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Abstract

Ultraslow diffusion is a physical model in which a plume of diffusing particles spreads at a logarithmic
rate. Governing partial differential equations for ultraslow diffusion involve fractional time derivatives
whose order is distributed over the interval from zero to one. This paper develops the stochastic foundations
for ultraslow diffusion based on random walks with a random waiting time between jumps whose
probability tail falls off at a logarithmic rate. Scaling limits of these random walks are subordinated random
processes whose density functions solve the ultraslow diffusion equation. Along the way, we also show
that the density function of any stable subordinator solves an integral equation (5.15) that can be used to
efficiently compute this function.
c© 2006 Elsevier B.V. All rights reserved.

MSC: primary 60G50, 60F17; secondary 60H30, 82C31

Keywords: Continuous time random walk; Slowly varying tails; Anomalous diffusion; Stable subordinator

1. Introduction

The classical diffusion equation ∂c/∂t = ∂2c/∂x2 governs the scaling limit of a random walk
where i.i.d. particle jumps have zero mean and finite variance. The probability density c(x, t)
of the Brownian motion scaling limit B(t) solves the diffusion equation, and represents the

relative concentration of a cloud of diffusing particles. Self-similarity B(ct)
d
= c1/2 B(t) implies

that particles spread at the rate t1/2 in this classical model. In many practical applications the
diffusion is anomalous: the spreading rate is slower (subdiffusion) or faster (superdiffusion) than
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the classical model predicts, and/or the plume shape is non-Gaussian. Anomalous superdiffusion
can be modeled using infinite variance particle jumps that lead to space-fractional derivatives in
the governing partial differential equation [5,10,26,27]. Anomalous subdiffusion can be modeled
using i.i.d. infinite mean waiting times between particle jumps, leading to a fractional time
derivative in the governing partial differential equation [30,38,44,51]. Continuous time random
walks (CTRW) with i.i.d. waiting times between i.i.d. particle jumps were introduced in [33,
42]. Some recent surveys of their wide application in physics and connections with fractional
governing equations are given in [19,24,32,49].

Ultraslow subdiffusion occurs when the spreading rate of a plume is logarithmic. Several
examples from polymer physics, particles in a quenched force field, random walks in random
media, and nonlinear dynamics are given in [20,15,36,43,46]. Recently a connection has been
established between ultraslow kinetics and distributed-order time-fractional derivatives in the
diffusion equation [11–13,48]. In this model, the first time derivative in the classical diffusion
equation is replaced by a fractional derivative of order 0 < β < 1 as in the usual subdiffusive
model, and then the order β of the fractional time derivative is randomized according to some
probability density p(β) on 0 < β < 1. When β is fixed and nonrandom, the relevant CTRW
model has waiting times in the domain of attraction of a β-stable subordinator, and CTRW
scaling limits involve subordination to the inverse stable subordinator [30,29]. Randomizing β
leads to waiting times with a slowly varying probability tail. Limit theorems for these random
walks were developed in [31] using nonlinear scaling, the usual approach for slowly varying tails
[16,23,50].

In this paper, using a triangular array approach instead of the nonlinear scaling used in [31],
we give a more detailed description of possible scaling limits together with asymptotic behavior
of moments. Furthermore we show that our approach actually gives a stochastic solution to the
distributed-order time-fractional diffusion equations and we provide explicit formulas for the
solutions of those equations. Those solutions are density functions of subordinated stochastic
process, where the subordinator is the inverse of the limit process of the triangular array that
governs waiting times between particle jumps. We also show that, complementary to results in
[14], a renewal process in which the waiting time between jumps has a slowly varying probability
tail can be analyzed in much more detail. These results may be of independent interest. Finally we
note that the general stochastic solutions to distributed-order time-fractional diffusion equations
that we develop here may be useful in other contexts [47].

This paper is organized as follows. In Section 2 we define a generalization of the classical
continuous time random walk (CTRW) model, using a triangular array of waiting times. In
Section 3 a special triangular array with slowly varying tails is considered and the limiting Lévy
process together with its hitting time process is analyzed. These results are then used in Section 4
to derive a limit theorem for generalized CTRWs with slowly varying waiting times and jumps in
some generalized domain of attraction, and we derive various properties of the limiting process.
Finally in Section 5 we show that, under certain technical conditions, the density of this limiting
process solves a variant of the distributed order time-fractional diffusion equation considered in
[11,12]. Along the way, we also show that the density function of any stable subordinator solves
an integral equation (5.15) that can be used to efficiently compute this function.

2. Generalized CTRW

Given any scale c ≥ 1, let J (c)1 , J (c)2 , . . . be nonnegative and independent and identically
distributed (i.i.d.) random variables, modelling the waiting times between particle jumps at
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scale c. Let

T (c)(0) = 0 and T (c)(t) =

[t]∑
i=1

J (c)i , (2.1)

so that T (c)(n) is the time of the nth jump at scale c. Let

N (c)
t = max{n ≥ 0 : T (c)(n) ≤ t} (2.2)

be the number of jumps by time t ≥ 0 at scale c.
To model the particle jumps let Y1, Y2, . . . be i.i.d. Rd -valued random vectors. Let S(0) = 0

and S(t) =
∑[t]

i=1 Yi , so that S(n) is the position of the particle after n jumps at scale c = 1. We
assume that Y1 belongs to the strict generalized domain of attraction of some full operator stable
law with exponent E . This means that for some linear operators Ln we have Ln S(n) ⇒ A, where
the distribution of the limit A is not supported on any lower dimensional hyperplane, see [28]
Definition 3.3.24. In this case, the limit distribution is called operator stable, since there exists at
least one linear operator E called an exponent of A such that if A1, . . . , An are i.i.d. copies of A
then n−E (A1 + · · · + An) is identically distributed with A for each n. Operator stable laws and
their exponents are characterized in [28] Section 7.2, while generalized domains of attraction are
described in [28] Chapter 8. Then there exists a norming function B ∈ RV(−E), meaning that
B(c) ∈ GL(Rd) for all c > 0 and B(λc)B(c)−1

→ λ−E as c → ∞ for any λ > 0, such that

{B(c)S(ct)}t≥0
f.d.

H⇒ {A(t)}t≥0 as c → ∞ (2.3)

where {A(t)}t≥0 is an operator Lévy motion with A(t)
d
= t E A(1). Here

f.d.
H⇒ denotes convergence

in distribution of all finite dimensional marginals. See [28], Example 11.2.18 for details.
At scale c ≥ 1 the jumps are given by B(c)Yi and hence B(c)S(n) is the position of a particle

after n jumps at scale c. Therefore

X (c)(t) = B(c)S(N (c)
t ) (2.4)

describes the position of a particle at time t ≥ 0 and scale c. We call {X (c)(t)}t≥0 a generalized
continuous time random walk.

3. The time process

In this section we construct and analyze a class of specific triangular arrays {J (c)i : i ≥

1, c ≥ 1} which corresponds to waiting times with slowly varying tails. It is shown that the
corresponding partial sum processes {T (c)(t)}t≥0 defined by (2.1) converge to a class of Lévy
processes complementing β-stable subordinators to the limiting case β = 0.

