Final exam prep 8-13-10 Try these. Not handed in. Will go over in class. Report errors.

1. z-Cl for p. An equal probability with replacement sample of 100 persons is selected from customers of a store by randomly alerting a clerk at checkout. Customers are offered a choice of one of two items A or B. It is found that 62 out of 100 choose item A over item B. The form of a 95% $z-\mathrm{Cl}$ for the population fraction p of all customers who would choose item A over item B is

$$
\hat{p} \pm 1.96 \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}}
$$

a. Evaluate the Cl for the data given.

$$
\hat{p}=62 / 100=0.62
$$

Cl for p is $.62 \pm 1.96 \frac{\sqrt{.62 \times .38}}{\sqrt{100}}$
b. From the formula above identify
point estimate of p and its value for this data
0.62 (estimate around $\mathbf{6 2 \%}$ of customers favor A)

MOE for \hat{p} and its value for this data

$$
1.96 \frac{\sqrt{.62 \times .38}}{\sqrt{100}}
$$

point estimate of sd of \hat{p} and its value for this data

$$
\frac{\sqrt{.62 \times .38}}{\sqrt{100}}
$$

c. $\mathrm{P}\left(\mathrm{p}\right.$ is covered by $\hat{\left.\hat{p} \pm 1.96 \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}}\right) \sim 0.95}$
d. Percentage of users of such Cl whose Cl covers $\mathrm{p} \sim \mathbf{9 5 \%}$ (assumes the users operate independently)
2. z-Cl for μ with or without replacement. An equal probability With replacement sample of 40 pages is selected from a textbook of 469 pages. Each sample page is scrutinized to discover the number of errors "x" (what this means is carefully codified). It is found that these 40 x -scores have sample mean 0.73 and sample standard deviation $\mathrm{s}=1.51$.
a. Give mathematical form of a $95 \% \mathrm{z}-\mathrm{Cl}$ for $\boldsymbol{\mu}$, the average number of errors per page in the entire book.

$$
\mathrm{X} \pm \mathrm{z} \frac{\mathrm{~s}}{\sqrt{n}}=0.73 \pm 1.96 \frac{1.51}{\sqrt{40}}
$$

b. From the formula above identify
point estimate of $\boldsymbol{\mu}$ and its value for this data

$$
\bar{x}=0.73
$$

MOE for $\overline{\boldsymbol{X}}$ and its value for this data

$$
1.96 \frac{s}{\sqrt{n}}=1.96 \frac{1.51}{\sqrt{40}}
$$

point estimate of sd of $\overline{\boldsymbol{X}}$ and its value for this data

$$
\frac{s}{\sqrt{n}}=\frac{1.51}{\sqrt{40}}
$$

c. From rule or z-table (or your calculator) determine z for

$$
\begin{array}{ll}
68 \% \mathrm{Cl} & 1.00 \text { rule of thumb } \\
83 \% \mathrm{Cl} & \text { z-table entry for } z=0.83 / 2=0.415 \sim 1.3722
\end{array}
$$

d. How is the $95 \% \mathrm{z}-\mathrm{Cl}$ to be modified if it is learned that the data was actually obtained from a without-replacement equal probability random sample? Write the explicit form of the Cl and evaluate
it. With FPC $=\sqrt{\frac{N-n}{N-1}}=\sqrt{\frac{469-40}{469-1}}$ so $\overline{\mathrm{X} \pm \mathrm{z} \frac{s}{\sqrt{n}} \mathrm{FPC}}=0.73 \pm 1.96 \frac{1.51}{\sqrt{40}} \sqrt{\frac{469-40}{469-1}}$
3. Hybrid z-Cl to achieve $95 \% \mathbf{z - C l}$ of form $\overline{\boldsymbol{x}}_{\text {final }} \pm \mathbf{0 . 2}$. In \#2a, regard the sample of 40 as a preliminary with-replacement equal probability sample of $n_{\text {preliminary }}=40$ (preliminary sample mean 0.73 and preliminary sample standard deviation $s_{\text {preliminary }}=1.51$). We desire a 95% hybrid $z-\mathrm{Cl}$ for μ of the form

$$
\bar{X}_{\text {final }} \pm 0.2 .
$$

a. Evaluate the MOE for the preliminary $95 \% \mathrm{z}-\mathrm{Cl}$ (same as in 2 a). Does it already have at least the precision 0.2?

