fourier-
like basis functions for Legendre-Galerkin method for non-periodic boundary
value problems and proposed a new space-time spectral method. Sweilam
et al., [38] considered Chebyshev Pseudo-spectral method for solving one-
dimensional FADE, where the fractional derivative is described in Caputo
sense. Chen et al., [39] developed an approach for high-order time inte-
gration within multi-domain setting for time-fractional diffusion equations.
Mokhtary developed a fully discrete Galerkin method to numerically approx-
imate initial value fractional integro-differential equations [40].

Moreover, Zayernouri and Karniadakis [1, 41] introduced a new family
of basis/test functions, called (tempered)Jacobi poly-fractonomials, known as
the explicit eigenfunctions of (tempered) fractional Strum-Liouville problems
in bounded domains of the first and second kind. Following this new spectral
theory, they have developed a number of single- and multi-domain spectral
methods [42, 43, 44, 45, 46]. Recently, Dehghan et al. [47], employed a
Galerkin finite element and interpolating element free Galerkin methods for
full discretization of the fractional diffusion-wave equation. They [48] also
introduced a full discretization of time-fractional diffusion and wave equa-
tions using meshless Galerkin method based on radial basis functions. Zaho
et al., [49] developed a spectral method for the tempered fractional diffusion
equations (TFDEs) using the generalized Jacobian functio [50]. Mao and
Shen [51] developed Galerkin spectral methods for solving multi-dimensional
fractional elliptic equations with variable coefficients.

The main contribution of the present work is to construct a unified Petrov-
Galerkin spectral method and a unified fast solver for the weak form of linear
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FPDEs with constant coefficients in (1+d) dimensional space-time hypercube
of the form

0D2τ
t u +

d∑
i=1

[cli aiD
2µi
xi
u + cri xiD

2µi
bi
u] =

d∑
j=1

[κlj ajD
2νj
xj
u + κrj xjD

2νj
bj
u]

−γ u + f, (1)

where 2µi, ∈ [0, 1], 2νi, ∈ [1, 2], and 2τ, ∈ [0, 2] subject to Dirichlet initial
and boundary conditions, where i = 1, 2, ..., d. Compared to FPDEs consid-
ered in [45], here, we include an additional advection term that allows (1) to
also include the fractional advection-dispersion equation (FADE). We employ
the Jacobi poly-fractonomials as temporal basis/test functions and Legendre
polynomials as spatial basis/test functions. We develop a new general fast
linear solver based on the eigenpairs of the corresponding temporal mass and
the spatial matrices with respect to the temporal stiffness and spatial mass
matrices, respectively. In [2], we perform the corresponding discrete stability
and error analyses of the PG method along with several verifying numerical
tests.

The outline of this paper is as follows: in section 2, we introduce some
preliminary results from fractional calculus. In section 3, we present the
mathematical formulation of the spectral method in a (d+1) dimensional
space, which leads to the generalized Lyapunov equations. In section 4, we
develop a unified fast linear solver and obtain the closed-form solution in
terms of the genralized eigenvalues and eigenvectors of the corresponding
mass and stiffness matrices. In section 5, the performance of the PG method
is examined via several numerical simulations for low-to- high dimensional
problems with smooth and non-smooth solutions.

2. Preliminaries on Fractional Calculus

Here, we obtain some basic definitions from fractional calculus [4, 45].
Denoted by aDνxg(x) is the left-sided Reimann-Liouville fractional derivative
of order ν in which g(x) ∈ Cn[a, b], defined as:

RL
aDνxg(x) =

1

Γ(n− ν)

dn

dxn

∫ x

a

g(s)

(x− s)ν+1−n ds, x ∈ [a, b], (2)
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where Γ represents the Euler gamma function. The corresponding right-sided
Reimann-Liouville fractional derivative of order ν, xDνbg(x), is given by

RL
xDνbg(x) =

1

Γ(n− ν)
(−1)n

dn

dxn

∫ b

x

g(s)

(s− x)ν+1−n ds, x ∈ [a, b]. (3)

In (2) and (3), as ν → n, the fractional derivatives tend to the standard n-th
order derivative with respect to x. We recall from [52] that the following link
between the Reimann-Liouville and Caputo fractional derivatives, where

Rl
aDµxf(x) =

f(a)

Γ(1− µ)(x− a)µ
+ C

aDµxf(x) (4)

Rl
xD

µ
b f(x) =

f(b)

Γ(1− µ)(b− x)µ
+ C

xD
µ
b f(x), (5)

where

C
aDµxf(x) =

1

Γ(n− ν)

∫ x

a

g(n)(s)

(x− s)ν+1−n ds, x ∈ [a, b], (6)

C
xD

µ
b f(x) =

(−1)n

Γ(n− ν)

∫ b

x

g(n)(s)

(x− s)ν+1−n ds, x ∈ [a, b], (7)

In (4) and (5), RLaDνxg(x) = C
aDνxg(x) = aDνxg(x) when homogeneous Dirichlet

initial and boundary conditions are enforced.
To analytically obtain the fractional differentiation of our basis function,

we employ the following relations [1] as:

RL
−1Iµx{(1 + x)βPα,β

n (x)} =
Γ(n+ β + 1)

Γ(n+ β + µ+ 1)
(1 + x)β+µPα−µ,β+µ

n (x), (8)

and

RL
xI

µ
1{(1− x)αPα,β

n (x)} =
Γ(n+ α + 1)

Γ(n+ α + µ+ 1)
(1− x)α+µPα+µ,β−µ

n (x), (9)

where 0 < µ < 1, α > −1, β > −1 and Pα, β
n (x) denote the standard Jacobi

Polynomials of order n and parameters α and β. It is worth mentioning that

RL
aIµx{f(x)} =

1

Γ(µ)

∫ x

a

f(s)

(x− s)1−µ ds, x ∈ [a, b],

RL
xI

µ
b {f(x)} =

1

Γ(µ)

∫ b

x

f(s)

(s− x)1−µ ds, x ∈ [a, b].
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By substituting α = +µ and β = −µ, we can simplify equations (8) and (9),
thereby we have:

RL
−1Iµx{(1 + x)−µP µ,−µ

n (x)} =
Γ(n− µ+ 1)

Γ(n+ 1)
Pn(x), x ∈ [−1, 1] (10)

and

RL
xI

µ
1{(1− x)µP−µ,µn (x)} =

Γ(n− µ+ 1)

Γ(n+ 1)
Pn(x), x ∈ [−1, 1]. (11)

Accordingly, we have the fractional derivative of Legendre polynomial by
differentiating equations (8) and (9) as

−1DµxPn(x) =
Γ(n+ 1)

Γ(n− µ+ 1)
P µ,−µ
n (x) (1 + x)−µ (12)

and

xD
µ
1Pn(x) =

Γ(n+ 1)

Γ(n− µ+ 1)
P −µ,µn (x) (1− x)−µ, (13)

where Pn(x) = P 0,0
n (x) represents Legendre polynomial of degree n.