Our approach gives a much larger class of possible limiting processes than the nonlinear
scaling of a random walk with slowly varying tails considered in [14,23,50]. There only one
process, the so-called extremal process, can appear. See [16] for details on extremal processes.
Our approach decomposes the case β = 0 of slowly varying tails into a family of different
processes described by an additional parameter α > 0, where any positive α is possible.

Stimulated by [11], our approach is based on the following idea. Given a measurable
nonnegative function p : ]0, 1[ → R+ with 0 <

∫ 1
0 p(β)dβ < ∞ and some constant C > 0
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let

L(t) = C
∫ 1

0
t−β p(β)dβ (3.1)

for t > 0. In the following we always assume that the function p is defined on R+ but vanishes
outside ]0, 1[. Observe that L is decreasing and continuous. Moreover L is a mixture of the tail
functions Ct−β with respect to p(β). The following lemma describes the behavior of L near
infinity in terms of regular variation of p. Recall that a function R is regularly varying at infinity
with exponent γ ∈ R, if R is measurable, eventually positive and R(λt)/R(t) → λγ as t → ∞

for any λ > 0. We write R ∈ RV∞(γ ) in this case. Similarly, R is called regularly varying at zero
with exponent γ ∈ R, if R is measurable, positive in some neighborhood (0, t0) of the origin and
R(λt)/R(t) → λγ as t → 0. We write R ∈ RV0(γ ) in this case. Note that R(t) ∈ RV0(γ ) if and
only if R(1/t) ∈ RV∞(−γ ).

Lemma 3.1. For α > 0 let p ∈ RV0(α−1) and define L(t) by (3.1). Then there exists a function
L∗

∈ RV∞(0) such that

L(t) = (log t)−αL∗(log t). (3.2)

Especially L(t) = R(log t) for some R ∈ RV∞(−α) and L ∈ RV∞(0), so L is slowly varying at
infinity. Conversely, if for L defined by (3.1) we have L(t) = R(log t) for some R ∈ RV∞(−α)

and α > 0, then p ∈ RV0(α − 1).

Proof. First note that since p ∈ RV0(α − 1) with α > 0, we have for any δ > 0 there exists a
β0 > 0 and some constant K such that p(β) ≤ Kβα−1−δ for all 0 < β ≤ β0 (see, e.g., [45]
p. 18). Hence

∫ 1
0 p(β)dβ is finite and positive. Moreover

L(t) = C
∫ 1

0
e−β log t p(β)dβ = C p̃(log t)

where p̃(s) =
∫ 1

0 e−sβ p(β)dβ denotes the Laplace transform of a function p with supp(p) ⊂

[0, 1]. Since p vanishes outside the interval [0, 1], it is ultimately monotone in the sense of
Feller [17], p. 446. Then, since p ∈ RV0(α − 1) by Theorem 4 on p. 446 of [17] we know
p̃ ∈ RV∞(−α), so p̃(s) = s−αL∗(s) for some L∗

∈ RV∞(0). Hence (3.2) holds.
Conversely, if L(t) = R(log t) for some R ∈ RV∞(−α) and some α > 0, since L(t) =

C p̃(log t), we have p̃(u) = C−1 R(u). Using Theorem 4 on p. 446 of [17] again, we conclude
p ∈ RV0(α − 1) and the proof is complete. �

We now construct a triangular array {J (c)i : i ≥ 1, c ≥ 1} with i.i.d. rows J (c)1 , J (c)2 , . . . of
nonnegative random variables. In the following we assume that p ∈ RV0(α− 1) for some α > 0
is supported in [0, 1]. Then we can take C−1

= C−1(p) =
∫ 1

0 p(β)dβ is finite and positive,
so Cp is a probability density. We will assume without loss of generality, that C = 1 so p is
a probability density on [0, 1]. Note that by Lemma 3.1 the function L(t) =

∫ 1
0 t−β p(β) dβ is

in RV∞(0) with L(t) = (log t)−αL∗(log t) for t > 1. We do need an additional integrability
condition on p(β) for β → 1. This condition does not change the asymptotic behavior of L(t)
near infinity, but is necessary for our analysis. We assume that p also fulfills∫ 1

0

p(β)

1 − β
dβ < ∞. (3.3)

Note that (3.3) trivially holds true, if p vanishes in some open neighborhood of one.



M.M. Meerschaert, H.-P. Scheffler / Stochastic Processes and their Applications 116 (2006) 1215–1235 1219

Now let B1, B2, . . . be i.i.d. with density p. Given any scale c ≥ 1 let J (c)1 , J (c)2 , . . . be
nonnegative i.i.d. random variables such that for any 0 < β < 1 we have

P{J (c)i > u|Bi = β} =

{
1 0 ≤ u < c−1/β

c−1u−β u ≥ c−1/β .
(3.4)

Then the density ψc(u|β) of J (c)i given Bi = β is

ψc(u|β) =

{
0 0 ≤ u < c−1/β

c−1βu−β−1 u ≥ c−1/β .
(3.5)

Remark 3.2. If we define for 0 < β < 1

P{J1 > t |B1 = β} =

{
1 0 ≤ t < 1
t−β t ≥ 1

we get by letting u = c−1/β t that

P{c−1/β J1 > u|B1 = β} =

{
1 0 ≤ u < c−1/β

c−1u−β u ≥ c−1/β

so conditionally on B1 = β we have J (c)1
d
= c−1/β J1. Moreover, for t ≥ 1

P{J1 > t} =

∫ 1

0
t−β p(β)dβ

so by Lemma 3.1 J1 has a slowly varying tail.

Remark 3.3. An application of ultraslow diffusion to disordered systems in [13] illustrates the
physical meaning of the generalized CTRW model described here. The parameter β = Bi relates
to the shallowness of a potential well from which a particle must escape, and the waiting time
Ji until escape from the well has a probability tail that falls off like a power law with exponent
β. The probability density p(β) governs the depth distribution for potential wells, and the index
α indicates the scarcity of very deep wells. It should be noted, however, that the trapping in the
ultraslow CTRW model is somewhat different than the model in Sinai [46] (random walk in a
random environment), since in the Sinai model the deep traps are at a fixed location in space
for any realization of the random environment. Hence the localization phenomena seen in these
models [18,36] do not occur in the CTRW formulation [8].

Theorem 3.4. Given p ∈ RV0(α − 1) for some α > 0 as above and define the triangular array
{J (c)i : 1 ≤ i ≤ [ct], c ≥ 1} by (3.4). Assume that (3.3) holds. Then for the partial sum process
{T (c)(t)}t≥0 defined by (2.1) we have

{T (c)(ct)}t≥0
f.d.

