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Abstract. We consider the problem of determining and calculating a positive measurable

function f satisfying
∫

gi fdµ = ci, i ∈ I provided such a solution exists for a given measure

µ, nonnegative measurable functions {gi, i ∈ I} and constants {ci > 0, i ∈ I}. Our goal is

to provide a general positive Monte Carlo solution, if one exists, for arbitrary systems of such

simultaneous linear equations in any number of unknowns and variables, with diagnostics

to detect redundancy or incompatibility among these equations. MC-inverse is a non-linear

Monte Carlo solution of this inverse problem. We establish criteria for the existence of

solutions and for the convergence of our Monte Carlo to such a solution. The method we

propose has connections with mathematical finance and machine learning.

1. Introduction

Consider a measure space (Ω,F , µ) and a set of measurable non-negative constraint func-

tions gi on it. Suppose there is a positive solution f = f ∗ of the equations
∫

gi fdµ = ci, i ∈ I

for given positive ci. Equivalently, for every probability measure P mutually continuous with

respect to µ and Xi = gi/ci there is a positive solution X∗ = dP
dµ

/f ∗ of the equations

E(Xi/X
∗) =

∫
Xi/X

∗dP = 1, i ∈ I.

The latter solution was previously interpreted in terms of the optimal investment portfolio

obtained from an extension of the Kelly Principle off the simplex (see [7] and [6], [8], [9],

[10]).
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We shall choose a probability measure P , call it a working measure, to play the role of

an initial guess of the solution and to control a Monte Carlo by which our solution will be

derived. This Monte Carlo involves sequentially updating coefficients, one for each of the

constraints, and is based on our sequential extension of the Exponentiated Gradient (EG)

algorithm [5].

2. Inverse problem

2.1. Projection density reciprocal (PDR). Let X = (Xi, i ∈ I) be a finite or infinite

collection of P -equivalence classes of nonnegative random variables on a probability space

(Ω,F , P ).

Let Π = {π ∈ R
I : π is finitely supported, π · 1 = 1} and Π+ = Π ∩ [0,∞)I . Here and

in what follows, for x ∈ R
I , π · x =

∑
πixi and 1 stands for a function (vector) identically

equal to one. Define a set

L+
X

= {π · X : π ∈ Π+},

where the closure is with respect to convergence in probability P . This set will be often

referred to as the simplex spanned on X. Likewise define the extended simplex

(1) LX = {π · X ≥ 0 : π ∈ Π}.

We consider X∗ = argmax{E ln X : X ∈ LX}, where ln r = −∞ for r = 0. In fact, it is

slightly more general and convenient if we instead define X∗, if it exists, to be any element

of LX for which E ln(X/X∗) ≤ 0 for every X ∈ LX. It will be seen that X∗ is unique for

given P (see also [1] for the maximization over L+
X).

Although it may not be immediately evident, X∗ satisfies E(Xi/X
∗) = 1, i ∈ I, provided

the normalized constraints Xi are mathematically consistent and specified conditions are

satisfied (see Section 2.2). We call X∗ the projection density (PD) and f ∗ = dP/dµ
X∗

the

projection density reciprocal (PDR) solution to the inverse problem. Both may depend upon

the choice of working measure P (see Section 2.4).
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So, for a given working probability measure P the task is to find X∗ for that P . For

maximizing E ln Y , Y ∈ L+
X we will produce a Monte Carlo solution X∗

n converging to X∗.

If X∗ does not belong to the simplex L+
X but rather to LX one may find an X∗ by deleting

some constraints and incorporating some additional Y ∈ LX \ L+
X. The solution Y ∗ for this

new set of constraints is then found and the process repeated until a solution is found. The

choice of a working measure will be largely a matter of convenience although we shall see

that one resembling an f ∗dP for some P is preferable.

It is well to keep in mind the following illustrative example: 0 < X1 = X, X2 = 2X,

with E| lnX| < ∞. In such a case, E ln (πX1 + (1 − π)X2) = ln(2 − π) − E ln X has no

finite maximum with respect to π ∈ R for each working measure P . However restricting the

maximization to the simplex 0 ≤ π ≤ 1 yields X∗ = 2X. The same X∗ is obtained if the

first constraint X1 is dropped which results in a reduced problem whose solution lies in its

simplex. This will be important since our basic algorithm, like Cover’s [2], searches only the

simplex L+
X.

Proposition 1. (Super Simplex) For a given working measure P the (extended) PD X∗

exists for constraints X = {Xi : i ∈ I} if and only if the super simplex PD Y ∗ exists for

constraints Y = {π · X ≥ 0 : π ∈ Π}, in which case X∗ = Y ∗.

Proof. It is enough to show that LX coincides with the super simplex L+
Y. Take an

element π · Y, π = (π1, . . . , πn) ∈ Π+ of the super simplex. Then for some π1, . . . , πn ∈ Π

we have

π ·Y = π1(π
1 · X) + · · · + πn(πn · X)

= (π1π
1 + · · ·+ πnπn) ·X

= π̃ · X,

where π̃ = π1π
1 + · · · + πnπ

n ∈ Π.

Thus the super simplex, which obviously contains LX, is also contained in LX.
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Example 1. Let Ω = {(1, 1), (1, 2), (2, 1), (2, 2)} and (unknown) f = 1. Suppose that the

constraints tell us the overall total of f is four and the first row and first column totals

of f are each two. We may think of these as integrals of g0 = 1, g1 = 1{(1,1),(1,2)} and

g2 = 1{(1,1),(2,1)} with respect to uniform counting measure µ on Ω. The normalized constrains

X = (X0, X1, X2) become then X0 = 0.25 ·1, X1 = 0.5 ·1{(1,1),(1,2)} and X2 = 0.5 ·1{(1,1),(2,1)}.

Consider

LX = {Y : Y = π0X0 + π1X1 + π2X2 ≥ 0, π0 + π1 + π2 = 1},

which translates to the following constraints for π0, π1, π2:

π0 ≥ 0

π0 + 2π1 ≥ 0

π0 + 2π2 ≥ 0

π0 + 2π1 + 2π2 ≥ 0

π0 + π1 + π2 = 1.

Let P = (p11, p12, p21, p22) be any fully supported probability measure on Ω. Our problem

can be stated now as a classical problem of maximization of a concave function:

E ln(π · X) = ln (π0 + 2π1 + 2π2) p11 + ln (π0 + 2π1) p12 + ln (π0 + 2π2) p21 + ln(π0) p22.