3. Mathematical Framework

Let u : Rd+1 → R for some positive integer d and Ω = [0, T ] × [a1, b1] ×
[a2, b2]× · · · × [ad, bd], where

0D2τ
t u +

d∑
i=1

[
cli aiD

2µi
xi
u+ cri xiD

2µi
bi
u
]

−
d∑
j=1

[
κlj ajD

2νj
xj
u+ κrj xjD

2νj
bj
u
]

+ γ u = f, (14)

where, γ, cli , cri , κli , and κri are all constant. 2µj ∈ (0, 1), 2νj ∈ (1, 2), and
2τ ∈ (0, 2), for j = 1, 2, · · · , d. This equation is subject to the following
Dirichlet initial and boundary conditions as:

u|t=0 = 0, τ ∈ (0, 1/2),

u|t=0 =
∂u

∂t
|t=0 = 0, τ ∈ (1/2, 1),

u|xj=aj = u|xj=bj = 0, νj ∈ (1/2, 1), j = 1, 2, · · · , d.
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We define the solution space U as

U :=
{
u : Ω→ R |u ∈ C(Ω), ‖u‖U <∞, u|t=0 = u|xj=aj = u|xj=bj = 0

}
when νj ∈ (1/2, 1) and

‖u‖U =
{
‖ 0Dτt (u)‖2

L2 +
d∑
j=1

[
‖ ajD

µj
xj

(u)‖2
L2 + ‖ xjD

µj
bj

(u)‖2
L2

]
+

d∑
i=1

[
‖ aiD

νi
xi

(u)‖2
L2 + ‖ xiD

νi
bi

(u)‖2
L2

]
+ ‖u‖2

L2

}1/2

(15)

The test space V is defined correspondingly as

V :=
{
v : Ω→ R | ‖v‖V <∞, v|t=T = v|xj=bj = 0

}
(16)

when νj ∈ (1/2, 1) and µi ∈ (0, 1/2), in which

‖v‖V =
{
‖ tDτT (v)‖2

L2 +
d∑
j=1

[
‖ xjD

µj
bj

(v)‖2
L2 + ‖ ajD

µj
xj

(v)‖2
L2

]
+

d∑
i=1

[
‖ xiD

νi
bi

(v)‖2
L2 + ‖ aiD

νi
xi

(v)‖2
L2

]
+ ‖v‖2

L2

}1/2

. (17)

U and V are Hilbert spaces [53].

3.1. Stochastic Interpretation of the FPDEs

Following [54], we provide a brief stochastic interpretation of the FPDEs
in (14) that further sheds light on the well-posedness of the problem from the
perspective of probability theory. Let suppose that in (14), f ≡ 0 and γ = 0
and 0 < 2τ < 1 and that ai = −∞ and bi = +∞ for i = 1, 2, · · · . Then
(14) governs [54] a time-changed Lévy process X(Et) on Rd whose Fourier
transform is E[e−ik·X(t)] = etψ(k) with the Fourier symbol

ψ(k) = −
d∑

n=1

[cln(ikn)2µn + crn(−ikn)2µn ] +
d∑

m=1

[κlm(−ikm)2νm + κrm(ikm)2νm ].

(18)
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Recall that in one dimension the Lévy process Y (t) with Fourier Transform
E[e−ikY (t)] = etψ0(k) where ψ0(k) = pD(ik)α + qD(−ik)α for D > 0 and
1 < α ≤ 2, p ≥ 0, q ≥ 0, and p + q = 1 is a stable Lévy process with index
α and skewness p− q [4, 54].

In brief, fractional advection-dispersion equation on unbounded domain
is represented by a solution involves an inverse stable subordinator time-
changed, resulting in an non-Markovian process. You can find complete
details in [4].

Regarding a computational domain, Chen et al [55] developed a solution
for the case of equation (14) where f ≡ 0 and γ = 0 and 0 < 2τ < 1 and all
am = an > −∞ and bm = bn <∞, with zero Dirichlet boundary conditions.
It follows from [54] that

Lu(x) = cu′(x) + κl aD2ν
x u(x) + κr xD2ν

b u(x) (19)

is the generator of the killed semigroup on the bounded domain Ω = (a, b)
which is also the point source to (14). In other words, starting with the
point source initial condition u(x, 0) = δ(x), the solution to (14) with the
restrictions discussed in [4, 55] is the PDF of a killed non-Markovian process.

3.2. Petrov-Galerkin Method

We construct a Petrov-Galerkin spectral method for u ∈ U , satisfying the
corresponding weak form of (14) as

(0Dτt u, tDτT v)Ω +
d∑
i=1

[
cli(aiD

µi
xi
u, xiD

µi
bi
v)Ω + cri(aiD

µi
xi
v, xiD

µi
bi
u)Ω

]
−

d∑
j=1

[klj(ajD
νj
xj
u, xjD

νj
bj
v)Ω + krj(ajD

νj
xj
v, xjD

νj
bj
u)Ω]

+ γ(u, v)Ω = (f, v)Ω, ∀v ∈ V, (20)
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where (·, ·)Ω represents the usual L2-product. Next, let a : U × V → R be a
bilinear form, defined as

a(u, v) = (0Dτt u, tDτT v)Ω

+
d∑
i=1

[
cli(aiD

µi
xi
u, xiD

µi
bi
v)Ω + cri(xiD

µi
ai
u, aiD

µi
xi
v)Ω

]
+

d∑
j=1

[
κlj(ajD

νj
xj
u, xjD

νj
bj
v)Ω + κrj(xjD

νj
bj
u, ajD

νj
xj
v)Ω

]
+γ(u, v)Ω. (21)