H⇒ {D(t)}t≥0 as c → ∞, (3.6)

where {D(t)}t≥0 is a subordinator such that D(1) has Lévy–Khinchin representation [0, 0, φ]

and the Lévy measure φ assigns to intervals (u,∞) for any u > 0 the measure

φ(u,∞) = L(u) (3.7)

where L is given by (3.1) with C = 1.
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Proof. Since T (c)(ct) =
∑[ct]

i=1 J (c)i is a sum of i.i.d. random variables, the convergence of all
finite dimensional marginals follows from the convergence for one fixed t > 0 by considering
increments. See [28], Example 11.2.18 for details. Fix any t > 0 and observe that {J (c)i : 1 ≤ i ≤

[ct], c ≥ 1} is an infinitesimal triangular array. By standard convergence criteria for triangular
arrays, see e.g. [28], Theorem 3.2.2, we know that

T (c)(ct)− a[ct] ⇒ D(t) as c → ∞ (3.8)

where

a[ct] = [ct]
∫ R

0
x dP

J (c)1
(x) (3.9)

for some R > 0 and D(t) has Lévy–Khinchin representation [0, 0, t · φ] if

[ct] · P
J (c)1

→ t · φ as c → ∞ (3.10)

and

lim
ε↓0

lim sup
c→∞

[ct]
∫ ε

0
u2 dP

J (c)1
(u) = 0. (3.11)

Fix any u > 0. Then, for all large c we obtain from (3.4) that

[ct]P{J (c)1 > u} = [ct]
∫ 1

0
P{J (c)1 > u|B1 = β}p(β)dβ

=
[ct]

c

∫ 1

0
u−β p(β)dβ

→ t · L(u) = t · φ(u,∞)

as c → ∞. Hence (3.10) holds and by Lemma 3.1 the Lévy measure φ has the form (3.7).
Moreover, for the Gaussian part we compute using (3.5) that

[ct]
∫ ε

0
u2 dP

J (c)1
(u) = [ct]

∫ ε

0
u2

∫ 1

0
ψc(u|β)p(β)dβ du

= [ct]
∫ 1

0

∫ ε

0
u2ψc(u|β)du p(β)dβ

= [ct]
∫ 1

0

∫ ε

c−1/β
u2βc−1u−β−1 du p(β)dβ

=
[ct]

c

∫ 1

0

β

2 − β
(ε2−β

− c1−2/β)p(β)dβ

=
[ct]

c

∫ 1

0
ε2−β β

2 − β
p(β)dβ −

[ct]

c

∫ 1

0
c1−2/β β

2 − β
p(β)dβ.

Observe that β/(2 − β) ≤ 1 and 1 − 2/β ≤ −1. Then dominated convergence yields

lim sup
c→∞

[ct]
∫ ε

0
u2dP

J (c)1
(u) = t

∫ 1

0
ε2−β β

2 − β
p(β)dβ → 0 as ε → 0.

Hence (3.11) holds and therefore (3.8) holds true. Note that since φ has a Lebesgue density any
R > 0 in (3.9) is possible. We show now that the shifts a[ct] can be made arbitrarily small for all
large c, by choosing R > 0 small enough. This implies that we can choose a[ct] = 0 for all c ≥ 1
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and then (3.8) holds without a[ct]. For R > 0 we get from (3.5) that

[ct]
∫ R

0
x dP

J (c)1
(x) = [ct]

∫ R

0
x

∫ 1

0
ψc(x |β)p(β)dβ dx

=
[ct]

c

∫ 1

0

∫ R

c−1/β
x−β dx βp(β)dβ

=
[ct]

c

∫ 1

0

β

1 − β
R1−β p(β)dβ −

[ct]

c

∫ 1

0
c1−1/β β

1 − β
p(β)dβ

= I (c, R)− J (c).

Now, since 1−1/β < 0 we get from (3.3) and dominated convergence that J (c) → 0 as c → ∞.
Moreover, by the same argument we see that I (c, R) → 0 as R → 0 uniformly in c ≥ 1. Hence
a[ct] can be made arbitrary small for all large c by choosing R > 0 small enough. This concludes
the proof. �

Corollary 3.5. Under the assumptions of Theorem 3.4 we also have

{T (c)(ct)}t≥0 ⇒ {D(t)}t≥0 as c → ∞

in the J1-topology on D([0,∞), [0,∞)).

Proof. Note that the sample paths of {T (c)(ct)}t≥0 and {D(t)}t≥0 are nondecreasing. Moreover,
as a Lévy-process, {D(t)}t≥0 is stochastically continuous. Then Theorem 3.4 together with
Theorem 3 of [7] yields the assertion. �

Corollary 3.6. Assume that {D(t)}t≥0 is the limit process obtained in (3.6) with Lévy measure
of the form (3.7) for some p ∈ RV0(α − 1) and some α > 0. Let log+(x) = max(log x, 0). Then
for ρ ≥ 0 and any t > 0 we have

E((log+ D(t))ρ)

{
< ∞ ρ < α

= ∞ ρ > α.

Proof. Let g(x) = (log(max(x, e)))ρ . Then it is easy to see that the assertion follows if we can
show that E(g(D(t))) < ∞ if ρ < α and E(g(D(t))) = ∞ if ρ > α. Since the function g is
submultiplicative (this is easy to check, see Proposition 25.4 of [40]), by Theorem 25.3 of [40]
the assertion follows if

∫
∞

1 g(x)dφ(x) < ∞ for ρ < α and
∫

∞

1 g(x)dφ(x) = ∞ for ρ > α. By
definition of g this is equivalent to∫

∞

e
(log x)ρ dφ(x)

{
< ∞ ρ < α

= ∞ ρ > α.
(3.12)

Note that by (3.7) the Lévy measure φ has density x 7→
∫ 1

0 x−β−1βp(β)dβ. Then, by Tonelli’s
theorem and a change of variable we obtain∫

∞

e
(log x)ρ dφ(x) =

∫ 1

0

∫
∞

e
(log x)ρx−β−1 dx βp(β)dβ

=

∫ 1

0

∫
∞

1
yρe−βy dy βp(β)dβ

=

∫ 1

0

(∫
∞

β

sρe−s ds

)
β−ρ p(β)dβ.
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Since
∫

∞

β
sρe−s ds → Γ (ρ + 1) as β → 0, it is easy to see that (3.12) follows from∫ 1

0
β−ρ p(β)dβ

{
< ∞ ρ < α

= ∞ ρ > α.
(3.13)

Since p ∈ RV(α − 1), for any δ > 0 there exist constants C1,C2 > 0 such that C1β
α−1+δ

≤

p(β) ≤ C2β
α−1−δ for all 0 < β < 1, a simple calculation shows that (3.13) holds true and the

proof is complete. �

Corollary 3.7. Assume that {D(t)}t≥0 is the limit process obtained in (3.6) with Lévy measure
of the form (3.7) for some p ∈ RV0(α − 1) and some α > 0. Then every D(t) has a C∞-density
g(t, y) and all derivatives of the density with respect to y vanish at infinity.

Proof. We use the following sufficient condition due to Orey, see [40], Proposition 28.3. It says
that, if there exists any 0 < ρ < 2 such that

lim inf
r↓0

rρ−2
∫

|x |≤r
x2dφ(x) > 0 (3.14)

then D(t) has a C∞ density with the desired property. Since the Lévy measure of D(t) is t · φ it
suffices to show the assertion for D(1).