Using Lagrange multipliers one finds the solution:

f ∗ = 2(p11 + p22)1{(1,1),(2,2)} + 2(p12 + p21)1{(1,2),(2,1)},
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which depends upon P . By contrast, the cross-entropy method utilizes a different optimiza-

tion. Subject to the conditions

min{h11, h12, h21, h22} ≥ 0

h11 + h12 + h21 + h22 = 1

h11 + h12 = 1/2

h11 + h21 = 1/2

minimize the cross-entropy function (also known as Kullback-Leibler divergence)

D(h|p) = h11 ln(h11/p11) + h12 ln(h12/p12) + h21 ln(h21/p21) + h22 ln(h22/p22).

Under our assumptions the cross-entropy solution has the following form,

g∗ = 4 · h∗ =
2

1 +
√

p12p21/(p11p22)
1{(1,1),(2,2)} +

2

1 +
√

p11p22/(p12p21)
1{(1,2),(2,1)},

which generally differs from f ∗.

Calculating f ∗ was daunting, even for this simple example. We now illustrate how it could

be done using our Monte Carlo of Section 3. For example, set P = (1/2, 1/4, 1/8, 1/8). Then

f ∗ = (1.25, 0.75, 0.75, 1.25). The Monte Carlo of Proposition 3 is implemented

ηj =
1

j1/2(log j)1/2+ǫ
, ǫ = 0.05,

and then

π0 = (1/3, 1/3, 1/3),

πj+1
i = πj

i

exp
(
ηj

Xj
i

πj ·Xj

)

∑3
k=1 πj

k exp
(
ηj

Xj
k

πj ·Xj

) , i = 1, 2, 3,

with X
j = (X1(ωj), X2(ωj), X3(ωj)), where {ωj}, j ≤ n = 100000 are i.i.d. random draws

from P . The approximations of X∗ are X∗
j = πj · X. The approximate result is

f ∗ ≈ f ∗
100000 =

P

π100000 · X
= (1.2499, 0.7422, 0.7661, 1.2504).



6 R. LEPAGE, K. PODGÓRSKI, AND M. RYZNAR

Since X∗ appears to lie in the interior of L+
X we accept X∗

100000 = π100000 · X as the Monte

Carlo approximation of X∗ and f ∗
100000 as also being a Monte Carlo approximation of f ∗.

Indeed it is.

Close examination of Corollary 3 reveals that we have established the convergence of our

Monte Carlo only for a weighted average πj of {πj}, but in practice there seems to be little

difference between πj and πj. For comparison,

π100000 = (0.3999, 0.4737, 0.1264),

while

π100000 = (0.3982, 0.4732, 0.1286),

and the resulting solution

f ∗ ≈
P

π100000 · X
= (1.2486, 0.7437, 0.7630, 1.2556).

The next example illustrates what can happen if X∗ does not belong to the interior of the

simplex L+
X. Our remedy will be to incorporate additional constraints outside the simplex.

This redefines the set of constraints and we proceed to search the simplex defined by these

new constraints.

Example 2. The setting of Example 1 is assumed. Purely for illustration, we modify the

constraints:

Y0 = X0, Y1 = 0.5 · (X0 + X1), Y2 = 0.5 · (X0 + X2).

Choose, as before, P = (1/2, 1/4, 1/8, 1/8). Let Y ∗
+ = π∗

+ · Y be the simplex solution, i.e.

the one that minimizes E lnY , for Y ∈ L+
Y. Direct calculations yield π∗

+ = (0, 5/6, 1/6)

and Y ∗
+ = π∗

+ · Y = (3/8, 1/3, 1/6, 1/8) giving f ∗
+ = (1.3333, 0.75, 0.75, 1). Because the first

coordinate of π∗
+ is 0 we suspect that the solution Y ∗

+ will fail to satisfy the first constraint.

Indeed,

E(Y0/Y
∗
+) = (1/2)

1/4

3/8
+ (1/4)

1/4

1/3
+ (1/8)

1/4

1/6
+ (1/8)

1/4

1/8
= 23/24 < 1.
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f*(1)

f*(2)

f*(3)

f*(4)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Exact and MC-inverse values of f*

-The weighted average
-MC inverse for constraints Y
-MC inverse for constraints X
-exact values of PDR solution

LEGEND:

Figure 1. Comparison of the exact PDR solution with its MC-inverse approximations

The second and the third constraints are satisfied, i.e. E(Y1/Y
∗
+) = 1, E(Y2/Y

∗
+) = 1. This

solution, obtained from a search of the simplex, obviously differs from the extended solution

f ∗ = (1.25, 0.75, 0.75, 1.25) (found above) which satisfies all three constraints.

How does our Monte Carlo handle this? With ηj = 1
j1/2(log j)1/2+ǫ , ǫ = 0.05, we obtain

π∗
+ ≈ π100000 = (0.0000, 0.8405, 0.1595)

with corresponding

f ∗
+ ≈

P

π100000 · Y
= (1.3333, 0.7460, 0.7582, 1.0000).

Similarly,

π100000 = (0.0000, 0.8421, 0.1579)

with corresponding

f ∗
+ ≈

P

π100000 · Y
= (1.3333, 0.7451, 0.7600, 1.0000).
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Having returned an apparent solution π∗
+0 ≈ 0, our Monte Carlo is suggesting that possibly

π∗
0 < 0. To check this we extend the Monte Carlo off L+

Y. The idea is to replace Y0 with

Y00 = αY0 + (1 − α)
Y1 + Y2

2
,

for the smallest possible α < 0 consistent with Y00 ≥ 0. Adopting α = −1, the most extreme

case, Y00 = (1/2, 1/4, 1/4, 0). With the new constraints Y = (Y00, Y1, Y2) our Monte Carlo

yields

π∗
+ ≈ π100000 = (0.1936, 0.7340, 0.0724),

f ∗
+ ≈

P

π100000 · Y
= (1.2525, 0.7451, 0.7472, 1.2401),

which is very close to f ∗. Corresponding approximations for the weighted average are,

π∗
+ ≈ π100000 = (0.1940, 0.7338, 0.0723),

f ∗
+ ≈

P

π100000 · Y
= (1.2524, 0.7514, 0.7471, 1.2406).

Figure 2 illustrates geometrically a situation in which the (extended) PD solution exists

on the extended simplex LX but not within the initial simplex. The initial set of constraints

X = (X1, X2, X3) yields the solution Y ∗ that is on the boundary of L+
X. Using the idea

of the supersimplex (see Proposition 1) by adding succesively new constraints X4, X5, and

X6 we obtain a sequence of simplex solutions Y ∗
1 , Y ∗

2 , and finally Y ∗
3 with the last one

in the interior of the simplex generated by the constraints X̃ = (X1, X2, X3, X4, X5). By

Corollary 2 of Subsection 2.3, the solution in the interior of an simplex is necessarily the

global solution X∗. More details on how to effectively update the constraints are discussed in

Subsection 3.2. Section 4 presents a problem of reconstructing a probability density function

that is in a complete analogy in the hypothetical situation of Figure 2 (see that section for

more details).
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LX

X∗

L+

X

Y ∗

X1

X2
X3

X1

X2

X3

Y ∗
Y ∗

1

Y ∗

2

Y ∗

3

X∗

4

X∗

5

X∗

6

Figure 2. Hypothetical situation when the extended simplex solution X∗ is out-

side the initial simplex L+
X . The initial MC-inverse solution Y ∗ is necessarily on the

boundary of the initial simplex (left). Adding appropriate constraints eventually

leads to a simplex for which the solution Y ∗
3 coincides with X∗ (right).