$$
1.96 \frac{s}{\sqrt{n}}=1.96 \frac{1.51}{\sqrt{40}} \sim 0.467954>0.2
$$

(not meeting the desired precision)
b. Equating ($\left.1.96 \frac{s_{\text {preliminary }}}{\sqrt{n_{\text {final }}}}\right)=0.2$ solve for the final sample size $n_{\text {final }}$ needed by the hybrid z-CI. Is $n_{\text {final }}>40$? If so, your answer to (a) must have been NO, you did not have the needed precision at n $=40$.

$$
n_{\text {final }}=\left(1.96 \frac{s_{\text {preliminary }}}{0.2}\right)^{2}=\left(1.96 \frac{1.51}{0.2}\right)^{2} \sim 219
$$

c. Suppose we continue sampling up to $n_{\text {final }}$ and find that $\bar{X}_{\text {final }}=0.77$. Give the 95% hybrid $z-\mathrm{Cl}$ for μ.
$\sim 0.77 \pm 0.2$ as desired
4. Match each of the Cl below to their intended use at left (one " Cl " is never used).

5 Hybrid z-Cl

$$
\overline{\mathrm{d}} \pm \mathrm{z} \frac{s_{d}}{\sqrt{\mathrm{n}}} 1
$$

7 For all $n>1$, normal population only

$$
\hat{p} \pm 1.96 \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}} 2
$$

For μ_{x}, large n , with-replacement sample)

$$
\mathrm{X} \pm \mathrm{z} \frac{s}{\sqrt{n}} \mathrm{FPC} 3
$$

3 For μ without repl sample

$$
\overline{\mathrm{X}} \pm \mathrm{t}_{\alpha, \text { df }} \frac{s}{\sqrt{n}} \mathrm{FPC} 4
$$

6 Difference of means, unpaired, independent data

$$
\mathrm{x}_{\text {final }} \pm \mathrm{W} 5
$$

1 Difference of means, paired data

$$
(\overline{\mathrm{x}}-\overline{\mathrm{y}}) \pm \mathrm{z} \sqrt{s_{x}^{2} / \mathrm{n}_{x} \oplus s_{y}^{2} / \mathrm{n}_{y}} 6
$$

2 For population proportion

$$
\overline{\mathrm{X}} \pm \mathrm{t}_{\alpha, \text { df }} \frac{s}{\sqrt{n}} 7
$$

5. A sample of $\mathbf{n}=5$ from a normal population. Suppose the sample mean is 3.79 and the sample sd is $\mathrm{s}=2.45$. Determine
a. MOE

$$
\mathrm{t}_{\alpha, \text { df }} \frac{s}{\sqrt{n}}=\mathrm{t}_{0.025,5-1} \frac{2.45}{\sqrt{5}} \sim 2.777 \frac{2.45}{\sqrt{5}}
$$

b. $95 \% \mathrm{Cl}$ for μ

$$
\overline{\mathrm{x}} \pm \mathrm{t}_{\alpha, d f} \frac{s}{\sqrt{\mathrm{n}}}=3.79 \pm 2.777 \frac{2.45}{\sqrt{5}}
$$

c. In this setup, with samples from a normal population distribution, the hybrid method works for any preliminary sample with $n>1$. Using the appropriate replacement of 1.96 find the n required for a hybrid Cl to achieve precision

$$
\bar{x}_{\text {final }} \pm 0.2
$$

Keep in mind, our preliminary sample of only $\mathrm{n}=5$ works because the population distribution is normal and we are using the correct replacement for 1.96 .

$$
n_{\text {final }}=\left(2.777 \frac{s_{\text {preliminary }}}{0.2}\right)^{2}=\left(2.777 \frac{2.45}{0.2}\right)^{2} \sim 1158 \text { (round up) }
$$

d. If you do continue to the recommended sample size and find that $\bar{X}_{\text {final }}=3.65$ what is the hybrid 95\% CI?

$$
\sim 3.65 \pm 0.2
$$

e. Refer to (d). What is the MOE?
~ 0.2 as desired (but it sure costs a lot of sampling)

