Your quiz had 5 of the following questions. Note that there was an error in the answers to all the “fill in the blank” questions, so these were not graded. In the solutions, the letter Z always represents a standard normal random variable.

All the questions refer to the following scenario. The length of human pregnancies is normally distributed with mean μ and standard deviation $\sigma = 16$ days.

1. Suppose that $\mu = 266$. What proportion of pregnancies have a length less than 250 days?

(a) 0.8413 (b) 0.1587 (c) 0.6816 (d) 0.1154 (e) none of the above are correct

Solution. Let X stand for the length of a randomly selected woman’s pregnancy. We want $P(X < 250)$, which we can compute by standardizing and using Table B.2.

\[P(X < 250) = P \left(\frac{X - 266}{16} < \frac{250 - 266}{16} \right) = P(Z < -1) = 0.1587. \]

2. Suppose that $\mu = 266$. Fill in the blank: Exactly 25% of pregnancies are greater than ____________ days in length.

Solution. We want the 75th percentile of a normal distribution with mean 266 and standard deviation 16. First find the 75th percentile of a standard normal distribution from Table B.2. Looking for areas near 0.75 in the table, we are led to $z = 0.67$ or $z = 0.68$. I’ll choose $z = 0.67$, although $z = 0.68$ would also be fine. Now multiply by the standard deviation and add the mean to get the answer, $(0.67)(16) + 266 = 276.72$.

3. Suppose that $\mu = 266$. A random sample of $n = 16$ women is included in a study, and the length of their pregnancies is measured. The mean \bar{X} of the 16 lengths is computed. What is the standard deviation of \bar{X}?

(a) 16 (b) 1 (c) 4 (d) 66.5 (e) none of the above are correct

Solution. The standard deviation of the sample mean is the population standard deviation divided by \sqrt{n}. In our case this yields $16/\sqrt{16} = 4$.

4. Suppose that $\mu = 266$. A random sample of $n = 16$ women is included in a study, and the length of their pregnancies is measured. The mean \bar{X} of the 16 lengths is computed. What is the probability that \bar{X} is between 262 and 266?

(a) 0.3413 (b) 0.6826 (c) 0.8413 (d) 0.1587 (e) none of the above are correct

Solution. We know (from the “first important fact” from class) that \bar{X} is normally distributed with mean 266 and standard deviation $16/\sqrt{16} = 4$. We want $P(262 < \bar{X} < 266)$, which we’ll compute by standardizing and looking up the answer in Table B.2.

\[
P(262 < \bar{X} < 266) = P \left(\frac{262 - 266}{4} < \frac{\bar{X} - 266}{4} < \frac{266 - 266}{4} \right) = P(-1 < Z < 0) = 0.5000 - 0.1587 = 0.3413.
\]

5. Now suppose that μ is not known, and that a random sample of $n = 4$ women is included in a study. What is the probability that the mean of their pregnancy lengths, \bar{X}, is within 24 of μ?

(a) 0.0013 (b) 0.9987 (c) 0.6816 (d) 0.9974 (e) none of the above are correct
Solution. We know (from the “first important fact” from class) that \bar{X} is normally distributed with mean 266 and standard deviation $16/\sqrt{4} = 8$. We want $P(-24 < \bar{X} - \mu < 24)$, which we’ll compute by standardizing and looking up the answer in Table B.2. Since we’ve already got $\bar{X} - \mu$ in the probability statement, standardization involves only dividing by the standard deviation.

\[
P(-24 < \bar{X} - \mu < 24) = P\left(-\frac{24}{8} < \frac{\bar{X} - \mu}{8} < \frac{24}{8}\right) = P(-3 < Z < 3) = 0.9987 - 0.0013 = 0.9974.
\]

6. Suppose that $\mu = 266$. What proportion of pregnancies have a length greater than 250 days?
(a) 0.8413 (b) 0.1587 (c) 0.6816 (d) 0.1154 (e) none of the above are correct

Solution. Let X stand for the length of a randomly selected woman’s pregnancy. We want $P(X > 250)$, which we can compute by standardizing and using Table B.2.
\[
P(X > 250) = P\left(\frac{X - 266}{16} > \frac{250 - 266}{16}\right) = P(Z > -1) = 1 - 0.1587 = 0.8413.
\]

7. Suppose that $\mu = 266$. Fill in the blank: Exactly 25% of pregnancies are less than ________ days in length.

Solution. We want the 25th percentile of a normal distribution with mean 266 and standard deviation 16. First find the 25th percentile of a standard normal distribution from Table B.2. Looking for areas near 0.25 in the table, we are led to $z = -0.67$ or $z = -0.68$. I’ll choose $z = -0.67$, although $z = -0.68$ would also be fine. Now multiply by the standard deviation and add the mean to get the answer, $(-0.67)(16) + 266 = 255.28$.