2.2. Basic properties. Our first result establish conditions under which a PD solution

satisfying the normalized constraints will exist. The result in a somewhat different situation

was proven in [7] and [10]. Here we consider the extended simplex LX as defined by (1).

We also say that 0 ≤ X is relatively bounded with respect to X∗ if X/X∗ is bounded (here

0/0 = 0) and denote BX∗ a convex subset of LX consisting of elements relatively bounded

to X∗ .

Theorem 1. Let L be a convex set of non-negative random variables and let LX be the

extended simplex defined for the constraints X.

(i): Assume that there exists positive X∗ ∈ L such that

E ln(X/X∗) ≤ 0

for each X ∈ L. Then X∗ is unique and for each X ∈ L:

(2) E(X/X∗) ≤ 1.

(ii): If there exists positive X∗ ∈ LX such that

(3) E ln(X/X∗) ≤ 0
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for each X ∈ BX∗ , then for all such X:

(4) E(X/X∗) = 1.

Proof. (i): Consider an extension of the class L to L′ = {Y : 0 ≤ Y ≤ X for some X ∈ L}.

Then the assumption is satisfied for L′, so we can assume that L′ = L. For X ∈ L and

α ∈ (0, 1) define Xα = X∗ + α(X − X∗) ∈ L. Then

E ln(1 + α(X/X∗ − 1))) = E ln(Xα/X∗) ≤ 0, α ∈ (0, 1).

Now assume that X ≤ cX∗ for some positive c. Apply (i) of Lemma 1, Subsection 5.1 of the

Appendix, with Z = X/X∗ − 1 to get

E(X/X∗ − 1) ≤ 0.

Next note that every X ∈ L is a limit of X1{X≤cX∗} ∈ L when c → ∞, so the conclusion

holds for all X ∈ L. The uniqueness follows from convexity of L and strict concavity of

X → E ln X (see [1]).

(ii): By taking L = BX∗ in (i) we obtain for X ∈ L:

E(X/X∗) ≤ 1.

Let X ≤ cX∗ for some c > 1 and Xα = X∗ + α(X − X∗). For α ∈ (− 1
2(c−1)

, 0) we have

0 < X∗(1 + α(c − 1)) ≤ Xα ≤ X∗(1 − α)

thus Xα ∈ BX∗ . Consequently

E ln(1 + α(X/X∗ − 1))) = E ln(Xα/X∗) ≤ 0, α ∈ (−
1

2(c − 1)
, 0).

Next apply (ii) of Lemma 1, Subsection 5.1 of the Appendix, with Z = X/X∗ − 1 to get

E(X/X∗ − 1) ≥ 0,

showing E(X/X∗) ≥ 1 and concluding the proof.
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Remark 1. If the original problem consists of conflicting information, i.e. there is no function

satysfying the postulated constraints, then necessarily for some X ∈ LX we have E(X/X∗) <

1 (if X∗ exists). In this sense our solution recognizes existing conflicting information. If some

of the constraints are not present in the solution X∗ (coefficients in the solution corresponding

to those constraints are zero) it suggests that they could be removed to correct the problem.

Evaluating the solution for this reduced problem and verifying if E(X/X∗) is identically

equal to one will be a confirmation that conflict has been removed from the constraints.

Remark 2. It follows from (i) of Theorem 1 that if (3) holds for each X ∈ LX, then X∗ is

unique in LX.

Corollary 1. If 1 ∈ LX and P satisfies E(Xi) = 1, i ∈ I then X∗ = argmax{E ln X : X ∈

LX} exists and is equal to 1, i.e. f ∗ = dP/dµ is the PDR solution to the inverse problem.

Proof. For each π ∈ Π we have

E ln(π · X) ≤ ln E(π · X) = 0.

Moreover if 0 ≤ Xn = πn · X converges to X and EXn = 1, then by Fatou’s Lemma

necessarily EX ≤ 1. Consequently, E ln Y ≤ 0 for each Y ∈ LX. On the other hand 1 ∈ LX

and E ln1 = 0 thus X∗ = 1 by uniqueness of X∗.

One should expect that a solution f ∗ obtained from an infinite union of increasing sets of

normalized constraints Xn = {Xi, i ∈ In}, n = 1, 2, . . . ,∞, In ⊂ In+1 should be the limit

of the respective solutions f ∗
n. This is shown next.

Theorem 2. Consider a sequence of inverse problems with constraints

Xn = {Xi, i ∈ In}, n = 1, 2, . . . ,∞,
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where In ⊆ In+1 ⊆ I∞
def
=
⋃

n∈N
In. Assume that the (extended) PD X∗

n exists for each of

the constraints Xn and that

L = sup{E ln X : X ∈
⋃

n∈N

LXn} < ∞.

Then there exists X̃ ∈ LX∞
whose expected logarithm is at least as large as L and X∗

n

converges in probability to X̃.

Proof. Consider n ≤ m. Due to Theorem 1 we have E(X∗
n/X

∗
m) ≤ 1 hence

0 ≤ E
(
(X∗

n/X
∗
m)1/2 − 1

)2

≤ 2 − 2E(X∗
n/X∗

m)1/2

= 2 − 2E exp

(
1

2
ln(X∗

n/X
∗
m)

)

≤ 2 − 2 exp

(
1

2
(E ln X∗

n − E ln X∗
m)

)

Next use the fact that limn→∞,m→∞ E ln X∗
n − E lnX∗

m = 0 which follows from the fact that

the sequence E ln X∗
n is increasing and bounded by L and thus convergent. Then the above

inequality implies that in probability limn,m→∞

√
X∗

n/X
∗
m = 1 which shows that the sequence

ln X∗
n is Cauchy (in topology of convergence in probability P ) and Y = limn→∞ ln X∗

n exists

in probablity. Take X̃ = eY , then limn→∞ exp(ln X∗
n) = X̃ in probability.

Let n ≤ m then again due to Theorem 1 we have E(X∗
n/X

∗
m) ≤ 1. Hence by the Fatou

lemma and passing m to ∞ we obtain E(X∗
n/X̃) ≤ 1. Then by concavity of the logarithmic

function we get

E ln X∗
n − E ln X̃ ≤ ln

(
E(X∗

n/X̃)
)
≤ 0.