Now, the problem reads as: find u ∈ U such that

a(u, v) = (f, v), ∀v ∈ V, (22)

where a(u, v) is a continuous bilinear form. Next, we choose proper subspaces
of U and V as finite dimensional UN and VN with dim(UN) = dim(VN) = N .
Now, the discrete problem is to find uN ∈ UN such that

a(uN , vN) = (f, vN), ∀vN ∈ VN . (23)

By representing uN as a linear combination of points/elements in UN i.e.,
the corresponding (1 + d)-dimensional space-time basis functions, the finite-
dimensional problem (23) leads to a linear system known as Lyapunov sys-
tem. For instance, when d = 1, we obtain the corresponding Lyapunov
equation in the space-time domain [0, T ]× [a1, b1] as

Sτ UMT
1 + cl1Mτ U STµ1,l + cr1Mτ U STµ1,r
− κl1Mτ U STν1,l − κr1Mτ U STν1,r = F, (24)

where all are defined in 3.5.
To find the general form of Lyapunov equation, we can define STot as

κl1 Sν1,l + κr1 Sν1,r + cl1 Sµ1,l + cr1 Sµ1,r = STot1 . (25)

Considering equation (25), we obtain the (1+1)-D space-time Lyapunov sys-
tem as

Sτ UMT
1 +Mτ U STot

T

1 = F.
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We present a new class of basis and test functions yielding symmetric
stiffness matrices. Moreover, we compute exactly the corresponding mass
matrices, which are either symmetric and pentadiagonal. In the following,
we extensively study the properties of the aforementioned matrices, allowing
us to formulate a general fast linear solver for (42).

3.3. Space of Basis Functions (UN)

We construct our basis for the spatial discretization employing the Leg-
endre polynomials defined as

φm( ξ ) = σm
(
Pm+1(ξ) − Pm−1(ξ)

)
, m = 1, 2, · · · and ξ ∈ [−1, 1], (26)

where σm = 2 + (−1)m. The definition reflects the fact that for µ ≤ 1/2 and
1/2 ≤ ν ≤ 1, then both boundary conditions needs to be presented. Natu-
rally, for the temporal basis functions only initial conditions are prescribed
and the basis function for the temporal discretization is constructed based
on the univariate poly-fractonomials [1] as

ψ τ
n (η) = σn(1 + η)τ P−τ , τn−1 (η), n = 1, 2, · · · and η ∈ [−1, 1], (27)

for n ≥ 1. With the notation established, we define the space-time trial space
to be

UN = span
{(
ψ τ
n ◦η

)
(t)

d∏
j=1

(
φmj
◦ξj
)

(xj) : n = 1, . . . ,N , mj = 1, . . . ,Mj

}
,

(28)
where η(t) = 2t/T − 1 and ξj(s) = 2

s−aj
bj−aj − 1.

3.4. Space of Test Functions (VN)

We construct our spatial test functions using Legendre polynomial as well
as the basis function in our Galerkin method as

Φµ
k (ξ) = σ̃k

(
Pk+1(ξ) − Pk−1(ξ)

)
, k = 1, 2, · · · and ξ ∈ [−1, 1], (29)

where σ̃k = 2 (−1)k + 1. Next, we define the temporal test functions using
the univariate poly-fractonomials

Ψ τ
r (η) = σ̃r (1− η)τ P τ ,−τ

r−1 (η), r = 1, 2, · · · and η ∈ [−1, 1], (30)
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and we construct the corresponding space-time test space as

VN = span
{(

Ψ τ
r ◦ η

)
(t)

d∏
j=1

(
Φkj
◦ ξj
)

(xj) : r = 1, . . . ,N , kj = 1, . . . ,Mj

}
.

(31)

Remark 3.1. The choices of σm in (26) and (27), also σ̃k in (29) and (30),
result in the spatial/temporal mass and stiffness matrices being symmetric,
which are discussed in Theorems 3.2, 3.3, and 3.4 in more details.

3.5. Implementation of PG Spectral Method

We now seek the solution to (14) in terms of a linear combination of
elements in the space UN of the form

uN(x, t) =
∑N

n=1

∑M1

m1=1 · · ·
∑Md

md=1 ûn,m1,··· ,md

[
ψ τ
n (t)

∏d
j=1 φmj

(xj)
]

(32)

in Ω. We enforce the corresponding residual

RN(t, x1, · · · , xd) = 0D2τ
t uN +

d∑
i=1

[cli aiD
2µi
xi
uN + cri xiD

2µi
bi
uN ]

−
d∑
j=1

[κlj aj
D2νj
xj
uN + κrj xj

D2νj
bj
uN ]

+ γ uN − f (33)

to be L2-orthogonal to vN ∈ VN , which leads to the finite-dimensional varia-
tional weak form in (23). Specifically, by choosing vN = Ψ τ

r (t)
∏d

j=1 Φkj
(xj),
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when r = 1, . . . ,N and kj = 1, . . . ,Mj, j = 1, 2, · · · , d, we have

N∑
n=1

M1∑
m1=1

· · ·
Md∑
md=1

ûn,m1,··· ,md

(
{Sτ}r,n{M1}k1,m1 · · · {Md}kd,md

+
d∑
i=1

[cli{Mτ}r,n{M1}k1,m1 · · · {Sνi,l}ki,mi
· · · {Md}kd,md

+ cri{Mτ}r,n{M1}k1,m1 · · · {Sνi,r}ki,mi
· · · {Md}kd,md

]

−
d∑
j=1

[
κlj{Mτ}r,n{M1}k1,m1 · · · {Sνj ,l}kj ,mj

· · · {Md}kd,md

+ κrj{Mτ}r,n{M1}k1,m1 · · · {Sνj ,r}kj ,mj
· · · {Md}kd,md

]
+ γ{Mτ}r,n{M1}k1,m1 · · · {Md}kd,md

)
= Fr,k1,··· ,kd ,

where Sτ and Mτ denote, respectively, the temporal stiffness and mass ma-
trices whose entries are defined as

{Sτ}r,n =

∫ T

0
0Dτt

(
ψτn ◦ η

)
(t) tDτT

(
Ψτ
r ◦ η

)
(t) dt,

and

{Mτ}r,n =

∫ T

0

(
Ψτ
r ◦ η

)
(t)
(
ψτn ◦ η

)
(t) dt.

