Key Quiz 2-17-09 another version

$$
\begin{array}{ccccccc}
1-10 & 6 & 10 & 3 & 5 & 0.7 & 300 \\
& \bar{x} & \bar{y} & s_{x} & s_{y} & \mathrm{r} & \mathrm{n}
\end{array}
$$

1. slope of naive $=5 / 3$ closest to (a) 1.7 2. slope of regr $=0.75 / 3$ closest to (a) 1.7 3. fract s_{y}^{2} accounted for by regr $=.7^{2}$ closest to (d) 0.5
2. $\mathrm{r}[6 \mathrm{x}+2,3 \mathrm{y}-4]=\mathrm{r}[\mathrm{x}, \mathrm{y}]=0.7=(\mathrm{d}) 0.7$
3. pred y for $x=9$ (mean + one sd) is 10 $+0.75=$ (a) 3.5 .
4. pred y for $\mathrm{x}=12=9+2 \mathrm{sd}$ is $10+0.72$
$5=17=(e)$.
5. est of μ_{y} when we know $\mu_{x}=6$ is 10 (point on regr line for $x=\bar{x}=6$) $=$ (b). In general, y (on rerg line) for any given x is

$$
\bar{y}+(\mathrm{x}-\bar{x}) \mathrm{r} s_{y} / s_{x}
$$

8. For ELLIPTICAL plots the sd of y at every given x is $\sqrt{1-r^{2}} s_{y}=\sqrt{1-.7^{2}} 5$ $=3.57$ closest to (a) 3.6.
9. NO (b) regression of $x \mathrm{n} y$ is not the same as regression oof y on x (usual, least sum of squares on vertical).
10. YES (a) $r[x, y]=r[y, x]$.

11-12. (x, y) data $(0,2),(0,4),(4,4),(4,10)$.

13-14. Data $\{2,4,5\}$.
13. s (sample $\mathrm{sd}=(\mathrm{n}-1)$ divisor version of sd) $=1.52753$ closest to (a) 1.5 .
14. $\hat{\sigma}$ (n divisor version of sd) $=1.24722$ closest to (b) 1.3.
$\ln [118]:=\mathbf{3 . 5} / \mathbf{3}$
Out[118]= 1.16667
$\ln [119]:=\operatorname{Sqrt}[1-.49] 5$
Out[119]= 3.57071
$\ln [168]:=\mathbf{S}[\{\mathbf{2}, \mathbf{4}, 5\}]$
Out[168]= 1.52753

4 | quiz2-17-09another.nb
$\ln [169]:=\mathbf{s d}[\{\mathbf{2}, \mathbf{4}, \mathbf{5}\}]$
Out[169]= 1.24722