This proves that E ln X̃ is at least as large as L.

Remark 3. It is easy to notice that the result holds if it is only assumed that X∗
n’s exist over

some increasing convex sets Ln ⊂ LX and with L∞ =
⋃

i∈N
Li.
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2.3. Finite set of constraints. In this subsection we study the case of finitely many con-

straints which is the setup for our Monte Carlo algorithm of Section 3. Here we assume that

I = {1, . . . , N} thus our vector of constraints is X = (X1, . . . , XN). We also assume that

X
def
= (X1 + · · · + XN)/N is positive with probability one. Let ΠX

def
= {π ∈ Π : π · X ≥ 0}.

The following result provides the conditions under which the PD exists on the simplex and

on the extended simplex.

Theorem 3. Under the assumptions of this subsection, there exists π∗ ∈ Π+ such that for

each π ∈ Π+:

(5) E ln(π · X/π∗ · X) ≤ 0.

If additionally we assume that ΠX is compact then there exists π∗ ∈ ΠX such that (5)

holds for all π ∈ ΠX.

Proof. The proof follows directly from Lemma 3 that is formulated and proven in the

Appendix by applying

E ln(π · X/π∗ · X) = E ln(π · X/X) − E ln(π∗ · X/X).

Remark 4. Clearly, if in the above results E| ln(π∗ ·X)| < ∞, then X∗ = π∗ ·X is an argument

that maximizes E ln X over L+
X and LX, respectively. This is granted if, for example, all

E| lnXi|’s are finite (see Lemma 2 in the Appendix).

In the next theorem we provide several characterizations of the existence of the PD on the

extended simplex.

Theorem 4. Assume that for a ∈ R
N : a · X = 0 a.s. if and only if a = 0. The following

are equivalent

(i): The convex set ΠX is compact.

(ii): There exists π∗ ∈ ΠX such that E ln(π · X/π∗ ·X) ≤ 0.
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(iii): sup{E ln(π · X/X) : π ∈ ΠX} < ∞.

(iv): There do not exist a · 1 = b · 1 = 1, a 6= b with P (a · X ≥ b · X ≥ 0) = 1 and

P (a · X > b · X) > 0.

Proof. (i) implies (ii) follows from Lemma 3.

(ii) implies (iii). By (ii) we have

E ln(π · X/X) = E ln(π ·X/π∗ · X) + E ln(π∗ · X/X) ≤ ln(max(π∗)N).

(iii) implies (iv). Indeed, suppose there exist a · 1 = b · 1 = 1 such that a ·X ≥ b ·X ≥ 0

a.s. and P (a · X > b · X) > 0. By replacing, if necessary, a and b by 1
N

((N − 1)a + 1/N)

and 1
N

((N − 1)b + 1/N), respectively, we may assume that

b · X ≥
1

N
X.

Then for each positive α: Xα = α a · X + (1 − α)b · X ≥ 1
N

X and Xα ∈ LX. Additionally

limα→∞ Xα/X = ∞ on the set {a · X > b · X}. Consequently supα E ln
(
Xα/X

)
= ∞.

(iv) implies (i). Suppose that for every n ≥ 1, πn·X ≥ 0, πn·1 = 1 but (contrary to (i)) the

sum of the positive entries of πn diverges to ∞. There is only a finite number of coordinates

and permutations of these coordinates. So there is a d < N and a fixed permutation of I for

which we may select a subsequence {n} with precisely the first d coordinates being positive.

For any vector a ∈ R
N we define u(a) = (a1, . . . , ad), v(a) = (ad+1, . . . , aN). Then

(6) 0 ≤ πn · X = u(πn) · u(1)

[
u(πn)

u(πn) · u(1)

]
· u(X) + v(πn) · v(1)

[
v(πn)

v(πn) · v(1)

]
· v(X)

The bracketed terms above belong to d and N − d dimensional simplexes, respectively, so

we can select a further subsequence {n} such that they converge respectively to u(π̃1) with

π̃1 having the last N − d coordinates equal to zero and v(π̃2) with π̃2 having the first d

coordinates equal to zero and such that π̃1 · 1 = π̃2 · 1 = 1. Therefore from (6) and since

u(πn) ·u(1) converges to infinity, it follows that π̃1 ·X− π̃2 ·X ≥ 0 a.s. which cannot almost

surely be 0 because it would contradict the assumption of linear independence of Xi’s (the
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first d terms of X would have to be expressed by the last N − d ones). This contradiction of

(iv) concludes the proof.

Remark 5. Note that in the above theorem we have used the assumed linear independence

only to prove (iv) implies (i). That the linear independence is needed in this step is shown

by the following counterexample. Take X = (X1, X1). Then (iv) holds but ΠX = (−∞,∞).

Corollary 2. Let X∗ = π∗ · X denote the PD based on the simplex Π+.

(i): If π∗ ·X is in the interior of the simplex L+
X treated as a subset of the linear space

spanned by X equipped with the canonical topology of finite dimensional spaces, then

it coincides with the PD based on the extended simplex. In particular this is true if

π∗ is in the interior of Π+ (this condition is equivalent to the assumption in the case

when the coordinates of X are linearly independent).

(ii): If π∗ is on the boundary of the simplex Π+, then dropping constraints Xi with

π∗
i = 0 will result in a reduced set of constraints X̃ for which the extended simplex

PD coincides with the PD X̃∗ = π̃∗ · X̃ based on the simplex Π̃+ corresponding to

reduced constraints. Moreover π̃∗ · X̃ is in the interior of the simplex L+eX.

Proof. (i) Suppose that there is π∗∗ ∈ ΠX such that E ln(π∗∗ ·X) > E ln(π∗ ·X). Consider

the concave mapping δ 7→ E(ln(((1−δ)π∗+δπ∗∗) ·X). By the assumption there exists δ0 > 0

such that the value of this mapping is at most E ln(π∗ ·X). On the other hand, by concavity

we have the following contradiction

E(ln(π∗ ·X)) ≥ E(ln(((1 − δ0)π
∗ + δ0π

∗∗) ·X)

≥ (1 − δ0)E ln(π∗ · X) + δ0E ln(π∗∗ · X)

> E ln(π∗ · X).

(ii) This is a simple consequence of (i).
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2.4. Connections with Csiszár and Tusnády. For two mutually absolutely continuous

measures P and Q the Kullback-Leibler informational divergence is defined as D(P |Q) =
∫

log(dP/dQ)dP . The informational distance of P from a convex set of measures Q is defined

as D(P |Q) = infQ∈Q D(P |Q).

Consider the case I = {1, . . . , N}. For f > 0 define measures µi by dµi/dP = Xif , i ∈ I.