Moreover, Sµj andMµj , j = 1, 2, · · · , d, are the corresponding spatial stiffness
and mass matrices where the left-sided and right-sided entries of the spatial
stiffness matrices are obtained as

{Sµj ,l}kj ,mj
=

∫ bj

aj
aj
Dµjxj

(
φµjmj
◦ ξj
)

(xj) xj
Dµjbj

(
Φ
µj
kj
◦ ξj
)

(xj) dxj = {Sµj}kj ,mj
,

{Sµj ,r}kj ,mj
=

∫ bj

aj
xj
Dµjbj

(
φµjmj
◦ ξj
)

(xj) aj
Dµjxj

(
Φ
µj
kj
◦ ξj
)

(xj) dxj = {Sµj}Tkj ,mj
,

and the corresponding entries of the spatial mass matrix are given by

{Mj}kj ,mj
=

∫ bj

aj

(
Φkj
◦ ξj
)

(xj)
(
φmj
◦ ξj
)

(xj) dxj.
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Moreover, the components of the load vector are computed as

Fr,k1,··· ,kd =

∫
Ω

f(t, x1, · · · , xd)
(

Ψ τ
r ◦ η

)
(t)

d∏
j=1

(
Φkj
◦ ξj
)

(xj) dΩ. (34)

The linear system (34) can be exhibited as the following general Lyapunov
equation (

Sτ ⊗M1 ⊗M2 · · · ⊗Md (35)

+
d∑
i=1

cliMτ ⊗M1 ⊗ · · · ⊗ Sµi,l ⊗Mi+1 · · · ⊗Md

+
d∑
i=1

criMτ ⊗M1 ⊗ · · · ⊗ Sµi,r ⊗Mi+1 · · · ⊗Md

−
d∑
j=1

κljMτ ⊗M1 ⊗ · · · ⊗ Sνj ,l ⊗Mj+1 · · · ⊗Md

−
d∑
j=1

κrjMτ ⊗M1 ⊗ · · · ⊗ Sνj ,r ⊗Mj+1 · · · ⊗Md

+ γ Mτ ⊗M1 ⊗M2 · · · ⊗Md

)
U = F.

Let
cli × Sµi,l + cri × Sµi,r − κli × Sνi − κri × Sνi,r = S Tot. (36)

Considering the fact that all the aforementioned stiffness and mass matrices
are symmetric, Sµi,l, Sµi,r, Sνi,l, and Sνi,r can be replaced by S Tot which
remains symmetric. Therefore,(

Sτ ⊗M1 ⊗M2 · · · ⊗Md (37)

+
d∑
i=1

[ Mτ ⊗M1 ⊗ · · · ⊗Mj−1 ⊗ S Tot
i ⊗Mi+1 · · · ⊗Md ]

+γ Mτ ⊗M1 ⊗M2 · · · ⊗Md

)
U = F,

in which⊗ represents the Kronecker product, F denotes the multi-dimensional
load matrix whose entries are given in (34), and U denotes the corresponding
multi-dimensional matrix of unknown coefficients with entries ûn,m1,··· ,md

.

13



In the Theorems 3.2, 3.3, and 3.4, we study the properties of the afore-
mentioned matrices. Besides, we present efficient ways of deriving the spa-
tial mass matrices and the temporal stiffness matrices analytically and exact
computation of the temporal mass and the spatial stiffness matrices through
proper quadrature rules.

Theorem 3.2. The temporal stiffness matrix Sτ corresponding to the time-
fractional order τ ∈ (0, 1) is a diagonal N × N matrix, whose entries are
obtained as

{Sτ}r,n = σ̃r σn
Γ(n+ τ)

Γ(n)

Γ(r + τ)

Γ(r)

( 2

T

)2τ−1 2

2n− 1
δr,n, r, n = 1, 2, · · · , N .

Moreover, the he entries of temporal mass matrices Mτ can be computed
exactly by employing a Gauss-Lobatto-Jacobi (GLJ) rule with respect to the
weight function (1− η)τ (1 + η)τ , η ∈ [−1, 1], where α = τ/2. Moreover, Mτ

is symmetric.

Proof. See [45].

Theorem 3.3. The spatial mass matrix M is a penta-diagonal M ×M
matrix, whose entries are explicitly given as

Mk,r = σ̃k σr [
2

2k + 3
δk,r −

2

2k + 3
δk+1,r−1 −

2

2k − 3
δk−1,r+1 +

2

2k − 3
δk−1,r−1. (38)

Proof. The (k, r)th-entry of the spatial mass matrix is given by

Mk,r =
∫ b
a
φr ◦ ξ(x) Φk ◦ ξ(x) dx =

(
b−a

2

) ∫ 1

−1
φr(ξ)Φk(ξ) dξ, (39)

where ξ = 2x−a
b−a − 1 and ξ ∈ (−1, 1). Substituting the spatial basis/test

functions, we have

Mk,r =
(
b−a

2

)
σ̃k σr

[
M̃k,r − M̃k+1,r−1 − M̃k−1,r+1 + M̃k,r

]
, (40)

in which

M̃i,j =

∫ 1

−1

Pi(ξ)Pj(ξ) dξ =
2

2i+ 1
δij. (41)

Therefore, we have

Mk,r =
(b− a

2

)
σ̃k σr [

2

2k + 3
δk,r −

2

2k + 3
δk+1,r−1 −

2

2k − 3
δk−1,r+1 +

2

2k − 3
δk,r]
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as a pentadiagonal matrix. Moreover,

Mr,k =
(b− a

2

)
σ̃r σk [

2

2r + 3
δr,k −

2

2r + 3
δr+1,k−1 −

2

2r − 3
δr−1,k+1 +

2

2r − 3
δr,k]

= Mk,r

Theorem 3.4. The total spatial stiffness matrix STot is symmetric and its
entries can be exactly computed as:

cli × Sµi,l + cri × Sµi,r − κli × Sνi,l − κri × Sνi,r = S Tot. (42)

where i = 1, 2, · · · , d.