Note that u 7→
∫ 1

0 u−β−1βp(β)dβ is the density of φ. Note that since p ∈ RV0(α − 1) with
supp(p) ⊂ [0, 1] we know that for some 0 < ρ0 < 1/2 we have p(β) > 0 for all 0 < β < 2ρ0.
By Tonelli’s theorem we have∫

|x |≤r
x2 dφ(x) =

∫ 1

0

∫ r

0
x1−β dx βp(β)dβ

=

∫ 1

0
r2−β β

2 − β
p(β)dβ.

Now, for ρ = ρ0, we obtain

rρ0−2
∫

|x |≤r
x2 dφ(x) =

∫ 1

0
rρ0−β

β

2 − β
p(β)dβ ≥

∫ 2ρ0

ρ0

rρ0−β
β

2 − β
p(β)dβ

and hence, by Fatou’s lemma

lim inf
r↓0

rρ0−2
∫

|x |≤r
x2 dφ(x) ≥ lim inf

r↓0

∫ 2ρ0

ρ0

rρ0−β
β

2 − β
p(β)dβ

≥

∫ 2ρ0

ρ0

(
lim inf

r↓0
rρ0−β

)
β

2 − β
p(β)dβ

= ∞.

Therefore (3.14) holds with ρ = ρ0 and the proof is complete. �

In view of the form of the Lévy measure φ of {D(t)}t≥0 in (3.7), this process is not a stable
process. However, our next result shows that {D(t)}t≥0 is a selfdecomposable process in the
sense of Definition 15.6 of [40]. For an introduction to selfdecomposable laws see Section 3.15
in [40] or Chapter 2 in [22]. A random variable X is selfdecomposable if for any 0 < a < 1 there
exists another random variable Y independent of X such that aX + Y is identically distributed
with X . Selfdecomposable distributions are the weak limits of normalized sums of independent
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(but not necessarily identically distributed) random variables, see for example Theorem 15.3 in
[40]. Hence they extend the class of stable laws in a natural way. We do not need this property in
our analysis of CTRWs but we include it for the sake of completeness.

Corollary 3.8. The limiting process {D(t)}t≥0 obtained in Theorem 3.4 above is selfdecompos-
able. That is, the distribution of any D(t) is selfdecomposable.

Proof. It suffices to show the assertion for D(1). Since the Lévy measure φ of D(1) has the
density k̃(x) =

∫ 1
0 x−β−1βp(β)dβ it follows from the Lévy–Khinchin representation (see, e.g.,

Theorem 8.1 in [40]) that the log-characteristic function ψ of the distribution of D(1) has the
form

ψ(ξ) = iaξ +

∫
∞

0
(eiξ x

− 1 − iξ x I (|x | ≤ 1))k̃(x)dx

= iaξ +

∫
∞

0
(eiξ x

− 1 − iξ x I (|x | ≤ 1))
xk̃(x)

x
dx .

Since k(x) = xk̃(x) =
∫ 1

0 x−ββp(β)dβ is decreasing on (0,∞), it follows from Corollary 15.11
of [40] that D(1) has a selfdecomposable distribution. �

Let {D(u)}u≥0 be the Lévy process obtained in Theorem 3.4. Note that, by Theorem 21.3 of
[40] and the fact that the integral in (3.7) tends to infinity as u → 0, the sample paths are strictly
increasing. Note also that, by Theorem 48.1 in [40] and the fact that the Lévy measure (3.7) is
concentrated on the positive reals, D(u) → ∞ as u → ∞ almost surely. Define the hitting time
process by

E(t) = inf{x ≥ 0 : D(x) > t}. (3.15)

Then it is easy to see that for t, x ≥ 0

{E(t) ≤ x} = {D(x) ≥ t}. (3.16)

Later we do need the asymptotic behavior of E(E(t)) as t → ∞. We present a more gen-
eral result on the asymptotic behavior of all moments of E(t). We write f (x) ∼ g(x) if
f (x)/g(x) → 1.

Theorem 3.9. Let E(t) be the hitting time of the subordinator {D(u)}u≥0 obtained in
Theorem 3.4 for p ∈ RV0(α − 1) and some α > 0. Then there exists a function L̄ ∈ RV∞(0)
such that for any γ > 0

E(E(t)γ ) ∼ (log t)αγ L̄(log t)−γ as t → ∞.

Proof. Since p ∈ RV0(α−1) and Γ (1) = 1 it follows that q(β) = Γ (1−β)p(β) ∈ RV0(α−1)
as well. Note that by (3.3) and the fact that Γ (x) ∼ 1/x as x → 0 we have

∫ 1
0 q(β)dβ < ∞.

Then, by Lemma 3.1, there exists a function L̄ ∈ RV∞(0) such that∫ 1

0
t−βq(β)dβ = (log t)−α L̄(log t) as t → ∞.

Hence

I (s) =

∫ 1

0
sβq(β)dβ = (log(1/s))−α L̄(log(1/s)) as s → 0. (3.17)
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Next observe that the well-known formula for the Laplace transform of a subordinator (see, e.g.,
Theorem 30.1 of [40]) together with (3.7) yield

ψ(s) =

∫
∞

0
(e−su

− 1)dφ(u)

=

∫ 1

0

(∫
∞

0
(e−su

− 1)βu−β−1 du

)
p(β)dβ

= −

∫ 1

0
Γ (1 − β)sβ p(β)dβ = −I (s). (3.18)

Fix any γ > 0. Then, for t > 0 we have by (3.16) and a well-known formula for fractional
moments (see, e.g., Lemma 1 on p. 150 of [17]) that

hγ (t) = E(E(t)γ ) = γ

∫
∞

0
xγ−1 P{E(t) > x} dx

= γ

∫
∞

0
xγ−1 P{D(x) < t} dx . (3.19)

Now let F(t) = P{D(x) < t} denote the distribution function of D(x) for some fixed x > 0.
Then, by Theorem 30.1 of [40] together with (3.18), we get

∫
∞

0 e−st dF(t) = e−x I (s). Moreover,
by integration by parts

∫
∞

0 e−st dF(t) = s
∫

∞

0 e−st P{D(x) < t} dt and hence∫
∞

0
e−st P{D(x) < t} dt =

1
s

e−x I (s). (3.20)

Using (3.20) and Tonelli’s theorem we therefore compute

h̃γ (s) =

∫
∞

0
e−st hγ (t)dt =

γ

s

∫
∞

0
xγ−1e−x I (s) dx = Γ (γ + 1)s−1 I (s)−γ .

In view of (3.17) this implies

h̃γ (s) = Γ (γ + 1)s−1(log(1/s))αγ L̄(log(1/s))−γ as s → 0.

By a Tauberian theorem (see [17], Theorem 4 on p. 446) we conclude

hγ (t) ∼
Γ (γ + 1)

Γ (γ )
(log t)αγ L̄(log t)−γ as t → ∞.

Note that in view of (3.19) the function hγ (t) is ultimately monotone. �

After investigating the hitting time process {E(t)}t≥0 we now show that the rescaled counting
process {N (c)

t }t≥0 defined by (2.2) converges to {E(t)}t≥0.