Provided that the informational distances below exist and are finite, we have for π, π′ ∈ Π:

D

(
P

∣∣∣∣∣
∑

i

πiµi

)
− D

(
P

∣∣∣∣∣
∑

i

π′
iµi

)
=

∫
log

dP∑
i πidµi

dP −

∫
log

dP∑
i π

′
idµi

dP

=

∫ (
log
∑

i

π′
iXi − log

∑

i

πiXi

)
dP.

Then D(P |{
∑

i πiµi : π ∈ Π}) = D(P |
∑

i π
∗
i µi) for any π∗ = argmax{E ln(π · X) : π ∈ Π}.

Let µ∗ =
∑

i π
∗
i µi.

The above argument leads to the following proposition that was proven in Csiszár and

Tusnády [3] for the simplex.

Proposition 2. If one of the conditions of Theorem 4 is met and f > 0, then

D(P |µ∗) = D

(
P

∣∣∣∣∣

{
∑

i

πiµi : π ∈ Π

})

The counterpart of this result for the case of Π+ follows easily from [3], Theorem 5, p. 223.

Their proof uses alternating projections. Our result can be written P
1
→ µ∗ in the notation

of [3]. That is, aside from f , X∗ is the density of the projection of P .

If we take f equal to the PDR solution f ∗1 = 1/X∗ following from Theorem 1. Then

dµ∗ =
∑

i π
∗
i Xif

∗dP = dP . On the other hand if P = µ∗, then
∫

A
X∗fdP = P (A) for all

measurable A from which we obtain f = 1/X∗. So 1/X∗ (or dP
dµ

/X∗) is that solution of the

inverse problem for which D(P |
∑

i πiµi, π ∈ Π) = 0.

3. Monte Carlo solution over the simplex

3.1. Adaptive strategies for the projective density. For this section we assume that

I = {1, . . . , N} and X > 0 with probability one. As we have seen in Subsection 2.3 (see
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also Lemma 3), this guarantees the existence of π∗ such that J(π∗) = max{J(π), π ∈ Π+},

where J(π) = E ln(π · X/X), π ∈ Π+, which is equivalent to the existence of the PD over

the simplex. Also in the following algorithm and results, all assumptions and definitions are

equivalent when X is replaced by X/X̄. For this reason in what follows we can assume that

X is such that X = 1 so in particular J(π) = E ln(π · X) < ∞.

For a given working probability measure P consider a sequence of i.i.d. draws ωj ∈ Ω, j ≥

1. Define X
j = (X1(ωj), . . . , XN(ωj)). Then X

j, j ≥ 1 are i.i.d. random vectors possessing

the distribution of the constraint functions applied to P random samples {ωj}. We will

produce a sequence πn = πn(X1, . . . , Xn) almost surly convergent to the set Π∗ = {π∗ ∈

Π+ : π∗ = argmax{J(π), π ∈ Π+}}. This will be true whether or not the constraints are

linearly consistent.

Now let ηj > 0 be a sequence of numbers and let π1 = (1/N, . . . , 1/N). We generate the

following sequence of updates

(7) πj+1
i = πj

i

exp
(
ηj

Xj
i

πj ·Xj

)

∑N
k=1 πj

k exp
(
ηj

Xj
k

πj ·Xj

) , i = 1, . . . , N.

This is the exponentiated gradient algorithm EG(η) of [5] except that we are extending it

to varying η = ηj . Let Mj = max{Xj
i , i = 1, . . . , N} and mj = min{Xj

i , i = 1, . . . , N}.

Proposition 3. Assume
∑∞

j=1 η2
j < ∞. If there is a positive r such that mj ≥ rMj a.s. for

all j ≥ 1, then
∞∑

j=1

ηj(J(π∗) − J(πj)) < ∞ a.s.

Proof. Let △j = D(π∗|πj+1) − D(π∗|πj), where π∗, πj+1 and πj are treated as discrete

probability measures and D(·|·) stands for the relative entropy. Apply an inequality from [5]

(see the proof of Theorem 1 therein) for X
j to obtain,

△j ≤ −ηj [log(π∗ · Xj) − log(πj · Xj)] +
η2

j

8r2
.
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Taking conditional expectation w.r.t. Fj−1 the σ-algebra generated by {X t : 1 ≤ t ≤ j−1},

Ej−1△j ≤ −ηj [Ej−1 log(π∗ · Xj) − Ej−1 log(πj · Xj)] +
η2

j

8r2
= −ηj(J(π∗) − J(πj)) +

η2
j

8r2
.

Hence

Ej−1△j + ηj(J(π∗) − J(πj)) ≤
η2

j

8r2
.

Finally taking the unconditional expectation we have

E△j + ηjE(J(π∗) − J(πj)) ≤
η2

j

8r2
.

Summing from 1 to n obtain

E(D(π∗|πn+1) − D(π∗|π1)) +

n∑

j=1

ηjE(J(π∗) − J(πj)) ≤

n∑

j=1

η2
j

8r2
.

Since D(π∗|π1) ≤ log N and J(π∗) − J(πJ) ≥ 0 we obtain

0 ≤
n∑

j=1

ηjE(J(π∗) − J(πj)) ≤
n∑

j=1

η2
j

8r2
+ log N.

By the assumptions it implies that with probability one

n∑

j=1

ηj(J(π∗) − J(πj)) < ∞.

The assumption that mj ≥ rMj a.s. for some positive r and for all j ≥ 1 can be removed

by the following modification as in [5]. For a sequence of numbers 0 < αj < N define

X̃
j
= (1 − αj/N)Xj + αjMj1,

where M j = max{Xj
i , i = 1, . . . , N} and where 1 is a unit vector. For X̃

j
construct π̃j as

in (7). Finally take

πj = (1 − αj/N)π̃j + (αj/N)1.
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Proposition 4. We may choose ηj and αj such that
∑∞

j=1

(
η2

j

8α2
j

+ 2αjηj

)
< ∞. Under this

condition
∞∑

j=1

ηj(J(π∗) − J(πj)) < ∞ a.s.

Proof. We just need slightly modify the proof of Proposition 3 so we use the same

notation. An inequality from [5] yields the following estimate

log(π∗ · Xj) − log(πj · Xj) ≤ log(π∗ · X̃
j
) − log(π̃j · X̃

j
) + 2αj.

Next we observe that min{X̃j
i , i = 1, . . . , N} ≥ αj max{X̃j

i , i = 1, . . . , N} so proceeding as

in the proof of Proposition 3 obtain

E(D(π∗|πn+1) − D(π|π1)) +
n∑

j=1

ηjE(J(π∗) − J(πj)) ≤
n∑

j=1

(
η2

j

8α2
j

+ 2αjηj

)
.