Proof. Regarding the definition of stiffness matrix, we have

{Sµi,l}r,n =

∫ bi

ai
ai
Dµixi
(
φn(xi)

)
xi
Dµibi
(

Φr(xi)
)
dxi,

=
(bi − ai

2

)−2µi+1
∫ 1

−1
−1D

µi
ξi

(
Pn+1 − Pn−1

)
ξi
Dµi1

(
Pk+1 − Pk−1

)
dξi

=
(bi − ai

2

)−2µi+1
σ̃r σn

[
S̃ µi
r+1,n+1 − S̃

µi
r+1,n−1 − S̃

µi
r−1,n+1 + S̃ µi

r−1,n−1

]
, (43)

where

S̃ µi
r,n =

∫ 1

−1 −1D
µi
ξi

(
Pn(ξi)

)
ξi
Dµi1

(
Pr(ξi)

)
dξi

=
∫ 1

−1
Γ(r+1)

Γ(r−µi+1)
Γ(n+1)

Γ(n−µi+1)
(1 + ξi)

−µi(1− ξi)−µi P−µi,µir P µi,−µi
n dξi.

Furthermore,

{Sµi,r}r,n =

∫ bi

ai
ai
Dµixi
(

Φr(xi)
)
xi
Dµibi
(
φn(xi)

)
dxi,

=

∫ bi

ai
ai
Dµixi
(
φn(xi)

)
xi
Dµibi
(

Φr(xi)
)
dxi,

= {Sµi,l}r,n = {Sµi}r,n (44)

Similar to (44), we get {Sνi,l}r,n = {Sνi,r}r,n = {Sνi}r,n; as a result,

(κli + κri)Sνi + (cli + cri)Sµi = SToti . (45)
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S̃ µi
r,n can be computed accurately using Guass-Jacobi quadrature rule as

S̃ µ
r,n =

Γ(r + 1)

Γ(r − µi + 1)

Γ(n+ 1)

Γ(n− µi + 1)

Q∑
q=1

wq P
−µi, µi
r (ξq)P

µi,−µi
n (ξq),(46)

in whichQ ≥ N+2 represents the minimum number of GJ quadrature points
{ξq}Qq=1, associated with the weigh function (1 − ξ)−µi(1 + ξ)−µi , for exact

quadrature, and {wq}Qq=1 are the corresponding quadrature weights. Employ-
ing the property of the Jacobi polynomials where Pα,β

n (−xi) = (−1)nP β,α
n (xi),

we can re-express S̃ µi
r,n as (−1)(r+n) S̃ µi

n,r. Accordingly,

{Sµi}r,n =
(
bi−ai

2

)−2µi+1
σ̃r σn

[
(−1)(n+r+2) S̃ µi

n+1,r+1 − (−1)(n+r) S̃ µi
n+1,r−1

−(−1)(n+r) S̃ µi
n−1,r+1 + (−1)(n+r−2) S̃ µi

n−1,r−1

]
= σ̃r σn (−1)(n+r)

[
S̃ µ
n+1,r+1 − S̃

µi
n+1,r−1 − S̃

µi
n−1,r+1 + S̃ µi

n−1,r−1

]
. (47)

According to (47),

{Sµi}r,n = {Sµi}n,r ×
σ̃r σn
σ̃n σr

(−1)(n+r). (48)

In fact, σ̃r and σn are chosen such that (−1)(n+r) is canceled; hence it can be
easily concluded that the stiffness matrix S µi

n,r, S
νi
n,r and thereby STotn,r as the

sum of two symmetric matrices are symmetric.

4. Unified Fast FPDE Solver

We formulate a closed-form solution for the Lyapunov system (37) in
terms of the generalised eigensolutions that can be computed very efficiently,
leading to the following unified fast solver for the development of Petrov-
Galerkin spectral method.

Theorem 4.1. Let {~e µj , λmj
}Mj

mj=1 be the set of general eigen-solutions of the

spatial stiffness matrix STotj with respect to the mass matrix Mj. Moreover,
let {~e τn , λτn }Nn=1 be the set of general eigen-solutions of the temporal mass
matrix Mτ with respect to the stiffness matrix Sτ .

(I) if d > 1, then the multi-dimensional matrix of unknown coefficients U
is explicitly obtained as

U =
N∑
n=1

M1∑
m1=1

· · ·
Md∑
md=1

κn,m1,··· ,md
~e τn ⊗ ~em1

⊗ · · · ⊗ ~emd
, (49)
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where κn,m1,··· ,md
are given by

κn,m1,··· ,md
=

(~e τn ~em1
· · · ~emd

)F[
(~e τTn Sτ~e τn )

∏d
j=1(~eTmj

Mj~emj
)
]
Λn,m1,··· ,md

, (50)

in which the numerator represents the standard multi-dimensional inner prod-
uct, and Λn,m1,··· ,md

are obtained in terms of the eigenvalues of all mass ma-
trices as

Λn,m1,··· ,md
=
[
(1 + γ λτn) + λτn

∑d
j=1(λmj

)
]
.

(II) If d = 1, then the two-dimensional matrix of the unknown solution U is
obtained as

U =
N∑

n=d2τe

M1∑
m1=1

κn,m1 ~e
τ
n ~eTm1

,

where κn,m1 is explicitly obtained as

κn,m1 =
~e τ

T

n F ~em1

(~e τTn Sτ~e τn )(~eTm1
M1~em1

)
[
(1 + γ λτn) + λτn λm1

] .
Proof. Let us consider the following generalised eigenvalue problems as

S Tot
j ~emj

= λjmj
Mj ~emj

, mj = 1, · · · ,Mj, j = 1, 2, · · · , d, (51)

and

Mτ ~e
τ
n = λτn Sτ ~e

τ
n , n = 1, 2, · · · ,N . (52)

Having the spatial and temporal eigenvectors determined in equations (52)
and (51), we can represent the unknown coefficient matrix U in (32) in terms
of the aforementioned eigenvectors as

U =
N∑
n=1

M1∑
m1=1

· · ·
Md∑
md=1

κn,m1,··· ,md
~e τn ⊗ ~em1

⊗ · · · ⊗ ~emd
, (53)

where κn,m1,··· ,md
are obtained as follows. First, we take the multi-dimensional

inner product of ~e τq ~ep1 · · · ~epd on both sides of the Lyapunov equation (37)
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as

(~e τq ~ep1 ~ep2 · · · ~epd)
[
Sτ ⊗M1 ⊗ · · · ⊗Md

+
∑d

j=1 [Mτ ⊗M1 ⊗ · · · ⊗Mj−1 ⊗ STotj ⊗Mj+1 · · · ⊗Md]

+γ Mτ ⊗M1 ⊗ · · · ⊗Md

]
U = (~e τq ~ep1 · · · ~epd)F.

