1-4. The table below cross-classifies patients by sex and treatment type. We will select a patient at random (with equal probability).

sex \treatment	1	2	3	totals
male	22	31	28	$\mathbf{8 1}^{*}$
female	42	34	33	$\mathbf{1 0 9}$
totals	$\mathbf{6 4}$	$\mathbf{6 5}$	$\mathbf{6 1}$	$\mathbf{1 9 0}$

*There was a typo that did not affect formal answers, 81 was typed 71 .

1. Determine $P($ male $)$.
a) $22 / 64$
b) $22 / 81$
c) $64 / 190$
d) $22 / 190$
e) $81 / 190$

	1	2	3	4	$5 *$ OMT NO	101	
U	0	0	0	0	100	0 DIFF	0
L	0	0	0	0	100	0	DISC

2. Determine $P\left(\right.$ male $\bigcap_{\text {and }}$ treatment 1$)$.
a) $22 / 64$
b) $22 / 81$
c) $64 / 190$
d) $22 / 190$
e) $81 / 190$
$\begin{array}{llll}1 & 2 & 3 & \text { 4* } 5 \text { OMT NO } 101\end{array}$
U 0000100000 DIFF 14
L19 11 06740 DISC 33
3. Determine P (treatment $\left.1\right|_{\text {if }}$ male).
a) $22 / 64$
b) $22 / 81$
c) $64 / 190$
d) $22 / 190$
e) $81 / 190$

1 2* 34 5 OMT NO 101
U 49600000 DIFF 20
L33 63 0 4 0 0 DISC 33
4. Is sex independent of treatment level for this table?
a) yes
b) no
1 2* 345 OMT NO 101
U48 48 0 0004 DIFF 62
L81 1900000 DISC 30

5-8. A box has colored balls [$8 \mathrm{R} \quad 6 \mathrm{G} \quad 2 \mathrm{Y}$].
5. Selections will be made without replacement and with equal probability on those remaining in the box at each successive draw. Determine $\mathbf{P}\left(\left.\mathbf{Y} 2\right|_{\text {if }} \mathbf{G 1}\right)$.
a) $2 / 16$
b) $2 / 15$
c) $1 / 16$
d) $1 / 15$
$\begin{array}{llll}1 & 2 * 3 & 4 & 50 M T \\ \text { OO } & 101\end{array}$
U 010000000 DIFF 12
L $770715 \quad 0 \quad 0$ DISC 30
6. Selections will be made without replacement and with equal probability on those remaining in the box at each successive draw. Determine $\mathbf{P}(\mathbf{Y} 2)$.
a) $2 / 16$
b) $2 / 15$
c) $1 / 16$
d) $1 / 15$

1* $2 \quad 3 \quad 4$ 5 OMT NO 101
U $5930 \quad 0 \quad 11 \quad 0 \quad 0$ DIFF 59
L37 $411111 \quad 0 \quad 0$ DISC 22
7. Insead, selections will be made with replacement and with equal probability on those remaining in the box at each successive draw. Determine $\mathbf{P}\left(\left.\mathbf{Y} 2\right|_{\text {if }} \mathbf{G 1}\right)$.
a) $2 / 16$
b) $2 / 15$
c) $1 / 16$
d) $1 / 15$
1* 24345 OMT NO 101
U100 00000000
$\begin{array}{lllllll}\text { L } 74 & 4 & 19 & 4 & 0 & 0 & \text { DISC }\end{array}$
8. Which are correct?

When sampling without replacement events G1, Y2 are independent.
When sampling with replacement events G1, Y2 are independent.
a) both (are correct)
b) only the first
c) only the second
d) neither

12 3* 4 5 OMT NO 101
U 015850000 DIFF 35
L $19304111 \quad 0 \quad 0$ DISC 44
$\mathrm{P}($ rain Saturday $)=0.8$
9-11. $\mathrm{P}($ rain Sunday $)=0.7$
$\mathrm{P}($ rain both days $)=0.6$
9. Determine P(rain Saturday and not rain Sunday).
a) 0.2
b) 0.1
c) 0.3
d) 0.24
e) 0.9

$$
1 * 23345 \text { OMT NO } 101
$$

U78 $00022 \quad 0 \quad 0$ DIFF 41
L 3022153040 DISC 48
10. Determine $P\left(\right.$ rain Saturday $\bigcup_{o r}$ rain Sunday).
a) 0.2
b) 0.1
c) 0.3
d) 0.24
e) 0.9
$\begin{array}{lllll}1 & 2 & 3 & 4 & 5 * \\ \text { OMT NO } & 101\end{array}$
U $0 \begin{array}{llllll}4 & 7 & 0 & 89 & 0 & \text { DIFF } 24\end{array}$
L 415300520 DISC 37
11. Are the events "rain Saturday" and "rain Sunday" independent?
a) yes, independent b) no, not independent
$\begin{array}{llll}1 & 2 * 3 & 4 & 5 \text { OMT NO } 101\end{array}$
U 227800000 DIFF 36
L 564400000 DISC 33
12-14. Use notation "OIL + " for "OIL $\bigcap_{\text {and }}+$ " etc. We are given:

$$
\begin{array}{ll}
\mathrm{P}(\mathrm{OIL}+)=0.3 & \mathrm{P}(\mathrm{OIL}-)=0.2 \\
\mathrm{P}(\text { noOIL }+)=0.1 & \mathrm{P}(\text { noOIL }-)=0.4
\end{array}
$$