Corollary 3. Let
∑∞

j=1 ηj = ∞ in addition to assumptions of Proposition 3 or 4. There

exist kn ≤ n such that η̄n =
∑n

j=kn
ηj → 1 as n → ∞ such that for each π ∈ Π+:

lim
n→∞

J

(
n∑

j=kn

ηj

η̄n

πj

)
= J(π∗) a.s.

Proof. It is possible to choose kn → ∞ in such a way that
∑n

j=kn
ηj → 1 as n → ∞ since

the series
∑∞

j=1 ηj is divergent. Next

n∑

j=kn

ηj(J(π∗) − J(πj)) → 0 if n → ∞

which follows from Proposition 3 or 4. By concavity of J we obtain

J(π∗) ≥ J

(
n∑

j=kn

ηj

η̄n

πj

)
≥

n∑

j=kn

ηj

η̄n

J(πj)

and conclusion follows since the right hand side convereges to J(π∗).
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If conditions of the Proposition 3 are met one of possible choices is ηj = 1
j1/2(log j)1/2+ǫ ,

ǫ > 0. In this case kn = n− [n1/2(log n)1/2+ǫ]. In the more general setting of Proposition 4 a

possible choice is ηj = 1
j3/4(log j)1+ǫ , ǫ > 0 and αj = 1

j1/4 . In this case kn = n− [n3/4(log n)1+ǫ].

Remark 6. If Π∗ is not empty, then the sequence π ∈ Π+ defined as

πn =

n∑

j=kn

ηjπ
j

satisfies

lim
n→∞

||πn − Π∗|| = 0 a.s.,

where || · || is the Euclidean distance in N -dimensional space. This fact follows directly from

concavity of J(π).

Remark 7. An alternative approach to finding π∗ could be through Cover’s algorithm

πn+1
i = πn

i E

(
Xi

πn · X

)
→ π∗

i .

This algorithm requires integration at each step. By comparison, our algorithm avoids

integration step. More details on Cover’s algorithm can be found in [2] and [3].

3.2. Finding PD over the extended simplex. We continue all assumptions and notation

of the previous section. Additionally it is assumed that ΠX is compact so the PD X∗ = π∗ ·X

exists (see Subsection 2.3). It is recognized that our algorithm from Subsection 3.1 produces

only a maximum over L+
X. The ultimate goal is, however, to maximize E log(X) for X ∈ LX

or, equivalently, φX(π) = E ln(π · X) over ΠX. One practical approach would be based on

the idea of the super simplex (see Proposition 1) and Corollary 2. Namely, one could use

the MC-inverse for increasing finite sets of constraints Xn such that L+
Xn

would gradually

fill in the extended simplex LX. In such an approach, we start with evaluating the simplex

solution π∗ for the constraints XN
def
= X using the MC-inverse. If the solution belongs to the

interior of the simplex, then it coincides with the extended simplex solution and the problem

is solved. Otherwise we add an additional constraint XN+1 = πN+1 · X, πN ∈ ΠXN
to the
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original constraints XN and obtain XN+1. The MC-inverse then can be applied to XN+1.

These steps can be repeated recursively until the solution is found.

Of course, there are several issues to be resolved for a procedure like this to work. First,

a method of choice of a new constraint Xn+1 should be selected. In the random search

algorithm it could be selected by random choice of πn+1 ∈ ΠXn \ Π+
n according to uniform

distribution. These would guarantee that if the extended solution is in the interior of ΠX then

with probability one the extended solution would be eventually found. However, the direct

random choice of πn+1 poses a practical problem as ΠX can and often will be not known in

an explicit form. Thus a random rejection algorithm often would be a more realistic method.

In this we sample π from some continuous distribution (possibly close to the non-informative

uniform over ΠXn) over all π ∈ R
n such that π · 1 = 1 and accept this choice if π · Xn ≥ 0,

i.e. if π ∈ ΠXn . If this is not the case reject π and repeat sampling until π ∈ ΠXn is found.

The above simple approach demonstrates a possibility of searching over the extended sim-

plex using our MC-inverse. However it is neither computationally efficient nor recommended.

Firstly, it increases unnecessarily the dimension of the MC-inverse problem (new constraints

are added). Secondly, it does not utilize the fact that the solution on an edge of a simplex

excludes from further search the interior of this simplex (as well as an even larger region

made of open half-lines starting at the edge and passing through the interior of the simplex)

.

A more effective algorithm free of these two deficiencies is presented in the Appendix. In

this algorithm only simplexes of at most the dimension of the original set of constraints are

searched. Moreover the area of search is updated and reduced each time the simplex solution

falls on the boundary of a simplex.

4. Application – reconstruction of a density

4.1. Reconstruction of a density from its moments. We conclude with two examples

of the MC-inverse solutions for the problem of recovery of a density given that some of its

moments are known. In both examples we would like to restore some unknown density on



22 R. LEPAGE, K. PODGÓRSKI, AND M. RYZNAR

interval [0, 1]. The general probem of density reconstruction can be formulated as follows.

Let µ be the Lebesgue measure on [0, 1]. Assume that
∫ 1

0
gifdµ = ci, i = 1, . . . , N are known

for non-negative constraints gi(ω) = ωi−1 + 0.1. Here we shift the constraints by 0.1 to be

in the domain of Proposition 3 avoiding implementation of the slightly more complicated

algorithm that follows from Proposition 4. Define Xi = gi/ci. We take as a working measure

the uniform distribution on [0, 1] so the extended PDR solution is given by 1/X∗, where X∗

has to be found by the means of the MC-inverse algorithm of Section 3.

In the empirical MC-inverse extension of the approach instead of the true moments of the

unknown density we consider their empirical counterparts, say ĉi. In this case, we assume

that an iid sample Y1, . . . , Yk from the true distribution is given and empirical constraints

ĉi = (Y i−1
1 + · · ·+ Y i−1

k )/k + 0.1 are replacing the true (unknown) ones.

It should be mentioned that considering constraints based on non-central moments is a

completely arbitrary choice. In fact, the method can be applied to virtually any constraints

suitable for a problem at hand. Moreover, we are free to choose various working measures

just as we do for (say) a Bayesian analysis. Also in the empirical approach data can be

conveniently transformed if needed as well as the constraints of a choice can be arbitrarily

added to extract more information from the data. Influence of all these factors on the

solution has to be investigated for a particular problem. Here we have restricted ourselves

to the non-central moment problem to present the essentials of the proposed methods.

