KEY to Quiz 3-1-10 prototype
20 minutes
Your quiz may differ. Use this key to help you solve your version.

1. Determine z with $P(Z>z)=0.0116$. Same as $P(Z<z)=1-0.0116=0.9884$.
0.07
search body of z-table $2.2 \quad 0.9884 \quad z=2.27$
2. Determine z with $P(|Z|>z)=0.008$. Same as $P(Z>z)=0.008 / 2=0.004$.

$$
0.05
$$

search body of z-table

$$
2.6 \quad 0.996 \Rightarrow z=2.65
$$

3. A sample of 400 soda cans has been stored for six years on a cold floor. Of these 49 have leaked. Determine the right end value of a 68% confidence interval for $p=$ the population fraction of cans that would leak in a similar test. Choose closest value.

$$
\begin{aligned}
& \qquad \begin{aligned}
& 68 \% \mathrm{Cl} \text { for unknown } \mathrm{p} \text { is } \widehat{\hat{p} \pm 1 \sqrt{\hat{p} \hat{q} / n}} \\
&=49 / 400 \pm 1 \sqrt{49 / 400351 / 400 / 400} \\
&= 0.1225 \pm 0.0163931
\end{aligned} \\
& \text { whose right end value is } 0.1225+0.0163931=0.138893 .
\end{aligned}
$$

4. Re-do \#3 for the Agresti-Coull method, preferred when \hat{p} is near zero. A-C method adds two "successes" and two "failures to make n+4 trials.

68\% A-C Cl for unknown p is $\tilde{p} \pm 1 \sqrt{\tilde{p} \tilde{q} / n}$
$=51 / 404 \pm 1 \sqrt{51 / 404353 / 404 / 404}$
$=0.126238 \pm 0.0165234$
whose right end value is $0.126238+0.0165234=0.142761$.
5. A sample of 400 soda cans has been stored for six years on a cold floor. Of these 50 have leaked. Determine the P -value for a test of $\mathrm{H}_{0}: p=0.1$ versus $H_{1}: p>0.1$. The sample estimate of p is $\hat{p}=50 / 400=0.125$.

$$
\text { test statistic }=\frac{\hat{p}-p_{0}}{\sqrt{p_{0} q_{0} / n}}=\begin{array}{|c}
\frac{\hat{p}-p_{0}}{\sqrt{p_{0} q_{0} / n}} \\
=\frac{0.125-0.1}{\sqrt{0.10 .9 / 400}} \\
\hline
\end{array}
$$

which works out to 1.67 . The P-value is the probability of data more against the null hypothesis than ours is. $P(Z>1.67)=1-P(Z<1.67)$.

$$
0.07
$$

search body of z-table $1.6 \quad 0.9525$
so the P-value is $1-0.9525=0.0475$. This would occur by chance alone 4.75% of the time even if $p=0.1$.
6. If we reject the null hypothesis whenever the P-value is below 0.01 what is the probability we will reject the null hypothesis when the null hypothesis is true?
ans. 0.01.
7. Each of 900 researchers independently prepares a $95 \% \mathrm{Cl}$ for their respective probability of success p . Around how many Cl fail to cover their respective p ?
ans. 5% of 900 or 45.
8. It is desired to set up a test to distinguish between null hypothesis $p=0.2$ and alternative hypothesis $p=0.3$ (David vs Goliath setup) with type 1 error probability 0.01 and type 2 error probability 0.02 . Determine the required sample size n.

$$
p_{0}=0.2 \text { with type } 1 \text { error probability } 0.01
$$

$p_{1}=0.3$ with type 2 error probability 0.02 .
Using the methods of \#1 and \#2,

$$
\begin{aligned}
& P\left(Z>z_{0}\right)=0.01 \text { gives } z_{0}=2.33 . \\
& P\left(Z<z_{1}\right)=0.02 \text { gives } z_{1}=-2.05 .
\end{aligned}
$$

The sample size \mathbf{n} is determined from

$$
\mathbf{n}=\left(\frac{\sqrt{p_{0} q_{0}}\left|z_{0}\right|+\sqrt{p_{1} q_{1}}\left|z_{1}\right|}{p_{0}-p_{1}}\right)^{2}
$$

$$
=\left(\frac{\sqrt{.2 .8}|2.33|+\sqrt{.3 .7}|-2.05|}{.2-.3}\right)^{2}
$$

$=350.224$ which we round up to $\mathrm{n}=351$.
9. Determine c for the test of \#8.

$$
\begin{aligned}
c & =z_{0} \sqrt{n p_{0} q_{0}}+0.5+n p_{0} \\
& =2.33 \sqrt{350.2240 .20 .8}+0.5+350.2240 .2 \\
& =87.9865
\end{aligned}
$$

So the specified test will sample $\mathbf{n}=351$ and will reject the null hypothosis $\mathbf{p}=0.2$ in favor of the alternative $\mathbf{p}=0.3$ if the number of "successes" is greater than or equal to 88.

On your variant of the quiz I asked you to solve for "c" using an "incorrect" n so that you could get \#9 right if you knew how to do it but had mistakenly gotten the wrong \mathbf{n} in \#8.