12. Determine $\mathbf{P}(\mathbf{O I L})$.
a) 0.75
b) 0.33
c) 0.25
d) 0.6
e) 0.5

	1	2	3	4	$5 *$	OMT NO	101
U	0	0	0	0	100	0	0 DIFF
L	7	0	11	19	63	0	DISC

13. Determine $\mathbf{P}\left(+\mathrm{l}_{\text {if }}\right.$ OIL $)$.
a) 0.75
b) 0.33
c) 0.25
d) 0.6
e) 0.5

1	2	3	4^{*}	5	OMT NO	101	
U 4	0	0	96	0	0	0	DIFF
L	32						
L 11	30	11	41	7	0	DISC	56

14. Determine $\mathbf{P}\left(\left.\mathbf{O I L}\right|_{\text {if }}+\right)$ (its Bayes, but just use the definition).
a) 0.75
b) 0.33
c) 0.25

$$
1^{*} 2 \begin{array}{lllll}
& 3 & 4 & 5 & \text { OMT NO }
\end{array}
$$

$\begin{array}{llllllll}\mathrm{U} 78 & 4 & 4 & 11 & 4 & 0 & \text { DIFF } & 53\end{array}$
L26 773030 D DISC 52
d) 0.6
e) 0.5

15-18. Classical probabilities.

15. 40% of students in a class are "from Michigan." Of these, 50% are men. What percentage of students in the class are "men from Michigan?"
a) 10%
b) 20%
c) 30%
d) 40%
e) 50%
$\begin{array}{llll}1 & 2 * 3 & 4 & 50 \mathrm{OMT} \text { NO } 101\end{array}$
U 096
L 08900110 DISC 7
16. A red die has faces numbered $\{1,1,2,2,5,5\}$. A green die has the usual numbering $\{1,2,3,4,5,6\}$. When the two dice are thrown what is the classical probability $P(R>G)$ (red strictly larger than green).
```
red \green llllllll
```

a) $8 / 38$
b) $16 / 36$
c) $10 / 36$
d) $12 / 36$
e) $14 / 36$
$\begin{array}{llll}1 & 2 & 3^{*} 4 & 5 \text { OMT NO } 101\end{array}$
U 0001000000 DIFF 10
L 047741540 DISC 26
17. A coin is tossed 3 times. Determine:

P(first and third tosses do not give the same result).

HHH
HHT
HTH HTT

THH
THT
TTH
TTT
a) $1 / 2$
b) $1 / 4$
c) $1 / 8$
d) $3 / 4$
e) $3 / 8$

1* 2345 5MT NO 101
U100 $00010 \begin{array}{lllll}1 & 0 & \text { DIFF } & 11\end{array}$
L 78 0 1111000 DISC 22
18. Sally will be offered three bags of money in random order. No two of these bags contain the same amount. She is free to examine the amount inside each bag as it is presented to her but must accept it on the spot or refuse it and go on to the next bag. There is no going back. In making her decision she knows amounts already seen. Sally adopts the policy "examine the contents of the first bag but pass over that bag and accept the next if it contains an amount larger than did the first bag. If she passes over the second bag also then Sally will necessarily accept the contents of the third bag. We may as well specify the bag amounts (which are unknown to Sally).

$\$ 2$	$\$ 7$	$\$ 1000$	$\$ 2$	$\$ 1000$	$\$ 7$
$\$ 7$	$\$ 2$	$\$ 1000$		$\$ 7$	$\$ 1000$
$\$ 1000$	$\$ 2$	$\$ 7$		$\$ 1000$	$\$ 7$

What is the probability Sally gets the $\mathbf{\$ 1 0 0 0}$?

a) $1 / 6$
b) $2 / 6$
c) $3 / 6$
d) $4 / 6$
e) $5 / 6$
1 2 3 * 4 5 OMT NO 101
U 4785400 DIFF 48
L 744261940 DISC 59

19-20. A, B are events with $\mathrm{P}(\mathrm{A})=0.8, \mathrm{P}(\mathrm{B})=0.6, \mathrm{P}\left(\mathrm{A} \bigcap_{\text {and }} \mathrm{B}\right)=0.5$.
19. Determine $P\left(A \cup_{o r} B\right)$.
a) .3
b) .1
c) .4
d) .83
e) .9
$\begin{array}{lllll}1 & 2 & 3 & 4 & 5 * \\ \text { OMT NO } & 101\end{array}$
U 40040930 DIFF 25
L11 726748 DISC 44
20. Determine $\mathbf{P}\left(\left.\mathbf{A}\right|_{\text {if }} \mathbf{B}\right)$.
a) .3
b) .62
c) .4
d) .83
e) .9

123 4* 5 OMT NO 101
U $411 \quad 085000$ DIFF 31
L 1119059110 DISC 26