8. Suppose that $\mu = 266$. A random sample of $n = 64$ women is included in a study, and the length of their pregnancies is measured. The mean \bar{X} of the 64 lengths is computed. What is the standard deviation of \bar{X}?
(a) 16 (b) 2 (c) 4 (d) 66.5 (e) none of the above are correct.

Solution. The standard deviation of the sample mean is the population standard deviation divided by \sqrt{n}. In our case this yields $16/\sqrt{64} = 2$.

9. Suppose that $\mu = 266$. A random sample of $n = 64$ women is included in a study, and the length of their pregnancies is measured. The mean \bar{X} of the 64 lengths is computed. What is the probability that \bar{X} is between 262 and 266?
(a) 0.9772 (b) 0.6826 (c) 0.9544 (d) 0.0228 (e) none of the above are correct.

Solution. We know (from the “first important fact” from class) that \bar{X} is normally distributed with mean 266 and standard deviation $16/\sqrt{64} = 2$. We want $P(262 < \bar{X} < 266)$, which we’ll compute by standardizing and looking up the answer in Table B.2.
\[
P(262 < \bar{X} < 266) = P\left(\frac{262 - 266}{2} < \frac{\bar{X} - 266}{2} < \frac{266 - 266}{2}\right) = P(-2 < Z < 0) = 0.5000 - 0.0228 = 0.4772.
\]
10. Now suppose that μ is not known, and that a random sample of $n = 4$ women is included in a study. What is the probability that the mean of their pregnancy lengths, \bar{X}, is within 8 of μ?
(a) 0.3413 (b) 0.9987 (c) 0.6826 (d) 0.9974 (e) none of the above are correct

Solution. We know (from the “first important fact” from class) that \bar{X} is normally distributed with mean 266 and standard deviation $16/\sqrt{4} = 8$. We want $P(-8 < \bar{X} - \mu < 8)$, which we’ll compute by standardizing and looking up the answer in Table B.2. Since we’ve already got $\bar{X} - \mu$ in the probability statement, standardization involves only dividing by the standard deviation.

$$P(-8 < \bar{X} - \mu < 8) = P\left(\frac{-8}{8} < \frac{\bar{X} - \mu}{8} < \frac{8}{8}\right) = P(-1 < Z < 1) = 0.8413 - 0.1587 = 0.6826.$$

11. Suppose that $\mu = 266$. A random sample of $n = 25$ women is included in a study, and the length of their pregnancies is measured. The mean \bar{X} of the 25 lengths is computed. What is the standard deviation of \bar{X}?
(a) 16 (b) 1 (c) 0.64 (d) 3.2 (e) none of the above are correct.

Solution. The standard deviation of the sample mean is the population standard deviation divided by \sqrt{n}. In our case this yields $16/\sqrt{25} = 3.2$.

12. Suppose that $\mu = 266$. A random sample of $n = 25$ women is included in a study, and the length of their pregnancies is measured. The mean \bar{X} of the 25 lengths is computed. What is the probability that \bar{X} is between 262.8 and 266?
(a) 0.3413 (b) 0.6826 (c) 0.8413 (d) 0.1587 (e) none of the above is true.

Solution. We know (from the “first important fact” from class) that \bar{X} is normally distributed with mean 266 and standard deviation $16/\sqrt{25} = 3.2$. We want $P(262.8 < \bar{X} < 266)$, which we’ll compute by standardizing and looking up the answer in Table B.2.

$$P(262.8 < \bar{X} < 266) = P\left(\frac{262.8 - 266}{3.2} < \frac{\bar{X} - 266}{3.2} < \frac{266 - 266}{3.2}\right) = P(-1 < Z < 0) = 0.5000 - 0.1587 = 0.3413.$$

13. Now suppose that μ is not known, and that a random sample of $n = 4$ women is included in a study. What is the probability that the mean of their pregnancy lengths, \bar{X}, is within 4 of μ?
(a) 0.3085 (b) 0.3830 (c) 0.6816 (d) 0.6915 (e) none of the above are correct.

Solution. We know (from the “first important fact” from class) that \bar{X} is normally distributed with mean 266 and standard deviation $16/\sqrt{4} = 8$. We want $P(-4 < \bar{X} - \mu < 4)$, which we’ll compute by standardizing and looking up the answer in Table B.2. Since we’ve already got $\bar{X} - \mu$ in the probability statement, standardization involves only dividing by the standard deviation.

$$P(-4 < \bar{X} - \mu < 4) = P\left(\frac{-4}{8} < \frac{\bar{X} - \mu}{8} < \frac{4}{8}\right) = P(-0.5 < Z < 0.5) = 0.6915 - 0.3085 = 0.3830.$$

\[3\]