Then, by replacing (51) and (52) into (50) and re-arranging the terms, we
get

N∑
n=1

M1∑
m1=1

· · ·
Md∑
md=d

κn,m1,··· ,md
×
(
~e τ

T

q Sτ~e
τ
n ~eTp1M1~em1

· · · ~eTpdMd ~emd

+
d∑
j=1

~e τ
T

q Mτ~e
τ
n ~eTp1M1~em1

· · · ~eTpjS
Tot
j ~emj

~eTpj+1
Mj+1~emj+1

· · ·~eTpdMd~emd

+ γ ~e τ
T

q Mτ~e
τ
n ~eTp1Mµ1~em1

~eTp2M2~em2
· · · ~eTpdMd~emd

)
= (~e τq ~ep1 ~ep2 · · · ~epd)F.

Recalling that S Tot
j ~emj

= (λmj
M j ~emj

) and Mτ ~e
τ
n = (λτn Sτ ~e

τ
n ), we have

N∑
n=1

M1∑
m1=1

· · ·
Md∑
md=1

κn,m1,··· ,md

(
~e τ

T

q Sτ~e
τ
n ~e

T
p1
M1~em1

~eTp2M2~em2
· · ·~eTpdMd~emd

)

+
d∑
j=1

~e τ
T

q (λτn Sτ ~e
τ
n )~ep1M1~em1

· · ·~eTpj(λ
j
mj
Mj~emj

)~eTpj+1
Mj+1~emj+1

· · ·~eTpdMd~emd

+ γ ~e τ
T

q (λτn Sτ ~e
τ
n )~eTp1M1~em1

~eTp2M2~em2
· · · ~eTpdMd~emd

)
= (~e τq ~ep1 ~ep2 · · · ~epd)F.

Therefore,

κn,m1,··· ,md
=

(~e τn ~em1
· · · ~emd

)F[
(~e τTn Sτ~e τn )

∏d
j=1(~eTmj

Mj~emj
)
]
×
[
(1 + γ λτn) + λτn

∑d
j=1(λmj

)
] .

Then, we have∑N
n=d2τe

∑M1

m1=1 · · ·
∑Md

md=1 κn,m1,··· ,md
(~e τ

T

q Sτ~e
τ
n )(~eTp1M1~em1

) · · · (~eTpdMd~emd
)

×
[
(1 + γ λτn) + λτn

∑d
j=1(λmj

)
]

= (~e τq ~ep1 ~ep2 · · · ~epd)F.

18



On account of the fact that the spatial Mass M j and temporal stiffness

matrices S τ are diagonal (see Theorems 3.3 and 3.2), we have (~e τ
T

q Sτ~e
τ
n ) = 0

if q 6= n, and also (~eTpjMj~emj
) = 0 if pj 6= mj, which completes the proof for

the case d > 1.
Following similar steps for the two-dimensional problem, it is easy to see

that if d = 1, the relationship for κ can be derived as

κq,p1 =
~e τ

T

q F ~ep1

(~e τTq Sτ~e τq )(~eTp1M1~ep1)
[
(1 + γ λτn) + λτn λm1

] . (54)

In 4.1, we present a computational method for the fast solver which reduces
the computational cost significantly.

4.1. Computational Considerations

Employing the fast solver in (1+d) dimensional problem d ≥ 1 can reduce
the dominant computational cost of the eigensolver, which is O(N2(1+d)).
This approach becomes more efficient in higher dimensional problems. There
are two steps, which are associated with the fast solver:

Step (i): computation of κn,m1,m2,...,md
in (54),

Step (ii): constructing U in (53).

To compute κn,m1,m2,...,md
, we need to find the numerator as

(~e τq ~e
1
p1
· · · ~e dpd)F =

N∑
i=1

M1∑
s1=1

· · ·
Md∑
sd=1

{~e τq }i {~e 1
p1
}s1 · · · {~e dpd}sd{F}i,s1,··· ,sd , (55)

which leads to a computational complexity O(N2(1+d)). Employing the sum-
factorization, the numerator can be written as

(~e τq ~ep1 · · · ~epd)F = (56)

N∑
i=1

{~e τq }i
M1∑
s1=1

{~ep1}s1 · · ·
Md−1∑
sd−1=1

{~epd−1
}sd−1

Md∑
sd=1

{~epd}sd{F}i,s1,··· ,sd ,
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in which the inner-most sum is obtained as

Fdi,s1,··· ,sd−1,pd
=
∑Md

sd=1 {~e dpd}sd{F}i,s1,··· ,sd , (57)

and similarly, we can write the second one as

Fd−1
i,s1,··· ,sd−2,pd−1,pd

=
∑Md−1

sd−1=1 {~e d−1
pd−1
}sd−1

Fdi,s1,··· ,sd−1,pd
. (58)

Finally, we get

F1
i,p1,··· ,pd =

∑M1

s1=1 {~e 1
p1
}s1F2

i,p1,p2,··· ,pd . (59)

We observe that the computational cost can be reduced to O(N2+d). A
similar sum-factorization technique can be applied to step (ii).

