1. $\mathbf{z - C l}$ for μ (equal probability with replacement sampling):
$\overline{\mathbf{X}} \pm \mathrm{z} \frac{s}{\sqrt{n}}(z=1,1.96,3.09$ for $68 \%, 95 \%, 99 \%$ confidence $)$
$\mathrm{P}\left(\mu\right.$ is covered by $\left.\overline{\mathbf{x}} \pm \mathrm{z} \frac{s}{\sqrt{n}}\right) \sim \mathrm{P}(|\mathrm{Z}|<\mathrm{z}), \mathrm{n}$ large.
2. Hybrid $z-C l$ for μ (eq-prob with replacement sampling):

Desired hybrid $\mathrm{z}-\mathrm{Cl}$ half width $\mathrm{W}>0$ is specified in advance.
Preliminary sample size must be suitable for applying z-CI.
Determine final sample size
$n_{\text {final }}=\left(z s_{\text {prelim }} / W\right)^{2}(z=1,1.96$, for $68 \%, 95 \%$, etc. $)$

$P\left(\mu\right.$ in $\widetilde{\left.\overline{\text { final }^{2}} \pm W\right)} \sim P(|z|<z), n_{\text {prelim }}$ large.
If $n_{\text {prelim }} \geq \mathrm{n}_{\text {final }}$ just use z-Cl from preliminary sample.
3. z-CI for μ (equal probability withOUT replacement sampling):
$\overline{\mathrm{X}} \pm \mathrm{z} \frac{s}{\sqrt{n}} \mathrm{FPC}$ with FPC $=\sqrt{(N-n) /(N-1)}$
$\mathrm{P}\left(\mu\right.$ is covered by $\left.\overline{\mathrm{X}} \pm \mathrm{z} \frac{s}{\sqrt{n}} \mathrm{FPC}\right) \sim \mathrm{P}(|\mathrm{Z}|<\mathrm{z}), \mathrm{n}, \mathrm{N}-\mathrm{n}$ large.
4. $\mathrm{t}-\mathrm{Cl}$ for μ (sampling from a NORMAL x distribution):
$\overline{\mathbf{X}} \pm \mathrm{t}_{\alpha, \mathrm{df}} \frac{\mathrm{s}}{\sqrt{\mathrm{n}}}\left(\mathrm{t} .025, \infty=1.96, \mathrm{t}_{.025,2}=4.303, \mathrm{df}=\mathrm{n}-1\right)$
$\mathrm{P}\left(\mu\right.$ is covered by $\left.\overline{\mathbf{x}} \pm \mathrm{t}_{\alpha, \text { df }} \frac{s}{\sqrt{\mathrm{n}}}\right)=\mathrm{P}\left(\left|\mathrm{T}_{\mathrm{df}}\right|<\mathrm{t}_{\alpha, \mathrm{df}}\right)$
ideally (but for approximations in calculations) for $n>1$.
5. z-Cl for $\mu_{x}-\mu_{y}$ (paired data, utilizing difference scores):
$\overline{\mathrm{d}} \pm \mathrm{z} \frac{s_{d}}{\sqrt{n}}(\mathrm{z}=1,1.96,3.09$ for $68 \%, 95 \%$, 99% confidence $)$
$\mathrm{P}\left(\mu_{d}=\mu_{x}-\mu_{y}\right.$ is covered by $\left.\overline{\mathrm{d}} \pm \mathrm{z} \frac{s_{d}}{\sqrt{n}}\right) \sim \mathrm{P}(|\mathrm{z}|<\mathrm{z})$, n large.
(n is the number of pairs, each of which has scores (x, y)).
6. $z-\mathrm{Cl}$ for $\mu_{x}-\mu_{y}$ (utilizing UNpaired data):
$(\overline{\mathbf{x}}-\overline{\mathbf{y}}) \pm \mathrm{z} \sqrt{s_{x}^{2} / \mathrm{n}_{x} \oplus s_{y}^{2} / \mathrm{n}_{y}}$
$\mathrm{P}\left(\mu_{x}-\mu_{y}\right.$ is covered by

$$
\left.(\overline{\mathbf{x}}-\overline{\mathbf{y}}) \pm \mathrm{z} \sqrt{s_{x}^{2} / \mathrm{n}_{x} \oplus s_{y}^{2} / \mathrm{n}_{y}}\right)
$$

$\sim P(|z|<z), n_{x}, n_{y}$ large.
7. $\mathrm{z}-\mathrm{Cl}$ for $\mu_{\boldsymbol{x}}$ (utilizing KNOWN strata population rates):
$\left(\sum_{\mathbf{i}} \mathbf{W}_{\mathbf{i}} \overline{\mathbf{x}_{\boldsymbol{i}}}\right) \pm z \sqrt{\sum_{\mathrm{i}} \mathrm{W}_{\mathrm{i}}^{2} s_{\mathrm{i}}^{2} / \mathrm{n}_{\mathrm{i}}}$
$\mathrm{P}\left(\mu_{x}\right.$ is covered by $\left.\left(\sum_{\mathrm{i}} \mathbf{W}_{\mathrm{i}} \overline{\mathbf{x}_{\boldsymbol{i}}}\right) \pm z \sqrt{\sum_{\mathrm{i}} \mathrm{W}_{\mathrm{i}}^{2} s_{\mathrm{i}}^{2} / \mathrm{n}_{\mathrm{i}}}\right)$
$\sim P(|z|<z), n_{x}$ large.
Weights W_{i} must be the KNOWN fractions of the population in each stratum i. For example W_{1} could denote the KNOWN fraction of males in the POPULATION, $\overline{\bar{x}_{1}}$ denoting the SAMPLE mean age of men.
8. $\mathrm{z}-\mathrm{Cl}$ for μ_{x} (utilizing KNOWN population mean μ_{y}):