Theorem 3.10. Suppose that we are given a probability density p ∈ RV0(α−1) for some α > 0
such that (3.3) holds as in Theorem 3.4. Define the triangular array ∆ = {J (c)i : 1 ≤ i ≤

[ct], c ≥ 1} by (3.4) and the counting process {N (c)
t }t≥0 by (2.2). Then{

1
c

N (c)
t

}
t≥0

f.d.
H⇒ {E(t)}t≥0 as c → ∞, (3.21)

where {E(t)}t≥0 is the hitting time process defined by (3.15) of the subordinator {D(u)}u≥0
corresponding to the triangular array ∆ obtained in Theorem 3.4.
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Proof. Observe that for t ≥ 0 and c ≥ 1 we have {N (c)
t ≥ x} = {T (c)(dxe) ≤ t} where dxe

denotes the smallest integer greater than or equal to x ≥ 0. Note that by Corollary 3.7, D(u) has
a density with respect to Lebesgue measure. Fix any 0 ≤ t1 < · · · < tm and x1, . . . , xm ≥ 0
and let ∀i mean for i = 1, . . . ,m. Since T (c)(x) has nondecreasing sample paths, Theorem 3.4
together with (3.16) imply

P{c−1 N (c)
ti < xi ∀i} = P{N (c)

ti < cxi ∀i}

= P{T (c)(dcxie) > ti ∀i}

≥ P{T (c)(cxi ) > ti ∀i}

→ P{D(xi ) > ti ∀i}

= P{E(ti ) < xi ∀i}

as c → ∞. Also for any ε > 0 for all c > 0 sufficiently large we have

P{c−1 N (c)
ti < xi ∀i} = P{N (c)

ti < cxi ∀i}

= P{T (c)(dcxie) > ti ∀i}

≤ P{T (c)(c(1 + ε)xi ) > ti ∀i}

→ P{D((1 + ε)xi ) > ti ∀i}

= P{E(ti ) < (1 + ε)xi ∀i}

as c → ∞. Now let ε → 0 and use the fact that Dx is stochastically continuous to complete the
proof. �

Corollary 3.11. Under the assumptions of Theorem 3.10 we have{
1
c

N (c)
t

}
t≥0

⇒ {E(t)}t≥0 as c → ∞

in the J1-topology on D([0,∞), [0,∞)).

Proof. Note that the sample paths of {N (c)
t }t≥0 and {E(t)}t≥0 are nondecreasing. Moreover, since

the sample path of {E(t)}t≥0 are continuous, the process {E(t)}t≥0 is stochastically continuous.
Then Theorem 3.10 together with Theorem 3 in [7] yields the assertion. �

4. CTRW limit theorem

Assume that (Yi ) are i.i.d. Rd -valued random vectors independent of the triangular array
{J (c)i : 1 ≤ i ≤ [ct], c ≥ 1} of waiting times defined by (3.4). We assume that (3.3) holds.
Moreover it is assumed that Y1 belongs to the strict generalized domain of attraction of some full
operator stable law with exponent E and (2.3) holds.

Theorem 4.1. Under the assumptions of the beginning of this section we have for the generalized
CTRW process {X (c)(t)}t≥0 defined in (2.4) that

{X (c)(t)}t≥0
f.d.

H⇒ {A(E(t))}t≥0 as c → ∞.

Here {A(t)}t≥0 is the operator Lévy motion corresponding to the jumps (Yi ) and {E(t)}t≥0 is the
hitting time process corresponding to the subordinator {D(u)}u≥0 obtained in Theorem 3.4.
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Proof. The proof is similar to the proof of Theorem 4.2 in [4], so we only sketch the argument.
Fix any 0 < t1 < · · · < tm and let ∀i mean for i = 1, . . . ,m. Note that by Theorem 3.10(

1
c

N (c)
ti ∀i

)
⇒ (E(ti ) ∀i) as c → ∞.

Moreover, for any x1, . . . , xm ≥ 0 we know that

(B(c)S(cxi ) ∀i) ⇒ (A(xi ) ∀i) as c → ∞

uniformly on compact sets of Rm
+ as was established in the proof of Theorem 4.2 in [4].

Independence of (Yi ) and {N (c)
t } yields

P(X (c)(ti ) ∀i) = P
(B(c)S(N (c)

ti
) ∀i)

=

∫
Rm

+

P(B(c)S(cxi ) ∀i)dP
(c−1 N (c)

ti
∀i)
(x1, . . . , xm)

⇒

∫
Rm

+

P(A(xi ) ∀i)dP(E(ti ) ∀i)(x1, . . . , xm)

= P(A(E(ti )) ∀i)

as c → ∞, by a transfer theorem, Proposition 4.1 in [4]. �

Corollary 4.2. Under the assumptions of Theorem 4.1, if A(1) has no normal component, for
every t > 0 the distribution λt of M(t) = A(E(t)) belongs to the domain of normal attraction
of A(1). That is, if m(t) = E(E(t)), then for some sequence (bn) of shifts

(m(t)n)−Eλ∗n
t ∗ εbn ⇒ ν as n → ∞,

where ν is the distribution of A(1) and E is an exponent of ν.

Proof. Since by Theorem 3.9 we know that m(t) = E(E(t)) is finite and ν is assumed to be a
strictly operator stable law with exponent E having no normal component, the assertion follows
from Corollary 4.2 of [25]. �

Remark 4.3. It follows from Theorem 4.1 of [25] that, under the additional condition that
A(1) has no normal component, the distribution λt of M(t) = A(E(t)) varies regularly with
exponent E . See [28] for a comprehensive introduction to regularly varying measures on Rd .
Therefore various results on the tail and moment behavior of λt can be obtained from [28]. Let
a1 < · · · < ap denote the real parts of the eigenvalues of E . Then Theorem 8.2.14 in [28] implies
that there exists a function ρ : Γ → {a−1

p , . . . , a−1
1 } such that for all θ ∈ Γ = Rd

\ {0} the radial
moments∫

|〈y, θ〉|γ λt (dy) = E(|〈M(t), θ〉|γ ) (4.1)

exist for 0 ≤ γ < ρ(θ) and diverge for γ > ρ(θ). Corollary 8.2.15 in [28] implies that∫
‖y‖

γ λt (dy) = E(‖M(t)‖γ ) (4.2)
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exists if γ < 1/ap and is infinite if γ > 1/ap. Also, Theorem 6.4.15 in [28] gives the power law
tail behavior of the truncated moments and tail moments∫

|〈y,θ〉|≤r
|〈y, θ〉|ζλt (dy) and

∫
|〈y,θ〉|>r

|〈y, θ〉|ηλt (dy) (4.3)

in terms of multivariable R–O variation. Roughly speaking, this result says that the tail
P(|〈M(t), θ〉| > r) falls off like r−ρ(θ) as r → ∞.

5. Distributed-order fractional evolution equations

In this section we outline some interesting connections between fractional calculus,
anomalous diffusion models in physics, and the stochastic processes studied in this paper. These
considerations also lead to a new integral equation (5.15) for stable subordinators, which may be
interesting in its own right.

