Recitation assignment due 3-2-10.
Partially covered for the review in lecture 3-1-10.
There will be a short bonus quiz in lecture 3-1-10.
Reminder: Exam 2 is 3-3-10.

z-table.

1. Use the z-table to verify or determine
a. $P(Z<-1.96)=0.0250$
b. $P(Z<1.96)=0.9750$
c. $P(|Z|<1.96)=0.9500$
d. $P(Z>2.65)=1-0.996$
e. $P(Z<-2.65)=0.004$
f. $P(|Z|<2.65)=0.996-0.004$
g. Find z with $P(Z>z)=0.021$ negative of 1 h which is $\mathbf{2 . 0 3}$.
h. Find z with $P(Z<z)=0.021$ closest table entry $\mathbf{- 2 . 0 3 ,}, z=\mathbf{- 2 . 0 3}$.
i. Find z with $P(|Z|>z)=0.042=P(Z<-2.03)+P(Z>2.03)$ so $z=2.03$.

z-approximation of Binomial X.

2. $n=40, p=0.4$
a. $E X=n p=16$
b. $\operatorname{Var} X=n p q=9.6$
c. $\operatorname{sd} X=\sqrt{n p q} \sim 3.09839$
d. $\mathrm{P}(\mathrm{X}<25) \sim$ w/o cont ${ }^{y}$ correction $\mathrm{P}\left(\mathrm{Z}<\frac{25-n p}{\sqrt{n p q}}\right) \sim \mathrm{P}(\mathrm{Z}<2.90) \sim 0.998$.
e. using continuity correction $\mathrm{P}(\mathrm{X}<25) \sim \mathrm{P}\left(\mathrm{Z}<\frac{24.5-n p}{\sqrt{n p q}}\right)=$
f. $P(X \geqslant 25) \sim \quad$ use complement of (e)
g. check the two "at least 10 " conditions

z-approximation of $\hat{\boldsymbol{p}}$.

3. $n=40, p=0.4$
a. $\mathrm{E} \hat{\boldsymbol{p}}=\frac{n p}{n}=\mathrm{p}=0.4 \quad$ (compare with 2 a)
b. $\operatorname{Var} \hat{\boldsymbol{p}}=\frac{n p q}{n^{2}}=\frac{p q}{n}=\mathbf{0 . 0 0 6} \quad$ (compare with 2b)
c. sd $\hat{\boldsymbol{p}}=\sqrt{\frac{p q}{n}} \sim 0.0775 \quad$ (compare with 2c)

same as $(2 \mathrm{~d}) \sim \mathrm{P}\left(\mathrm{Z}<\frac{24.5-n p}{\sqrt{n p q}}\right) \sim \mathrm{P}(\mathrm{Z}<2.74) \sim 0.9969$.
z-based approximate confidence interval for \mathbf{p}.
4. $n=40, p=0.4, X=20$ ($p=$ probability of success, $X=$ \# successes in 40)
a. Determine z with $P(|Z|<z)=0.99 \quad$ use closest table entry
$P(Z<z)=0.99+0.01 / 2=0.995$. Closest table entries are 2.57 and 2.58.
Or, $P(Z<-z)=0.01 / 2$ giving $z=-(-2.58$ or -2.57$)$.
b. 99% approx z-based Cl for p is $\hat{\boldsymbol{p}} \pm \mathrm{z} \sqrt{\frac{\hat{\boldsymbol{p}} \hat{q}}{n}}=\frac{20}{40} \pm 2.580 .079$.

We've chosen 2.58 to be conservative (larger interval).
c. What is the approximate probability that a sample of 40 would produce a $99 \% \mathrm{Cl}$ covering the actual p of 0.4 ? ans. 0.99.
d. Has the interval $4 b$ covered the actual value of $p=0.4$?

Interval works out to $\{0.29618,0.70382\}$ which does cover 0.4.
e. Agresti-Coull method is claimed to have coverage probability more nearly approximating the intended 99% for "most" n, p. The interval proceeds as above but artificially increases X to 22 and n to 44 (same as increasing the count of successes and failures each by 2). Determine the A-C $99 \% \mathrm{Cl}$.

$$
\frac{22}{44} \pm 2.58 \sqrt{\frac{22}{44} \frac{22}{44} / 44}=\{0.305525,0.694475\} \text { so yes, covers } 0.4
$$

f. If the samples are withOUt-replacement rather than with-replacement the Cl 4 d has to be modified by FPC $=\sqrt{(N-n) /(N-1)}$ where N denotes the population size. Do so assuming a population of size 500. Has it made much difference? $\mathrm{FPC}=0.96$, not enough to cause the $\mathbf{C l}$ to fail to cover 0.4

$$
\frac{22}{44} \pm 2.58 \sqrt{\frac{22}{44} \frac{22}{44} / 44} \quad 0.96=\{0.313304,0.686696\}
$$

g. Regardless of contexts, if 100,000 researchers independently prepare $99 \% \mathrm{Cl}$ (for their respective p) around how many of them will (unwittingly) have their Cl fail to cover their p ? Around 0.01 times $100,000=1,000$.

z-based approximate tests for p.