4.2. Reconstruction of uniform distribution. In the first instance, we consider the first

four moments of the ‘unknown’ density to be equal to the moments of uniform distribution

on [0, 1], i.e. ci = 1/i + 0.1, i = 1, . . . , 5. So Xi = (ωi−1 + 0.1)/(1/i + 0.1) and for

these constraints and the uniform working measure the MC-invese algorithm has been run

with Monte Carlo sample size of n = 10000. Clearly, since the chosen uniform working

measure satisfies the constraints, the algorithm should return approximately the uniform

distribution (see Corollary 1) that corresponds to π∗ = (1, 0, 0, 0, 0). In Figure 3(top), we

summarize results of our numerical study. For the empirical MC-inverse we generate an iid

sample Y1, . . . , Yk from the ‘unknown’ (uniform) distribution and consider ĉi instead of the
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Figure 3. Reconstruction of uniform distribution. Top: Convergence of πj to π∗

(left). The reconstruction of uniform distribution from the first four raw moments

(right). Bottom: Reconstructions based on empirical moments for six samples from

uniform. Sample size k = 20 (left) and k = 100 (right).

true moments. These constraints do not coincide with the exact moments of the uniform

distribution and thus the MC-inverse solution does not need to be as closely uniform. How

robust our reconstruction relatively to sample size, number of the constraints and their form

is not addressed in the present paper and calls for further studies. Here, the performance of

the algorithm for two sample sizes k = 20 and k = 100 is presented in Figure 3 (Bottom).

The reconstructions are rather good for both sample sizes (the vertical range of graphs

is from 0.6 to 1.4) but it should be noted that the solution is located at a vertex of the

simplex (zero dimensional edge), in fact π∗ = (1, 0, . . . , 0). We did not question if this

simplex solution is also the solution over the extended simplex as we knew this a’priori when
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constructing the example. However, a simplex solution on the edge of simplex should call

for further search over the extended simplex.

4.3. Reconstruction based on moments of beta distribution. This time we choose

an initial working measure that does not satisfy the constraints and moreover the actual PD

solution extends beyond the initial simplex. As a result an extended simplex search has to

be implemented.

The unknown density that we want to reconstruct has the moments agreeing with beta

distribution with parameters α = 2 and β = 2. Thus ci = α/(α + β) · (α + 1)/(α +

β + 1) · · · · · (α + i − 2)/(α + β + i − 2) + 0.1, i > 1. We consider the case of three

constraints, i.e. we assume that we know exact values of the first and second moment. With

our choice of the parameters, these moments are 0.5 and 0.3, respectively. The constraints

are as follows X1 = 1 (this constraint is present for any density reconstruction problem),

X2 = (ω + 0.1)/0.6, and X3 = (ω2 + 0.1)/0.4. MC-inverse has been run and its results are

shown in Figure 4(top-left). We see there that the solution Y ∗ is on the boundary of the

initial simplex given by X = (X1, X2, X3). Specifically we observe π2 ≈ 0 while π1 ≈ 0.827

and π3 ≈ 0.173. Consequently, the simplex PD solution is on the edge spanned by X2 and

X3. The PDR based on this solution is shown in Figure 4(bottom-left)

A solution on an edge of a simplex requires searching the extended simplex. In this

case we replace the constraint X2 (since π2 ≈ 0) with a new constraint X̃2 = π · X where

π = (2.7089931,−2.2, 0.4910069) (note negative π2). The MC-inverse algorithm was run

and the results are presented in the two middle pictures of Figure 4. We observe that the

solution again lands on an edge of the simplex. Namely, this time π1 ≈ 0 and π2 ≈ π3.

Thus we continued our search by replacing X1 with a new constraint X̃1 = π · X where

π = (4.339548,−10.9956, 7.656052) and X are the original constraints. This constraint was

chosen to be outside of the last simplex and on the opposite to X1 side of the edge spanned

by X̃2 and X3 (as suggested by the algorithm in Subsection 5.2 of the Appendix).

The MC-inverse algorithm was run for this third set of constraints (X̃1, X̃2, X3) and this

time the PD solution was found in the interior of the simplex given by these constraints.
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Figure 4. MCI solution for the initial simplex in the beta moments problem. At

the top pictures we present convergence of πj, j = 1, . . . , 100000 for the subsequent

simplexes starting from the initial one (left) and the final one for which the solution

is in its interior. The bottom pictures shows the RPD for each of the simplexes, the

most right one being the extended simplex solution.

In fact, π∗ ≈ (0.4223826, 0.3581372, 0.2194802), thus all coordinates are clearly bigger than

zero, see also Figure 4 (top-right). Thus as shown in Corollary 2, this solution coincides

with the extended simplex solution and thus the corresponding PDR solution is the final

reconstruction of the density based on the first two moments of beta distribution. This

solution, presented in Figure 4 (bottom-right), is different from the beta distribution (also

shown in this graph). However there are infinitely many densities on [0, 1] having the same

first two moments as a beta distribution and it should not be expected that the PDR solution

will coincide with the beta density (unless it will be chosen for a working measure).
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5. Appendix

5.1. Lemmas. The following lemma is used in Theorem 1 of Subsection 2.2.

Lemma 1. Let a random variable |Z| ≤ C for some positive C.

(i): Assume that E ln(1 + αZ) ≤ 0 for 0 < α ≤ α0 for some α0 > 0. Then

EZ ≤ 0.

(ii): Assume that E ln(1 + αZ) ≤ 0 for α1 ≤ α < 0 for some α0 < 0. Then

EZ ≥ 0.

Proof. (i). Apply elementary inequality ln(1 + x) ≥ x − x2, x ≥ −1/2 to αZ for

sufficiently small positive α. Then by the assumption

αEZ − α2EZ2 ≤ E ln(1 + αZ) ≤ 0.

Hence

EZ ≤ αEZ2 → 0, α → 0 + .

(ii) follows from (i) by considering −Z instead of Z.

The next two lemmas were used for the finite number constraints case in Subsection 2.3.

Lemma 2. Let I = {1, . . . , N} and Xi’s are positive such that all E| lnXi|’s are finite.

Then there exists π∗ ∈ Π+ such that for all π ∈ Π+:

E ln(π · X) ≤ E ln(π∗ ·X).

Proof. Note the inequality for π ∈ Π+:

ln min(X1, 1) + · · ·+ ln min(XN , 1) ≤ ln π · X ≤ ln max(X1, 1) + · · · + ln max(XN , 1).

By the assumptions and the Bounded Convergence Theorem it proves the continuity of

φ(π) = E ln(π ·X) on Π+. The existence of π∗ follows then from the compactness of Π+.
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In the next lemma X = (X1 + · · ·+ XN)/N .

Lemma 3. Let I = {1, . . . , N}. For each convex and compact set Π0 ⊆ {π ∈ Π : π ·X ≥ 0}

including some Y > 0, there exists π∗ ∈ Π0 such that E ln(π · X/X) ≤ E ln(π∗ · X/X) for

all π ∈ Π0.

