Here are three references to the accepted notation N[mean, variance]. This is at odds with your textbook which uses N[mean, standard deviation]. Use the accepted notation and understand that the text is uniquely different.

Some Misconceptions about the Normal Distribution

By Keith M. Bower, M.S.

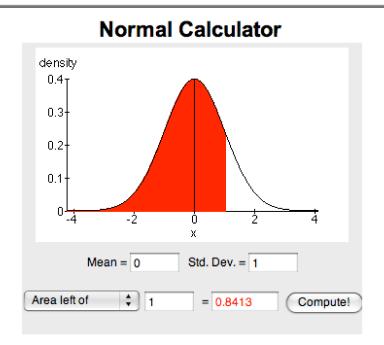
Reprinted with permission from the American Society for Quality.

As part of a Six Sigma training course, practitioners are introduced to arguably the most important probability distribution in statistics: the *normal* distribution. Statistical procedures are often based upon the assumption that data collected for an analysis are drawn from a normal distribution.

A normal distribution is typically expressed in statistical shorthand as $N(\mu, \sigma^2)$. For example, a normal distribution with a mean of 12 and standard deviation of 5 is written N(12, 25).

Properties

Some properties of the normal distribution:


- 1. If $X \sim N(\mu, \sigma^2)$ and a and b are real numbers, then $aX + b \sim N(a\mu + b, (a\sigma)^2)$ (see expected
- 2. If $X \sim N(\mu_X, \sigma_X^2)$ and $Y \sim N(\mu_Y, \sigma_Y^2)$ are independent normal random variables, then:
 - Their sum is normally distributed with $U=X+Y\sim N(\mu_X+\mu_Y,\sigma_X^2+\sigma_Y^2)$ (proof). Thus t

Normal distribution is denoted as $N(\mu, \sigma^2)$, sometimes the letter N is written in calligraphic font (typed variable X is distributed normally with mean μ and variance σ^2 , we write

$$X \sim \mathcal{N}(\mu, \sigma^2)$$

If you go to this site you can use the applet as you learn the z table.

AM http://www.stat.tamu.edu/~west/applets/normaldemo.html

How it works: The calculator above takes the place of the traditional textbook table. The calculator can be used in two ways. To find Prob<Z for a Z score, enter a value in the "Area left of" box and hit "Return". The answer is given in red in the "=" box. To find the Z score for a probability, enter a value under in the "=" box and hit "Return". The Z score is given in the "Area left of" box. In each case the graphic provides a visual display of the probability in red. Note that this calculator works for any values of the mean and standard deviation. When thinking in terms of Z scores, you should use 1 as the standard deviation and 0 as the mean.