- Within each of the plots below:

Identify (theoretical) means and standard deviations of \mathbf{x}, \mathbf{y}.
Identify the regression and naive lines.
Identify the correlation by noting the rise of the L. S. line relative to the naive line.

Identify the sd of y for (any) fixed x and see from the given specimen it is $\sqrt{1-r^{2}} s_{y}$.

1. For this example the population means are 10,30 the population sd are 5,10 . The correlation is 0.5 .

2. Also, what is approximately the average y score for all of the points whose x is around 15 ?

3. Also, if $x=14$ what are the mean and sd of the predicted value for y ?

4. A sample of 200 homes is selected at random from a large community, with equal-probability and (effectively) replacement. For each home in the population

$$
x=2005 \text { valuation } \quad y=2010 \text { valuation audit }
$$

It is known from the 2005 valuations that the x population mean is $\mu_{x}=$ 188,469 . Each of the 200 sample homes is audited to determine the 2010 valuation audit. From the sample we find

$$
\begin{array}{lll}
\bar{x}=167,222 & s_{x}=74,873 & \\
\bar{y}=241,770 & s_{y}=156,224 & \mathrm{r}=0.78
\end{array}
$$

a. Ignoring x altogether and just using y -scores, give the $95 \% \mathrm{z}$-based Cl for μ_{y}.
b. Determine the regression based $95 \% \mathrm{Cl}$ for μ_{y} given by

$$
\left(\bar{y}+\left(\mu_{x^{-}} \bar{x}\right) r \frac{s_{y}}{s_{x}}\right) \pm 1.96 \sqrt{1-r^{2}} \frac{s_{y}}{\sqrt{n}}
$$

c. Compare the two $\mathrm{Cl}(\mathrm{a})$, (b). How much wider is (a)? Notice that by exploiting regression in this way we've achieved a narrower $95 \% \mathrm{Cl}$ using the freely available x-scores associated with each sample home. Audits are by comparison very costly. So this beats using regular CI . We are required to know $\mu_{x}=188,469$ however.
d. Is \bar{x} larger or smaller than the known μ_{x} ? If it is smaller then since this $r>$ 0 that would suggest that we should increase our estimate of μ_{y} upwards from \bar{y}. Do you follow this reasoning? Is it happening here?
5. For problem 33 page 190
$\mathbf{x}=$ time, $\mathbf{y}=\underset{\text { calories }}{ }$ (averages at bottom)
$\left(\begin{array}{ccccc}\mathrm{x} & \mathrm{y} & \mathrm{x}^{2} & \mathrm{y}^{2} & \mathrm{xy} \\ 21.4 & 472 & 457.96 & 222784 & 10100.8 \\ 30.8 & 498 & 948.64 & 248004 & 15338.4 \\ 37.7 & 465 & 1421.29 & 216225 & 17530.5 \\ 33.5 & 456 & 1122.25 & 207936 & 15276 . \\ 32.8 & 423 & 1075.84 & 178929 & 13874.4 \\ 39.5 & 437 & 1560.25 & 190969 & 17261.5 \\ 22.8 & 508 & 519.84 & 258064 & 11582.4 \\ 34.1 & 431 & 1162.81 & 185761 & 14697.1 \\ 33.9 & 479 & 1149.21 & 229441 & 16238.1 \\ 43.8 & 454 & 1918.44 & 206116 & 19885.2 \\ 42.4 & 450 & 1797.76 & 202500 & 19080 . \\ 43.1 & 410 & 1857.61 & 168100 & 17671 . \\ 29.2 & 504 & 852.64 & 254016 & 14716.8 \\ 31.3 & 437 & 979.69 & 190969 & 13678.1 \\ 28.6 & 489 & 817.96 & 239121 & 13985.4 \\ 32.9 & 436 & 1082.41 & 190096 & 14344.4 \\ 30.6 & 480 & 936.36 & 230400 & 14688 . \\ 35.1 & 439 & 1232.01 & 192721 & 15408.9 \\ 33 . & 444 & 1089 . & 197136 & 14652 . \\ 43.7 & 408 & 1909.69 & 166464 & 17829.6 \\ - & - & - & - & - \\ 34.01 & 456 . & 1194.58 & 208788 . & 15391.9\end{array}\right)$

Let us suppose the data come from a random sample and the known population mean of time is 29 minutes.
a. Give the usual z-based $95 \% \mathrm{Cl}$ for the population mean of y ignoring x altogether.
b. Give the 95% z-based regression-based Cl for the population mean of y .
c. How much narrower is (b) than (a)? Note: the sample size is rather small for the normal approximation to be confidently applied so regard this as a formal exercise of skills.