Proof. Let Y = X/Y , where Y = π0 ·X > 0. By compactness there is a positive constant

B such that for each π ∈ Π0, max(π) < B. Thus

ln(π · Y) ≤ ln B + ln(1 · Y) ≤ ln B + ln(N).

This implies that MY

def
= sup{E ln(π ·Y) : π ∈ Π0} < ∞. Since ln(π0 ·Y) = 0, thus MY ≥ 0.

By compactness of the set Π0 there exists a sequence πn of its elements such that φ(πn)
def
=

E ln(πn · Y) converges to MY and πn converges to some π∗ ∈ Π0. We can assume that

φ(πn) > −∞ for all n ∈ N. Consider the sequence Ln of simplexes spanned on the constraints

{πk · Y : k ≤ n}. These constraints satisfy the assumptions of Lemma 2. Thus there exists

a sequence Y ∗
n of PD solutions over Ln such that E lnY ∗

n ≥ φ(πn). Invoking Theorem 2, or

rather Remark 3 that follows it, we obtain Ỹ ∈ LY such that MY ≥ E ln Ỹ ≥ E ln Y ∗
n ≥

φ(πn). This implies that E ln Ỹ = MY and by compactness of Π0 it must be Ỹ = π∗ · Y.

Now, Y > 0 implies that X > 0, so

E ln(π ·X/X) = E ln(π ·X/Y )+E ln(Y/X) ≤ E ln(π∗ ·X/Y )+E ln(Y/X) = E ln(π∗ ·X/X)

and the thesis follows.

5.2. Search algorithm. We prove the existence of a search algorithm for maximum over

an extended simplex that utilizes our MC-inverse algorithm for a simplex. The algorithm

is based on updating the constraints by replacing those that do not contribute to maximal

values of E ln X by a randomly selected ones from the region that contains the extended

simplex solution.

Let π∗
N (·) be the return value of the MC-inverse algorithm applied to an N dimensional

simplex, i.e if X = (X1, . . . , XN), then π∗
N (X) = argmax{E ln(π · X) : π ∈ Π+}. We define
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a random search algorithm such that with probability one it returns value X∗
N(X) that is

the PD over the extended simplex LX. For our search algorithm we need to assume that for

a random value π ∈ R
N selected according to some continuous distribution on R

N (playing

the role of a prior distribution for the optimal π∗) we can effectively determine if π ∈ ΠX,

i.e. if for π ∈ R
N : π · X ≥ 0. Our description of the algorithm is recursive with respect to

the number of constraints N .

If N = 1, then define X∗
1 (X) = X.

For N = 2, let π∗ = π∗
N(X). In this case, we identify (π, 1− π) with π so Π+ = [0, 1], and

define Π = R. If π∗ is in the interior of Π+, then return X∗ = π∗ · X as the value X∗
2 (X)

of the algorithm. If it is otherwise, then either π∗ = 0 or 1. Consider the case π∗ = 1 (the

other is symmetric). Perform sampling from Π \ (−∞, 1] to obtain π̃ such that π̃ · X ≥ 0

and π̃ > 1. Replace the original constraint X2 by π̃ · X redefine Π for new constraints (by

the linear transformation and excluding from it the area that was identified as not including

the extended solution, i.e. the transformed (−∞, 1]), then repeat this algorithm until the

solution is found. It is clear that if the solution is in the interior of the extended simplex, then

our random search with probability one ends up with a simplex containing in the interior

the extended solution. In the next iteration the solution will be identified.

Below, we recursively extend this algorithm for a set of constraints X = (X1, . . . , XN)

assuming that X∗
k(·), k < N are available.

Step 0: Let X̃ = X and Π = R
N . Evaluate π∗ = π∗

N (X̃).

Step 1: If π∗ · X̃ is in the interior of L+eX, then go to Final Step. Otherwise, π∗ · X̃ is

on an edge of the initial simplex. Redefine Π by excluding from it all straight half-lines

initiated in the edge and passing through the interior of the simplex (the excluded set is an

intersection of finite number of half-hyperplanes and it is possible to write it in the form

of linear inequalities). If the edge cointaining π∗ · X̃ in its interior is N − 1-dimensional

simplex, then go to Step 2 otherwise go to Step 3.

Step 2: In this case there is exactly one coordinate of π∗ that is equal zero. Say, it is the

last one. Let π∗
N̂

= (π∗
1 , . . . , π

∗
N−1), where for a vector x, the notation xk̂ defines a vector
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obtained from x by removing its kth coordinate. Since π∗
N̂
·X̃N̂ is in the interior of the edge

(N − 1 dimensional simplex) thus it is also equal to X∗
N−1(X̃N̂ ). Apply rejection sampling

from Π to obtain π ∈ ΠeX. Replace X̃N by π · X̃ and rename the new constraints back to

X̃. Evaluate π∗ = π∗
N (X̃). If it is equal to the previously obtained value of π∗, then go to

Final Step. Otherwise go to Step 1.

Step 3: The edge containing π∗ · X̃ is a simplex of smaller dimension than N − 1. It is

then an intersection of a finite number, say k, of such simplexes. They are defined by

N − 1-dimensional constraints, say, X̃N−1i, i = 1, . . . , k. Using recursion evaluate X∗
N−1i =

X∗
N−1(X̃N−1i), i.e. the extended solutions for the constraints from N − 1 dimensional

constraints corresponding to the simplexes interesection of which is the edge. If at least

one of X∗
N−1i is different from π∗ · X̃, than go to Step 4. Otherwise go to Step 5.

Step 4: For each i = 1, . . . , k, perform rejection sampling for π from Π reduced by the half-

hyperplane corresponding to the simplex spanned by X̃N−1i and containing the previously

searched N dimensional simplex to obtain a new constraint X̃iN = π·X̃. Add this constraint

to X̃N−1i to create X̃Ni. Evaluate π∗
i = π∗

N (X̃Ni). If there is i = 1, . . . , k such that

π∗
i · X̃Ni 6= X∗

N−1i, then π∗ and X̃ become πi and X̃Ni, respectively. Then go to Step

1. Otherwise repeat this step as many times until the conditions granting move to Step

1 occur. (By Law of Large Numbers it has to happen after finite number attempts with

probability one.)

Step 5: All X∗
N−1i are the same and equal to π∗ · X̃. It could be that π∗ · X̃ is the extended

solution. Using rejection sampling, find an N dimensional simplex that contains π∗ · X̃ in

its interior, say that it is defined by constraints Y. Evaluate πY = π∗
N (Y), if it is in the

interior of the simplex L+
Y, then π∗ and X̃ become πY and Y, respectively, and then go to

Final Step. Otherwise go to Step 4.

Final Step: Let X∗ = π∗ · X̃. Return X∗ as the value of X∗
N (X), i.e. the extended simplex

PD.
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