5. Numerical Tests

We now examine the unified PG spectral method and the corresponding
unified fast solver (53) and (54) for (14) in the context of several numerical
test cases in order to investigate the spectral/exponential rate of convergence
in addition to the computational efficiency of the scheme. The corresponding
force term f in (14) is obtained in Appendix for the following test cases, listed
as:

Test case (I): (smooth solutions with finite regularity) we consider the
following exact solution to perform the temporal p-refinement as

uexact = tp1 × ((1 + x)p2 − ε(1 + x)p3), (60)

where p1 = 72
3
, p2 = 61

3
, p3 = 62

7
and t ∈ [0, 1] and x ∈ [−1, 1].

Test case (II): (spatially smooth function) we consider

uexact = tp1 × sin[nπ (1 + x)], (61)

where n = 1 and p1 = 61
3
, for the exponential p-refinement.

Test case (III): (high-dimensional problems) to perform the p-refinement
in higher dimensions (d = 2, 3), we choose the exact solution

uexact = tp1 ×
d∏
i=1

((1 + xi)
p2i − ε(1 + x)p2i+1), (62)
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Figure 1: Temporal p-refinement : log-log scale L2-error versus temporal expansion orders
N for test case (II).

where p1 = 72
3
, p2 = 61

3
, p3 = 62

7
, p4 = 74

5
, p5 = 71

7
, p6 = 73

5
, p7 =

71
7

and ε1 = 2p2−p3 , ε2 = 2p4−p5 , ε3 = 2p6−p7 in the hypercube domain as
[0, 1]× [−1, 1]× · · · × [−1, 1]︸ ︷︷ ︸

d times

.

Test case (IV): (CPU time) to examine the efficiency of the method for
the high-dimensional domain, we employ (62), where p1 = 4, p2i = 31

3
,

p2i = 32
7
, εi = 2p2i−p2i+1 , t ∈ [0, 1], and x ∈ [−1, 1]d. In the following

numerical examples, we illustrate the convergence rate and efficiency of the
method, employing the test cases.

5.1. Numerical Test (I)

We plot the log-log scale L2-error versus temporal orders N in Fig. 1 in
a log-log scale plot for the test case (I) while 2τ = 1

10
, 9

10
, 2µ1 = 5

10
, 2ν1 = 15

10
,

T = 1 and spatial expansion order is fixed (M = 23). Having the same
set-up, we also consider 2τ = 11

10
, 19

10
in the temporal direction to examine

the spectral convergence of fractional wave equation. The L2-error decays
linearly in the log-log scale plot as temporal expansion order N increases
in both cases, indicating the spectral convergence of PG method. In [2],
we obtain the theoretical convergence rate of ‖e‖L2 and compare with the
corresponding practical ones.
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Figure 2: Spatial p-refinement : log-log scale L2-error versus spatial expansion orders M
for the test case (II).
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Figure 3: Exponential convergence in the spatial p-refinement : log-log scale L2-error
versus spatial expansion orders M for the test case (I).
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Figure 4: Spatial p-refinement : log-log scale L∞-error versus spatial expansion orders
M2, M3 in the test case (III) for the limit fractional orders of ν.

5.2. Numerical Test (II)

Here, we perform the spatial p-refinement while the temporal expansion
order is fixed for the test case (I). In Fig. 2, spectral convergence of log-log
scale L∞-error versus spatial expansion ordersM1 is shown where 2ν1 = 11

10
,

19
10

in setup (a). We set 2τ = 6
10

, 2µ1 = 5
10

, T = 1 and temporal expansion
order is fixed (N = 23). In this case, the limit fractional orders of ν1 are
examined, where both have the spectral convergence but with different rates.
We also carried out the spatial p-refinement for the limit fractional orders of
µ1. The spectral convergence of the PG method is observed, where 2µ1 = 1

10
,

9
10

and 2ν1 = 5
10

. To this end, we can conclude that the PG method in
(1+1) dimensional space-time domain is spectrally accurate up to the order
of 10−15.

5.3. Numerical Test (III)

In Fig. 3, we plot ‖e‖L2 = ‖u − uext‖L2 versus spatial expansion orders
M for the test case (II), showing the spatial p-refinement. In setup (a)
2ν1 = 11

10
, 19

10
and 2µ1 = 5

10
and in setup (b) 2µ1 = 11

10
, 19

10
and 2ν1 = 5

10

where 2τ = 6
10

. The temporal expansion order (N = 23) is fixed. The
exponential convergence in the log-linear scale plot is illustrated clearly for
the limit fractional orders of µ1 and ν1 in case spatial component of the exact
solution is a sinusoidal smooth function.
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Figure 5: Spatial p-refinement : log-log scale L∞-error versus spatial expansion orders
M2, M3 for the test case (III) for the limit fractional orders of µ.

5.4. Numerical Test (IV)

In addition to spatial/temporal p-refinement, we perform p-refinement for
(1+2) and (1+3) as the higher dimensional domain in the test case (III). In
Fig. 4, the spectral convergence of log-log L∞-error versus spatial expansion
ordersM2,M3 is shown. In setup (a), 2ν2 = 11

10
, 19

10
while 2ν1 = 15

10
, 2µ1 = 4

10

and 2µ2 = 6
10

and setup (b) 2ν3 = 11
10

, 19
10

while 2ν1 = 14
10

, 2ν2 = 16
10

, 2µ1 = 3
10

,
2µ2 = 5

10
and 2µ3 = 7

10
, where 2τ = 6

10
, T = 1. Furthermore, we increase the

maximum bases order uniformly in all dimensions.
Similarly, we perform the spatial p-refinement for the limit fractional

orders of µ in FADE. We study setup (a) 2µ2 = 1
10

, 9
10

while 2µ1 = 5
10

, and
setup (b) 2µ3 = 1

10
, 9

10
while 2µ1 = 4

10
, 2µ2 = 6

10
. In both setups, 2τ = 6

10
,

2ν1 = 5
10

, 2ν2 = 5
10

, T = 1. Furthermore, N = M1 = M2 = M3 changes
concurrently. In Fig. 5, the PG method shows spectral convergence for the
limit fractional orders of µ.

5.5. Numerical Test (V)

To examine the efficiency of the PG method and the fast solver in high-
dimensional problem, the convergence results and CPU time for test case
(IV) are presented in Table 1 for (1+1), (1+3) and (1+5) dimensional space-
time hypercube domains where the error is measured by the essential norm
‖e‖∞ in the test case (IV). The CPU time is obtained on Intel (Xeon E52670)
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Table 1: Performance study and CPU time (in sec.) of the unified PG spectral method
for the test case (IV). In each step, we uniformly increase the bases order by one in all
dimensions.