For suitable functions h : R+ × Rd
→ R we define the Fourier–Laplace transform (FLT) by

h̄(s, k) =

∫
Rd

∫
∞

0
ei〈k,x〉e−st h(t, x)dt dx (5.1)

where (s, k) ∈ (0,∞) × Rd . It follows from a general theory of FLTs on semigroups, that this
transform has properties similar to the usual Fourier or Laplace transform. See [6] and Theorem
1 in [37] for details. Recall from [9,35] that for 0 < β < 1 and suitable functions g the Caputo
derivative ( ∂

∂t )
βg(t) has Laplace transform sβ g̃(s) − sβ−1g(0) where g̃(s) =

∫
∞

0 e−st g(t)dt
denotes the usual Laplace transform. We say that a function h(t, x) is a mild solution to a time-
fractional partial differential equation, if the FLT h̄(s, k) solves the equivalent algebraic equation
in Fourier–Laplace space. This is somewhat different from the standard usage for integer-order
time derivative equations (e.g., see Pazy [34] Definition 2.3 p. 106) where a mild solution is
defined as a solution to the corresponding integral equation. For time-fractional equations, there
is no standard concept of a mild solution, and the usage here is consistent with [3]. Some deeper
questions regarding strong solutions of these equations are also interesting, but beyond the scope
of this paper.

Next we argue that, under certain technical conditions, the hitting time process E(t)
has probability densities that solve a distributed-order time-fractional evolution equation. Let
{D(u)}u≥0 be the Lévy process with Lévy measure given by (3.7), and note that by Corollary 3.7
for x > 0 the density g(x, ·) of D(x) is a bounded C∞-function. For t > 0 let F(t, x) =

P{E(t) ≤ x} denote the distribution function of E(t). Note that in view of (3.16) we know
F(t, x) = P{D(x) ≥ t} =

∫
∞

t g(x, y)dy. Then the Laplace transform in t > 0 of this family of
distribution functions is

F̃(s, x) =

∫
∞

0
e−st F(t, x)dt

=

∫
∞

0
e−st

∫
∞

t
g(x, y)dy dt

=

∫
∞

0

(∫ y

0
e−st dt

)
g(x, y)dy

=
1
s

∫
∞

0
(1 − e−sy)g(x, y)dy

=
1
s
(1 − exψ(s)). (5.2)
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Now we define

f (t, x) =

∫ 1

0

∫ t

0
(t − y)−βg(x, y)dy p(β)dβ (5.3)

which under certain technical conditions will be shown to be the density function of E(t). For
s > 0 and 0 < β < 1, by changing the order of integration, we get∫

∞

0
e−st

∫ t

0
(t − y)−βg(x, y)dy dt =

∫
∞

0

(∫
∞

y
e−st (t − y)−β dt

)
g(x, y)dy

= sβ−1Γ (1 − β)

∫
∞

0
e−sy g(x, y)dy

= sβ−1Γ (1 − β)exψ(s). (5.4)

Then, by (5.4) and (3.18) and the Tonelli theorem we obtain∫
∞

0
e−st f (t, x)dt =

∫ 1

0

∫
∞

0
e−st

∫ t

0
(t − y)−βg(x, y)dy dt p(β)dβ

= exψ(s)
∫ 1

0
sβ−1Γ (1 − β)p(β)dβ

= −
1
s
ψ(s)exψ(s). (5.5)

Now write L(t, x) =
∫ x

0 f (t, y)dy and compute the Laplace transform in t > 0:

L̃(s, x) =

∫
∞

0
e−st L(t, x)dt

=

∫ x

0

∫
∞

0
e−st f (t, y)dt dy

= −
1
s
ψ(s)

∫ x

0
eyψ(s) dy

=
1
s
(1 − exψ(s)). (5.6)

which shows that L(t, x) and F(t, x) have the same Laplace transform in t > 0 for any fixed
x > 0. Clearly F(t, x) is continuous in t > 0. Then under the technical condition that

L(t, x) =

∫ x

0
f (t, y)dy is a continuous function of t > 0 for any fixed x > 0, (5.7)

it follows from the uniqueness theorem for Laplace transforms (e.g., the corollary on p. 433 of
Feller [17]) that L(t, x) = F(t, x), and then the function f (t, x) in (5.3) is the density function
of E(t) for every t > 0.

In this case, the density f (t, x) of E(t) is the mild solution of the distributed-order time-
fractional partial differential equation∫ 1

0

(
∂

∂t

)β
f (t, x)Γ (1 − β)p(β)dβ = −

∂

∂x
f (t, x), f (0, x) = δ(x). (5.8)
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To see this, let f̄ (s, k) be the FLT of f (t, x) for s > 0 and k ∈ R. Then it follows from (5.5) that

f̄ (s, k) = −
1
s
ψ(s)

∫
∞

0
eikx exψ(s) dx =

1
s

ψ(s)

ik + ψ(s)
.

Take Laplace transforms in (5.8) to get∫ 1

0
(sβ f̃ (s, x)− sβ−1δ(x))Γ (1 − β)p(β)dβ = −

∂

∂x
f̃ (s, x)

and use (3.18) to obtain

−ψ(s) f̃ (s, x)+
1
s
ψ(s)δ(x) = −

∂

∂x
f̃ (s, x).

Then take Fourier transforms, using the fact that if g(x) has Fourier transform F(g)(k) then
F(g′)(k) = (−ik)F(g)(k), to get

−ψ(s) f̄ (s, k)+
1
s
ψ(s) = ik f̄ (s, k).

Then it follows easily that f (t, x) is the mild solution of (5.8).

Now we argue that, under the technical condition (5.7), the CTRW scaling limit random vector
M(t) = A(E(t)) also has a density that solves a distributed-order evolution equation. Recall
that as an infinitely divisible law, the operator stable random vector A(t) has log-characteristic
function t · ψA(k) so that E(ei〈k,A(t)〉) = etψA(k). It is well known that, under some regularity
conditions, the log-characteristic function of an infinitely divisible distribution is the symbol of
the pseudo-differential operator defined by the generator

L f (x) = lim
t↓0

T (t) f (x)− f (x)

t

of the corresponding C0-semigroup T (t) f (x) = E[ f (x− A(t))]. In particular, for a C∞ function
u : Rd

→ R with compact support we define the pseudo-differential operator L = ψA(iDx )

with symbol ψA(k) by requiring Lu(x) to have Fourier transform ψA(k)û(k). Since û(k) is
rapidly decreasing it follows that, since ψA grows at a polynomial rate at infinity, the function
ψA(iDx )u(x) is pointwise defined. Furthermore, it usually can be extended to larger spaces of
functions (or even distributions), where the extension is also denoted by ψA(iDx ). For example,
a one-dimensional Brownian motion A(t) with variance 2t has symbol ψA(k) = −k2 and L =

∂2/∂x2. For a one-dimensional α-stable Lévy motion, L is a fractional space derivative of order
α, and for a d-dimensional operator stable Lévy motion, L is a multivariable fractional space
derivative. For more details see [1,2,21,26,27,29,41]. Recall the definition of the Fourier–Laplace
transform (FLT) from (5.1).