$$
\left(\overline{\mathbf{x}}+\left(\mu_{\mathrm{y}}-\overline{\mathbf{y}}\right) \frac{\overline{\mathbf{x y}}-\overline{\mathbf{x}} \overline{\mathbf{y}}}{\overline{\mathbf{y}^{2}}-\overline{\mathbf{y}}^{2}}\right) \pm \mathbf{Z} \frac{s_{x}}{\sqrt{\mathrm{n}}} \sqrt{1-r^{2}}
$$

$\mathrm{P}\left(\mu_{x}\right.$ is covered by $\left.\left(\overline{\mathbf{x}}+\left(\mu_{\mathrm{y}}-\overline{\mathbf{y}}\right) \frac{\overline{\mathbf{x y}}-\overline{\mathbf{x}} \overline{\mathbf{y}}}{\overline{\mathbf{y}^{2}}-\overline{\mathbf{y}}^{2}}\right) \pm \mathbf{Z} \frac{s_{x}}{\sqrt{\mathrm{n}}} \sqrt{1-r^{2}}\right)$

$$
\sim \mathrm{P}(|\mathrm{Z}|<\mathrm{z}), \mathrm{n} \text { large. }
$$

Variable y must be gathered as data paired with x and the population mean μ_{y} must be known. For example, we are sampling business owners to estimate $\mu_{x}=$ population mean loss in business compared with last year. On the supposition that last year's tax y paid by the business may be correlated with x, and thus offer improved estimation for μ_{x}, we decide to ask each owner also for their tax paid last year. The average tax μ_{y} for the population of all businesses is a number we can come up with. Our z-CI is narrower by the factor $\sqrt{1-r^{2}}<1$, where r denotes the sample correlation (of x with y) defined by

$$
r=\frac{\overline{x y}-\bar{x} \bar{y}}{\sqrt{\overline{x^{2}}-\bar{x}^{2}} \sqrt{\overline{y^{2}}-\bar{y}^{2}}}
$$

9. Chi-Square statistic, df, P-value.

$$
\chi^{2}=\sum_{\text {cells }} \frac{(\mathrm{O}-\mathrm{E})^{2}}{\mathrm{E}}
$$

$$
\mathrm{df}=\# \text { cells }-1-\# \text { (estimations needed to determine expected counts from data) }
$$

P-value $=\mathbf{P}\left(\chi^{2}>\right.$ chi-square statistic as seen from data)
For example, the model

$$
\begin{array}{ccc}
A A & A a & \text { aa } \\
p^{2} & 2 p(1-p) & (1-p)^{2}
\end{array} \quad \text { for } p=\frac{2 \# A A+\# \text { Aa in population }}{2 \# \text { population }}
$$

with data

$$
16 \quad 8 \quad 6 \quad \text { total of } 30 \text { samples }
$$

we estimate p by

$$
\hat{p}=\frac{2 \# A A+\# \text { Aa in sample }}{2 \times 30}=\frac{216+8}{2 \times 30}=\frac{40}{60}=\frac{2}{3}
$$

Pro-rating 30 observations in accordance with this $\hat{\boldsymbol{p}}$ we get
E for $A A=30 \hat{p}^{2}=30(2 / 3)^{2} \sim 13.333333$
E for $A a=302 \hat{p}(1-\hat{p})=302(2 / 3)(1 / 3)=30(2 / 3)^{2} \sim 13.333333$
E for $\mathbf{a a}=30(1-\hat{p})^{2}=30(1 / 3)^{2} \sim 3.333333$
Estimating $\hat{\boldsymbol{p}}$, necessary to reduce the expected entries to actual numbers, will cost us one degree of freedom. So the resulting chi-square will have df = 3-1-1 =1.

	AA	Aa	aa
O	16	8	6
E	13.333333	13.333333	3.333333

The chi-square statistic works out to $\chi^{2}=\sum_{\text {cells }} \frac{(\mathrm{O}-\mathrm{E})^{2}}{\mathrm{E}}=4.8$.
The P-value is (using a computer) for $\mathrm{df}=1$,

$$
\text { P-value } \left.=P\left(\chi^{2}>4.8\right) \sim 0.0284597 \text { (i.e. } t_{0.0284597}=4.8\right)
$$

It is therefore rather rare to encounter (as we have) a chi-square statistic with $\mathrm{df}=1$ as large or larger than 4.8. Either the model is incorrect or we have witnessed a rare event. Maybe not "bet your life on it" rare, but less than 3\% rare.

Your table of chi-square has entries like $t_{.9} \sim 0.015791$ and.$t_{0.1} \sim 2.70552$ (see df $=1$).