2-D FADRE

N ‖ε‖L∞
CPU Time

[Sec]

5 0.008 1.48
7 0.0003 3.01
9 1.69×10−6 3.48
15 2.96×10−11 4.95

3-D FADRE

N ‖ε‖L∞
CPU Time

[Sec]

5 0.01 1.43
7 0.0003 5.39
9 2.6×10−7 6.14
15 2.41×10−10 7.54

4-D FADRE

N ‖ε‖L∞
CPU Time

[Sec]

5 0.00005 3.56
7 3.31×10−7 8.87
9 8.17×10−9 5.37
15 9.70×10−12 55.78

2.5 GHz processor. The presented PG method remains spectrally accurate
in (1+5) dimensional time-space domain.
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6. Summary and Discussion

6.1. Summary

We developed a new unified Petrov-Galerkin spectral method for a class
of fractional partial differential equations with constant coefficients (14) in
a (1 + d)-dimensional space-time hypercube, d = 1, 2, 3, etc, subject to ho-
mogeneous Dirichlet initial/boundary conditions. We employed Jacobi poly-
fractonomials, as temporal basis/test functions, and the Legendre polyno-
mials as spatial basis/test functions, yielding spatial mass matrices being
independent of the spatial fractional orders. Additionally, we formulated
the novel unified fast linear solver for the resulting high-dimensional lin-
ear system, which reduces the computational cost significantly. In fact, the
main idea of the paper was to formulate a closed-form solution for the high-
dimensional Lyapunov equation in terms of the eigensolutions up to the pre-
cision accuracy of computationally obtained eigensolutions. The PG method
has been illustrated to be spectrally accurate for power-law test cases in each
dimension. Furthermore, exponential convergence is observed for a sinusoidal
smooth function in a spatial p-refinement. To check the stability and spec-
tral convergence of the PG method, we carried out the corresponding discrete
stability and error analysis of the method for (15) in [2].

Despite the high accuracy and the efficiency of the method especially
in higher-dimensional problems, treatment of FPDEs in complex geometries
and FPDEs with variable coefficients will be studies in our future works.

Appendix

Here, we provide the force function based on the exact solutions.

• Force term of test case (I)

To obtain f in (14) based on (60), first we need to calculate all fractional
derivatives of uext. To satisfy the corresponding boundary conditions, εi =
2p2i−p2i+1 . Take XT = tp1 and XS

i = (1 + ζi)
p2i − εi (1 + ζi)

p2i+1 , where
ζi = 2xi−ai

bi−ai − 1 and ζi ∈ [−1 , 1]. Considering (2),

0D2τ
t XT = Γ[p1+1]

Γ[p1+1−2τ ]
tp1−2τ = (T

2
)p1−2τ Γ[p1+1]

Γ[p1+1−2τ ]
(1 + η(t))p1−2τ , (63)
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where η(t) = 2( t
T

)− 1. Similarly,

ai
D2µi
xi
XS
i =

(
bi−ai

2

)−2µi[ Γ[p2i+1]
Γ[p2i+1−2µi]

(1 + ζ2i(xi))
p2i−2µi −

εi
Γ[p2i+1+1]

Γ[p2i+1+1−2µi]
(1 + ζ2i(xi))

p2i+1−2µi

]
, (64)

and

ai
D2νi
xi
XS
i =

(
bi−ai

2

)−2νi−2[
Γ[p2i+1]

Γ[p2i+1−2νi]
(1 + ζ2i(xi))

p2i−2νi −

εi
Γ[p2i+1+1]

Γ[p2i+1+1−2νi]
(1 + ζ2i(xi))

p2i+1−2νi

]
. (65)

Therefore,

f = (
T

2
)p1−2τ Γ[p1 + 1]

Γ[p1 + 1− 2τ ]
(1 + η)p1−2τ

d∏
i=1

(1 + ζi)
p2i − εi (1 + ζi)

p2i+1

+
∑
i=1

(
T

2
)p1(1 + η)p1

(
cli

(bi − ai
2

)−2µi[ Γ[p2i + 1]

Γ[p2i + 1− 2µi]
(1 + ζ2i)

p2i−2µi

− εi
Γ[p2i+1 + 1]

Γ[p2i+1 + 1− 2µi]
(1 + ζ2i)

p2i+1−2µi
] d∏
j=1, j 6=i

[(1 + ζj)
p2j − εj (1 + ζj)

p2j+1 ]
)

−
∑
i=1

(
T

2
)p1(1 + η)p1

(
κli

(bi − ai
2

)−2νi−2[ Γ[p2i + 1]

Γ[p2i + 1− 2µi]
(1 + ζ2i)

p2i−2νi

− εi
Γ[p2i+1 + 1]

Γ[p2i+1 + 1− 2νi]
(1 + ζ2i)

p2i+1−2νi
] d∏
j=1, j 6=i

[(1 + ζj)
p2j − εj (1 + ζj)

p2j+1 ]
)
. (66)

• Force term of test case (II)

Take XT = tp1 and XS
i = sin

(
nπζ

)
. Here, we approximate XS

i as

XS = ΣNs
j=1(−1)2j−1 (nπζ)2j−1

(2j − 1)!
, (67)
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where Ns controls the level of approximation error. Taking the same steps
of (66), we obtain

f = (
T

2
)p1−2τ Γ[p1 + 1]

Γ[p1 + 1− 2τ ]
(1 + η)p1−2τΣNs

j=1(−1)2j−1 (nπζ)2j−1

(2j − 1)!

+ (
T

2
)p1(1 + η)p1

[
(cl)

(b− a
2

)−2µ

ΣNs
j=1(−1)2j−1 (nπζ)2j−1

(2j − 1)!

Γ[2j]

Γ[2j − 2µ]
ζ2j−2µ

− (κl)
(b− a

2

)−2ν−2

ΣNs
j=1(−1)2j−1 (nπζ)2j−1

(2j − 1)!

Γ[2j]

Γ[2j − 2ν]
ζ2j−2ν

]
. (68)
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