Recall from Theorem 7.2.7 of [28] that the full operator stable random vector A(t) has a
density p(t, x) for any t > 0. Assume also that E(t) has density function f (t, x) given by (5.3).
Then under the assumptions of Theorem 4.1, for every t > 0 the random vector M(t) = A(E(t))
has the density

h(t, x) =

∫
∞

0
p(u, x) f (t, u)du. (5.9)
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This is a simple conditioning argument using the fact that {A(t)}t≥0 and {E(t)}t≥0 are
independent. Then h has FLT

h̄(s, k) =
1
s

I (s)

I (s)− ψA(k)
, (s, k) ∈ (0,∞)× Rd , (5.10)

where

I (s) = −ψ(s) =

∫ 1

0
sβΓ (1 − β)p(β)dβ. (5.11)

Moreover, h is the mild solution of the distributed-order time-fractional partial differential
equation∫ 1

0

(
∂

∂t

)β
h(t, x)Γ (1 − β)p(β)dβ = ψA(i Dx )h(t, x), h(0, x) = δ(x). (5.12)

To see this, note that since |eψA(k)| ≤ 1 we know ReψA(k) ≤ 0, and then in view of (5.5) we get

h̄(s, k) =

∫
∞

0
p̂(u, k) f̃ (s, u)du

=
1
s

I (s)
∫

∞

0
e−u(I (s)−ψA(k)) du

=
1
s

I (s)

I (s)− ψA(k)
,

so (5.10) holds true. Equivalently I (s)h̄(s, k) − s−1 I (s) = ψA(k)h̄(s, k) and in view of (3.18)
this is equivalent to∫ 1

0
(sβ h̄(s, k)− sβ−1)Γ (1 − β)p(β) dβ = ψA(k)h̄(s, k).

Taking Laplace and then Fourier transforms in (5.12) as before yields the same equation. Hence
h(t, x) is the mild solution of (5.12).

Remark 5.1. Note that the above arguments also hold true, if we replace integration with respect
to p(β)dβ for some probability density p supported in [0, 1] and satisfying (3.3) by integration
with respect to a probability measure ρ(dβ) with support in [0, 1] and

∫ 1
0
ρ(dβ)
1−β

< ∞. Hence,

if {D(u)}u≥0 is a subordinator with Lévy measure φ of the form φ(u,∞) =
∫ 1

0 u−βρ(dβ) and
having a bounded C∞ density g(u, ·) for D(u), then under the technical condition (5.7) the
hitting time E(t) has the density

f (t, x) =

∫ 1

0

∫ t

0
(t − y)−βg(x, y)dy ρ(dβ). (5.13)

Moreover, in this case it follows that f (t, x) is the mild solution of∫ 1

0

(
∂

∂t

)β
f (t, x)Γ (1 − β) ρ(dβ) = −

∂

∂x
f (t, x), f (0, x) = δ(x).

Especially, if ρ = εγ is the point mass in some 0 < γ < 1, then {D(u)}u≥0 is a γ -stable
subordinator and its density is given by g(u, y) = u−1/γ g0(u−1/γ y) where g0 is the bounded
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C∞-density of D(1). It is not hard to verify that the technical condition (5.7) holds in this case,
using dominated convergence along with the fact that sup{g0(y) : y > 0} < ∞ and (see, e.g.,
[39] p. 16) g0(y) = O(y−γ−1) as y → ∞. Then the density f (t, x) of the corresponding hitting
time E(t) is given by

f (t, x) = x−1/γ
∫ t

0
(t − y)−γ g0(x

−1/γ y)dy. (5.14)

On the other hand, in view of Corollary 3.2 of [30]

f (t, x) =
t

γ
x−1−1/γ g0(t x−1/γ ).

Hence, the density g0 of a γ -stable random variable D solves the integral equation

g0(z) =
γ

z

∫ z

0
(z − y)−γ g0(y)dy. (5.15)

To our knowledge this property of the density g0 of a γ -stable random variable is new and may
be of independent interest. For example, it can be used to efficiently compute the function g0(x),
and our brief numerical experiments suggest that the convergence is rather fast. Moreover, the
density f (t, x) of E(t) in this case is the mild solution of

Γ (1 − γ )

(
∂

∂t

)γ
f (t, x) = −

∂

∂x
f (t, x), f (0, x) = δ(x)

which agrees with (3.8) in [4].

Remark 5.2. In the degenerate case A(t) = t , under the technical condition (5.7), the process
A(E(t)) = E(t) has density f (t, x) given by (5.3). Note that this density solves (5.8) which
is formally equivalent to (5.12) if we take ψA(k) = ik, which is the symbol of the semigroup
generator −∂/∂x for the associated semigroup T (t) f (x) = f (x − t).

Remark 5.3. Let {A(t)}t≥0 be a one-dimensional Brownian motion with Var(A(t)) = 2t . Then
ψA(k) = −k2 and the pseudo-differential operator ψA(iDx ) = −(iDx )

2
= D2

x , and the density
h(t, x) of M(t) = A(E(t)) has FLT

h̄(s, k) =
1
s

I (s)

I (s)+ k2 , (5.16)

where I (s) is given by (5.11). Furthermore h(t, x) is the mild solution of the distributed-order
time-fractional partial differential equation∫ 1

0

(
∂

∂t

)β
h(t, x)Γ (1 − β)p(β)dβ =

∂2

∂x2 h(t, x), h(0, x) = δ(x). (5.17)

In this case

h(t, x) =

∫
∞

0

1
√

4πu
e−x2/4u f (t, u)du (5.18)

where f (t, u) is the density of E(t) given by (5.3). Eq. (5.17) first appeared in [13] together with
(5.16). They show that h(x, t) is a probability density for every t > 0 by using (5.18) along with
the fact that (5.5) is completely monotone. The present paper extends (5.17) to the case of a more
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general pseudo-differential operator, and identifies the stochastic process for which h(t, x) is a
density. A simple conditioning argument along with Theorem 3.12 shows that the mean square
displacement of a particle governed by Eq. (5.17) is

E(M(t)2) = 2E(E(t)) ∼ (log t)α L̄(log t)−1

as t → ∞ for some L̄ ∈ RV∞(0). This agrees with [11,12] and shows that (5.17) describes an
ultraslow diffusion, where a cloud of diffusing particles spreads at the rate (log t)α/2.

Remark 5.4. Following [11] we note that, in the case where A(t) is a one-dimensional Brownian
motion, the Fourier transform formula F[(c/2)e−c|x |

] = c2/(c2
+ k2) along with (5.16) implies

that

h̃(s, x) =
I (s)1/2

2s
e−I (s)1/2|x |.

Under the additional assumption that h(t, x) is ultimately monotone, a Tauberian theorem
(Theorem 4 on p. 446 of Feller [17]) yields that

h(t, x) ∼
I (1/t)1/2

2
e−I (1/t)1/2|x | as t → ∞.