5. $n=100, H_{0}: p=0.3, H_{A}: p>0.3, X=\#$ of successes in sample of $n=100$.
a. Is the test 1-sided or 2-sided? One-sided, alternative to the right of null.
b. Suppose the test is set up to reject H_{0} if $\mathrm{X} \geqslant \mathrm{c}$ for $\mathrm{c}=37$. Approximate the probability of type 1 error $P(X \geqslant 37$ if $p=0.3) \sim P\left(Z>\frac{37-1000.3}{\sqrt{1000.30 .7}}\right)$

$$
\sim P(Z>1.53) \sim 1-P(Z<1.53) \sim 1-0.937=0.062 .
$$

c. Type 1 error probability is which one of the following?
ans. probability of rejecting the null hypothesis when it is true
probability of failing to reject the null hypothesis when it is not true
d. Instead of setting up the test as in 5 b let's just suppose we observe 37 successes in 100 trials. For this data the P -value is

$$
P(X \geqslant 37 \text { if } p=0.3) \sim P\left(Z>\frac{37-1000.3}{\sqrt{1000.30 .7}}\right) \sim 0.062 .
$$

e. Unrelated to the above, a journal has adopted the policy of rejecting H_{0} : "worthless med" in favor of H_{A} : "med has beneficial effect" whenever data gives a P-value <0.00001. Out of 100,000 worthless articles submitted to the journal (i.e. articles in which the null hypothesis of "worthless med" is actually true) around how many of the 100,000 worthless submissions will pass the journal's criterion? Note: that alone does not guarantee publication.
ans. 0.00001 100,000 $=1$ are expected to pass on average.
6. It is desired to set up a test of the hypothesis $p=p_{0}=0.02$ versus the alternative hypothesis that $p=p_{1}=0.03$ where p is the probability that a package will fail a burst test. It is desired that
type 1 error probability $=P$ (we decide for p_{1} if $p=p_{0}$ is true) $=0.01$
type 2 error probability $=P\left(\right.$ we decide for p_{0} if $p=p_{1}$ is true $)=0.02$
Denote by X the number failing the burst test in a sample of n (n to be determined).
a. Determine z_{0} with $\mathrm{P}\left(Z>z_{0}\right)=0.01$ using the closest table entry.
$P\left(Z<z_{0}\right)=0.99$ for which $z_{0}=2.33$ is the closest table entry.
b. Determine z_{1} with $\mathrm{P}\left(Z<z_{1}\right)=0.02$ using the closest table entry.

Closest table entry is $z_{1}=\mathbf{- 2 . 0 5}$.
c. Determine the needed sample size n using the appropriate formula.

$$
\mathbf{n} \sim\left(\frac{\sqrt{0.020 .98}|2.33|+\sqrt{0.030 .97}|-2.05|}{0.02-0.03}\right)^{2} \sim 4569 \text { (rounded up) }
$$

We will study ways to reduce such very large sample sizes while achieving roughly the same probabilities of type 1 and type 2 errors.
d. Determine the value c for which the test "reject the hypothesis $p=p_{0}=0.02$ if $X \geq c$ " meets the above criteria. Use the appropriate formula.

$$
c \sim z_{0} \sqrt{n p_{0} q_{0}}+0.5+n p_{0} \sim 114 \text { (we round up) }
$$

e. Check that n from 1 c meets the "at least 10 " criterion for each of p_{0} and p_{1}. If so, the normal approximation conditions that underlay the formula are met.

Need only check that 45690.02 is at least 10 (our rule of thumb).
f. This test is good at discriminating between $p=0.2$ and 0.3 or values of p to either side of these (David vs Goliath). The test will have trouble dealing with p values between 0.02 and 0.03 since the error probabilities were not controlled for there (in fact we did not cleave the line into null and alternative hypotheses).
formula sheet on exam (in addition to \mathbf{z}-tables).
$\sqrt{(N-n) /(N-1)}$
$\sqrt{n p q}$
$\sqrt{p q / n}$
$\sqrt{\hat{p} \hat{q} / n}$

$$
\mathrm{n}=\left(\frac{\sqrt{p_{0} q_{0}}\left|z_{0}\right|+\sqrt{p_{1} q_{1}}\left|z_{1}\right|}{p_{0}-p_{1}}\right)^{2}
$$

(on exam 2 the " $\mathrm{n}=$ " and " $\mathrm{c}=$ =" will not be shown)
$c=z_{0} \sqrt{n p_{0} q_{0}}+0.5+n p_{0}$

