1. People are equal-probability selected from a population and sorted by sex and gene type. Which one of the tables below exhibits independence between sex and gene type?

a.	male female	AA 60 90	Aa 30 45	aa 40 30						
b.	male female	AA 20 30	Aa 30 45	aa 10 15	4	20	= 30	5	= (0)	2 3
C.	male female	AA 30 20	Aa 30 45	aa 10 15						
d.	male female	AA 20 50	Aa 15 45	aa 10 20						
e.	male female	AA 40 60	Aa 20 90	aa 20 30						

- 2-4. A plane has two engines. The probability of the left engine failing is 0.002, same as for the right engine failing. Engine failures are independent events.
- 2. What is the probability that neither engine fails?
- a. 0.002 + 0.002 0.002 0.002
 - b. 0.002 0.002 c. 0.998 0.002
- d. 0.998 0.998, e. 0.994

(1-0,002) (-0,002) =0.998.0998

- 3. What is the probability that (the left engine fails) () and (the right does not)?
- a. 0.002 + 0.002 0.002 0.002 b. 0.002 0.002 c. 0.998 0.002

d. 0.998 0.998 e. 0.994

T(-0,02) 0,002

- <u>4. What is the probability that (the left engine fails) \bigcup_{or} (the right engine fails)?</u>
 - a_{1} 0.002 + 0.002 0.002 0.002 b. 0.002 0.002 c. 0.998 0.002

d. 0.998 0.998 e. 0.994

p(left'engine fails) + p(right engine fails) - ploth fails).

>0.002 + 0.002 - (0.002/

table below.

male

female

AA

4

6

Aa

8 9 aa 5

3

5. What is the probability the person does not have	ave gene type AA?							
a. $\frac{13}{19}$ b. $\frac{17}{35}$ c. $\frac{4}{17}$ d. $\frac{25}{35}$ e. $\frac{13}{35}$	35-10							
6. What is the conditional probability P(AA if m	ale), that the selected person has gene type							
AA if they are male?	4							
a. $\frac{13}{19}$ b. $\frac{17}{35}$ c. $\frac{4}{17}$ d. $\frac{25}{35}$ e. $\frac{13}{35}$	行.							
7-10. Suppose that $P(OIL) = 0.4$, $P(+ _{if} OIL) = 0.7$, $P(+ _{if} OIL^{C}) = 0.2$.								
7. P(= if O(L) = a. 0.6 b. 0.3 c. 0.8 d. 0.7 e. 0.4	0.4x(1-0.7) =0.3							
8 P(+) =	0,4							
8. P(+) = a. 0.6 b. 0.3 c. 0.8 d. 0.7 e. 0.4	0.4×0.7 +0.6.0.2=0.4							
9. P(OIL if +) = a. 0.6 b. 0.3 c. 0.8 d. 0.7 e. 0.4	$\frac{0.28}{0.7} = 0.7$							
Suppose also that the cost to test is 20, the cost inding OIL is 700.	ost to drill is 80, and the gross return from							
10. NET return from policy "test, but only drill	if the test is positive" for the contingency							
OIL ⁻ is equal to: a100 b. 600 c. 580 d20 e. 680	test -20 Nodril							
11-12. The distribution of IQ is normal with mean								
11. The probability of an IQ in range 100-15, 100 a. 0.34 b. 0.475 c. 0.11 d. 0.68 e. 0.95	one std away							
12. The probability of IQ in range [100+15, 100+3 a. 0.34 b. 0.475 c. 0.135 d. 0.68 e. 0.95	oj is approximately.							
	$\frac{9.95}{2} = 0.68$							

5-6. A person will be selected at random from all those sorted by sex and gene type in the

13-17. A lottery has return X which is a rate X = 3	ando	m varia	able wi	th				
13. Standard deviation of X = a. 4 b. 1 c. 7 d. 2 e. 3			ı					
14. Variance of (2 X + 7) = a. 1 b. 8 c. 16 d. 53 e. 23	4	x Vo	arX	= 1b				
For 100 independent plays of the lottery								
15. ET = a. 30 b. 7 c. 70 d. 300 e. 3		(00	× 3) = 30 i				
(16. Var T = a. 400 b. 200 c. 20 d. 10 e. 530	ı	4	Xlo	0=4	00			
17. Approximate 68% interval for T = a. [220, 380] b. [280, 320] c. [160, 280] d.	[235,	365] 6	e. [260, 340	300 ± d400.			
18. The number X of vehicles entering a are many vehicles passing and each ha appear to be independent events so the	as a s	small p	orobabi	ility of ente	ering the plaza. These			
variable X. Determine a 68% interval for 3 a. [283, 317] b. [280, 320] c. [160, 280	X (an	iswer r	ounded	d).	1/20			
To ZI. We are given the probability dieth	х	p(x)	x p(x	•				
	-10	0.1	-1	10				
	0	0.7	0	0				
	20	0.2	4	80				
	otals	1.0	3	90	110 may 1 11 11 11 11 11 11 11 11 11 11 11 11			
19. E X ² = a. 9 b. 500 d. 87 e. 81								
20. Var X = (you may use a calculator of employ summary information above) a. 9 b. 500 c. 90 d. 87 e. 81								
$\mathcal{E}_{X} - (\mathcal{E}_{X}) = 40 - \gamma = 1$								
21. $P(X^2 > 0) =$ a. 0.5 b. 1 c. 0.2 d. 0.9 (e. 0.3)	ı							
P(x	(>	0)=	/-	P(X=	=0)=1-07=03			
(1				