If p ∈ RV0(α − 1) then it follows from Lemma 3.1 as in the proof of Theorem 3.9 that
I (1/t) = (log t)−αL1(log t) for some L1 ∈ RV∞(0). Hence h(t, x) is asymptotically equivalent
to a Laplace density whose variance grows like (log t)α . A different stochastic model for
ultraslow diffusion presented in [31], using nonlinear rescaling for the waiting time process,
leads exactly to a Laplace limit with density

h1(t, x) =
(log t)−α/2

2
e−(log t)−α/2|x |.

Using the converse of the same Tauberian theorem yields

h̃1(s, x) =
(log(1/s))−α/2

2s
e−(log(1/s))−α/2|x |

and then the same Fourier transform formula leads to (5.16) with I (1/t) = (log t)−α . Now
suppose that

I (s) =

∫
∞

0
sβq(β)dβ = (log(1/s))−α

for some function q(β), which is equivalent to q̃(s) = s−α . In view of the Laplace transform
pair L[tα−1/Γ (α)] = s−α for α > 0 this implies that q(β) = βα−1/Γ (α) supported on the
positive real line β > 0. Then the uniqueness theorem for Laplace transforms implies that we
cannot write q(β) = Γ (1 − β)p(β) for any p(β) supported on 0 < β < 1. Hence the family
of Laplace densities h1(t, x) cannot be the mild solution of (5.17) for any choice of p(β), so the
two process densities are only asymptotically equivalent. This resolves an open question in [31].

Remark 5.5. As in Remark 5.1 we can also consider the more general equation∫ 1

0

(
∂

∂t

)β
h(t, x)Γ (1 − β) ρ(dβ) = ψA(iDx )h(t, x), h(0, x) = δ(x)

mcubed
Sticky Note
Theorem 3.9

mcubed
Highlight
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whose mild solution is given by (5.9) and (5.13). An application where ψA(i Dx ) = ∂2/∂x2

and ρ(dβ) consists of two atoms at 0 < β1 < β2 < 1 is considered in [48], Section 4.2 and
[12]. The results of this paper give a different and perhaps simpler proof that the solutions in
these papers are probability distributions, and also illuminate the nature of the stochastic limit.
The limit process {D(t)} in this case is a sort of mixture of β1-stable and β2-stable, with the
larger exponent dominating at early time, and the smaller (heavier tail) emerging at a later time.
Presumably a similar behavior can be expected whenever the support of the measure ρ is bounded
away from zero, but we have not examined this in detail.

Remark 5.6. The classical continuous time random walk model considered in [30] is a special
case of the generalized CTRW model described in Section 2. In fact, assume that J1, J2, . . . are
nonnegative and i.i.d. belonging to the domain of attraction of some β-stable law with 0 < β < 1.
Then, for some norming function b ∈ RV(−1/β) we have

b(c)
[ct]∑
i=1

Ji ⇒ D(t) as c → ∞

where {D(t)}t≥0 is a β-stable subordinator. If we set J (c)i = b(c)Ji , then T (c)(n) = b(c)
∑n

i=1 Ji
is the time of the nth jump at scale c ≥ 1. In this case the generalized CTRW converges as c → ∞

to a limit process M(t) whose density h(t, x) solves the fractional partial differential equation

∂βh(x, t)

∂tβ
= Lh(x, t)+ δ(x)

t−β

Γ (1 − β)
. (5.19)

Here δ(x) is the Dirac delta function, the fractional derivative ∂βh(x, t)/∂tβ is defined as the
inverse Laplace transform of sβ h̃(x, s), where h̃(x, s) =

∫
∞

0 e−st h(x, t)dt is the usual Laplace
transform, and −L is the generator of the continuous convolution semigroup associated with
the Lévy process {A(t)}t≥0. For example, if {A(t)}t≥0 is a one-dimensional Brownian motion
then L = ∂2/∂x2. Here the hitting time process E(t) defined by (3.15) is self-similar with

E(ct)
d
= cβE(t), so that the CTRW scaling limit A(E(t)) grows more slowly than A(t), a

subdiffusive effect. See [30] for more details. A different norming scheme is used in [4] for
Ji > 0 belonging to the domain of attraction of some β-stable law with 1 < β < 2. Now for
some norming function b ∈ RV(−1/β) we have

c−1µ[ct] + b(c)
[ct]∑
i=1

(Ji − µ) ⇒ D̄(t) as c → ∞

where µ = EJi and {D̄(t)}t≥0 is a totally positively skewed β-stable Lévy motion with drift
such that ED(t) = µt . Letting J (c)i = b(c)(Ji − µ) + c−1µ, the resulting generalized CTRW
limit process has a density that solves a fractional partial differential equation similar to (5.19)
but with both a first order and a β-order time derivative on the left-hand side.

Acknowledgements

MMM was partially supported by NSF grants DMS-0139927 and DMS-0417869 and by the
Marsden Foundation in New Zealand. HPS was partially supported by NSF grant DMS-0417869.



1234 M.M. Meerschaert, H.-P. Scheffler / Stochastic Processes and their Applications 116 (2006) 1215–1235

References

[1] W. Arendt, C. Batty, M. Hieber, F. Neubrander, Vector-valued Laplace transforms and Cauchy problems,
in: Monographs in Mathematics, Birkhaeuser-Verlag, Berlin, 2001.

[2] B. Baeumer, M. Meerschaert, Stochastic solutions for fractional Cauchy problems, Frac. Calc. Appl. Anal. 4 (2001)
481–500.

[3] B. Baeumer, D.A. Benson, M. Meerschaert, Advection and dispersion in time and space, Phys. A 350 (2005)
245–262.

[4] P. Becker-Kern, M.M. Meerschaert, H.P. Scheffler, Limit theorem for continuous time random walks with two time
scales, J. Appl. Probab. 41 (2) (2004) 455–466.

[5] D.A. Benson, S.W. Wheatcraft, M.M. Meerschaert, The fractional-order governing equation of Lévy motion, Water
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[20] F. Iglói, Anomalous diffusion in aperiodic environments, Phys. Rev. E 59 (1999) 1465–1474.
[21] N. Jacob, Pseudo-Differential Operators and Markov Processes, Akad. Verl., Berlin, 1996.
[22] Z. Jurek, J.D. Mason, Operator-Limit Distributions in Probability Theory, Wiley, New York, 1993.
[23] Y. Kasahara, A limit theorem for sums of i.i.d. random variables with slowly varying tail probability, J. Math. Kyoto

Univ. 26 (3) (1986) 437–443.
[24] J. Klafter, A. Blumen, M.F. Shlesinger, Stochastic pathways to anomalous diffusion, Phys. Rev. A 35 (1987)

3081–3085.
[25] T.J. Kozubowski, M.M. Meerschaert, H.P. Scheffler, ν-operator stable laws, Publ. Math. Debrecen. 63 (4) (2003)

569–585.
[26] M.M. Meerschaert, D.A. Benson, B. Baeumer, Multidimensional advection and fractional dispersion, Phys. Rev. E

59 (1999) 5026–5028.
[27] M.M. Meerschaert, D.A. Benson, B. Baeumer, Operator Lévy motion and multiscaling anomalous diffusion, Phys.
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