HW due a start of class 8-2-10.

- 1. Let X = the number of tosses to obtain the first head.
- a. Guess $\mu = E X$ (it is intuitive)
- b. Can you guess σ ?

c. Let x_1 denote the number of tosses you have to make to get the first head. Repeat the experiment to get x_2 (the number of tosses you have to make to get the first head the second time you try the experiment). Do this 30 times getting $x_1, ..., x_{30}$. Record the results (number of tosses required for each of 30 replications of "tossing unit! the first head."

- d. From your sample of n = 30 give
 - $\overline{\mathbf{x}}$ (sample mean), an estimate of μ
 - s, your estimate of σ
 - $\frac{s}{\sqrt{n}},$ your estimate of the standard deviation of \overline{x}
 - MOE (margin of error for \overline{x}) = 1.96 $\frac{s}{\sqrt{n}}$

 \sqrt{n}

2 8-2-10.nb

X

95% z-based CI for μ

If μ is not in your interval then a "bad" event has occurred. What is the probability of this "bad" event?

Around what fraction of the class should have an 80% t-CI containing μ ?

Prepare a histogram of your 30 numbers, does it look at all as though X is normal distributed?

2. Let X = the number of heads in 10 tosses of a coin. Although X is not normally distributed (it is binomial) the distribution is not far from normal with mean np, and standard deviation $\sqrt{np(1-p)}$. For n = 3 times toss a coin 10 times recording the number of heads x_1 , x_2 , x_3 in each of the three experiments.

From your sample of n = 3 give

 $\overline{\mathbf{x}}$ (sample mean), an estimate of μ

s, your estimate of σ

 $\frac{s}{\sqrt{n}}$

X

$$\overline{\mathbf{x}} = t_{0.025} \frac{s}{\sqrt{n}}$$

 $\frac{s}{\sqrt{n}},$ your estimate of the standard deviation of \overline{x}

df

t-MOE (margin of error for \overline{x}) = $t_{0.025} \frac{s}{\sqrt{n}}$

80% t-based CI for μ

If μ is not in your interval then a "bad" event has occurred. What is the probability of this "bad" event?

Around what fraction of the class should have an 80% t-CI containing μ ?

3. A 95% z-Cl for μ based on a large sample selected with replacement from a population is given as [3.884, 3.9170].

MOE

Interval for 68% confidence

X

95% z-CI if instead the sampling is without replacement, population size N = 1000 and sample size n = 100.