1. People are equal-probability selected from a population and sorted by sex and gene type. Which one of the tables below exhibits independence between sex and gene type?

(a.)	male female	AA 60 90	Aa 30 45	aa 20 30	
b.	male female	AA 20 30	Aa 30 45	aa 30 15	60:90 as 30:45 as 20:30
c.	male female	AA 30 20	Aa 30 45	aa 10 15	proportionality is the APPEARANCE OF INDEPENDENCE
d.	male female	AA 20 50	Aa 15 45	aa 10 20	IN TABLED COUNTS
e.	male female	AA 40 60	Aa 20 90	aa 20 30	

2-4. A plane has two engines. The probability of the left engine failing is 0.002, same as for the right engine failing. Engine failures are independent events.

2. What is the probability that (the left engine fails) \bigcap_{and} (the right does not)?

a. 0.002 + 0.002 - 0.002 0.002 b. 0.002 0.002 (c.)0.998 0.002 L Foils R NOT 0.002x0.998

d. 0.998 0.998 e. 0.994

3. What is the probability that (the left engine fails) \bigcup_{or} (the right engine fails)?

(a. 0.002 + 0.002 - 0.002 0.002) b. 0.002 0.002 c. 0.998 0.002

d. 0.998 0.998 e. 0.994 General ADDITION RULE

4. What is the probability that neither engine fails?

a. 0.002 + 0.002 - 0.002 0.002 b. 0.002 0.002 c. 0.998 0.002

d. 0.998 0.998 e. 0.994

5-6.	Α	person	will	be	selecte	l al	random	from	all	those	sorted	by	sex	and	gene	type	in	the
table	b	elow.										-			-	• -		

	AA	Aa	aa	
male	4	8	5	17
female	6	9	3	18
	lo	IJ	8 L	35

5. What is the probability the person does not have gene type aa?

a.
$$\frac{6}{18}$$
 (b. $\frac{27}{35}$) c. $\frac{4}{10}$ d. $\frac{20}{35}$ e. $\frac{13}{35}$

$$\frac{10+17}{35} = \frac{27}{35}$$

6. What is the conditional probability P(AA | if female), that the selected person has gene type AA if they are female?

a.
$$\frac{6}{}$$
 b. $\frac{27}{}$ c. $\frac{4}{}$ d.

a.
$$\frac{6}{18}$$
 b. $\frac{27}{35}$ c. $\frac{4}{10}$ d. $\frac{20}{35}$ e. $\frac{13}{35}$

7-10. Suppose that P(OIL) = 0.4, $P(+ |_{if} OIL) = 0.7$, $P(+ |_{if} OIL^{C}) = 0.2$.

8.
$$P(+) = P(OIL+) + P(OIL^{C}+) = P(+|i+OIL) \times P(OIL) + P(+|i+OIL^{C}) \times P(OIL^{C})$$

a. 0.6 b. 0.3 c. 0.8 d. 0.7 (e. 0.4) = 0.7 x o.4 + 0.2 x (1-0.4) = 0.28 + 0.12 = 0.4

7.
$$P(-|i|OIL) = |-P(+|i|OIL) = |-o| = 0.$$

a. 0.6 (b. 0.3) c. 0.8 d. 0.7 e. 0.4

9. P(OIL | if +) =
$$\frac{P(OIL+)}{P(+)} = \frac{O \cdot 7 \times O \cdot 4}{O \cdot 4} = O \cdot 7$$

a. 0.6 b. 0.3 c. 0.8 (d. 0.7) e. 0.4

Suppose also that the cost to test is 20, the cost to drill is 80, and the gross return from finding OIL is 700.

10. NET return from policy "test, but only drill if the test is positive" for the contingency

11-12. The distribution of IQ is normal with mean 100 and standard dev 15. SD(x) = 15E(X)=(50

12. The probability of an IQ in range [100-15, 100+15] is approximately:

13-17. A lottery has return X which is a E X = 3 Var X = 4	rando	m vari	able with		
13. Variance of $(2 \times 7) = 2^2 \text{ Var } \times = 4$ a. 1 b. 8 c. 16 d. 53 e. 23					
14. Standard deviation of X = JVar X = a. 4 b. 1 c. 7 d. 2 e. 3	$= \overline{\psi}$	2			
For 100 independent plays of the lottery 15. ET = (00 EX = 300 a. 30 b. 7 c. 70 d. 300 e. 3	defin	e T = X	(₁ + + X	100•	
16. Var T = (00 Van X = 400 a. 400 b. 200 c. 20 d. 10 e. 530				7	-
17. Approximate 95% interval for T = L 2 a. [220, 380] b. [280, 320] c. [160, 286]	გია − : 0] d.	以ル。 } . [235, :	.oo + ひん 365] (e.	[260, 340]	of SDT=116nT=1600=20
18. The number X of vehicles entering are many vehicles passing and each happear to be independent events so the variable X. Determine a 95% interval for a. [283, 317] b. [280, 320] c. [160, 286]	as a e Poi X (aŋ	small p sson m iswer r	probabilit nodel is o ounded).	y of entering deemed app	ng the plaza. These
·					
19-21. We are given the probability disti	ributio		_	_	wn: SDX= JVouX = J300
19-21. We are given the probability distr	ributio X	on and p(x)	summary x p(x)	totals sho	wn: SDX=VVoxX=1300 [300-2x/300, 300+2x/3)
19-21. We are given the probability dist			_	_	• • • • • • • • • • • • • • • • • • • •
19-21. We are given the probability dist	x	p(x)	x p(x)	x ² p(x)	[300-2x]300, 300+2x]3
19-21. We are given the probability dist	x -10	p(x) 0.1	x p(x)	x ² p(x) 10	[300-2x]300, 300+2x]3
19. $P(X^2 > 0) = P(X \neq 0) = P(X = 10) \pm $	x -10 0 20 otals ≿≥ >> = 0.	p(x) 0.1 0.7 0.2 1.0 (+ o.)	x p(x) -1 0 4 3 EX	x ² p(x) 10 0 80 90 EX	[300-2×1300, 300+2×1300 =[266,334]
19. $P(X^2 > 0) = P(X \neq 0) = P(X = 10) \pm P(X = 10)$ a. 0.5 b. 1 c. 0.2 d. 0.9 (e. 0.3)	x -10 0 20 otals X=\lambda = 0.	p(x) 0.1 0.7 0.2 1.0 1+ 0.2	x p(x) -1 0 4 3 EX	x ² p(x) 10 0 80 90 EX	[300-2×1300, 300+2×1300 =[266,334]