PREP for Project 7

I really want you to dig into this material. We have two weeks to get it down so I’m setting it all out to begin with in Project 7 on the web.

Below refer to i.i.d. sampling from a population. We will use the example of a population of retail outlets. Score x is the selling price of a particular model of shoe.

PROBLEM: xBAR is not going to be exactly equal to µ. Can we tell something about how close it is to µ by just looking at the sample data?

ANSWER: Yes we can. Not only will a large n sample be nearly certain to place xBAR near µ, it will also tell you something about how close xBAR is to µ!

SOME NOTATION AND TERMINOLOGY:

µ is the population mean
xBAR is an estimator of µ
E xBAR = µ so xBAR is an unbiased estimator for µ
xBAR → µ with increasing n so xBAR is consistent for σ
If we take data and find xBAR = 5.6 then 5.6 is an estimate of µ

If the population s.d. σ is 5.1 then we say the true value of σ is 5.1
s is an estimator of σ defined on page 24
E s is not equal to σ so s is not an unbiased estimator of σ
However, E s → σ with increasing n, so its asymptotically unbiased for σ
Also s → σ with increasing n so s is consistent for σ
If our data has s = 4.2 then 4.2 is an estimate of σ

The s.d. of r.v. xBAR is σ / √n
s / √n is an estimator of σ / √n

The usual 95% conf. interval is " xBAR +/- (1.96 s / √n) "
The c.i. is a random interval constructed entirely from the data
PERFORMANCE: \(P(\mu \text{ is covered by 95\% c.i.}) = 0.95 + (\text{order } 1/n) \)
That is, the actual coverage probability will be close to 0.95 since for large \(n \) the difference is of order \(1/n \) which is nearly zero.

PERFORMANCE IN ORDINARY TERMS: In around 95\% of many independent attempts the 95\% c.i. covers \(\mu \).

PERFORMANCE for other \(z \): \(P(\mu \text{ covered by } \text{xBAR} +/- (z s / \sqrt{n})) = \text{(area under Z curve between } [-z, z]) + (\text{order } 1/n). \) So a 68\% c.i. is \text{xBAR} +/- (1.0 s / \sqrt{n}).

REMEMBER: If for your data the 95\% c.i. works out to say \{23.4, 24.1\} we cannot say whether or not the c.i. has covered \(\mu \) in this instance.

Example 1: (95\% c.i.) A sample of \(n=37 \) retail outlets finds the sample average \text{xBAR} of selling price for a model of shoe is 87.23. The sample s.d. \(s \) of these 37 selling prices is found to be \(s = 16.8 \). The 95\% c.i. for \(\mu \) is then
\[
87.23 +/- (1.96 16.8 / \sqrt{37}) = \{81.8167, 92.6433\}
\]
We do not know whether the average \(\mu \) for all retail outlets is in this interval or not. But the METHOD of 95\% c.i. will produce an interval that covers \(\mu \) around 95\% of the times it is tried.

NORMAL POPULATION: In this case
\[
P(\mu \text{ covered by } \text{xBAR} +/- (t s / \sqrt{n}))
= \text{(area under t curve with n-1 degrees of freedom) (exactly!)}
\]

Example 2: A population of retail selling prices is (nearly) NORMAL. A sample of only \(n=3 \) is selected from which we find xBAR = 87.23 and \(s = 16.8 \). The sample is too small to justify the usual c.i.
\[
87.23 +/- (1.96 16.8 / \sqrt{3}) = \{68.219,106.241\}
\]
However, since the population is NORMAL we are entitled to use the 95\% c.i. based upon Student’s t with n-1 = 2 degrees of freedom
\[
\text{xBAR} +/- (t s / \sqrt{n}).
\]
From the t-table on page 242 we find for 95\% confidence we must leave
0.025 in each tail so looking under \(t_{0.025} \) we replace 1.96 of the usual method by \(t = 4.303 \). So our 95% c.i. is instead
\[
87.23 \pm (4.303 \times 16.8 / \sqrt{3}) = \{45.4931, 128.967\}.
\]
Based upon only \(n = 3 \) we are forced to use a t-method and get a very wide c.i. which is maybe too wide to be of much use. But that is the price we pay for this small sample. In some cases, if \(s \) is small, we will do alright with a small sample. It is nice to have the method available to us for NORMAL populations.

Example 3: (Stein’s method) We wish to obtain a 95% c.i. of the form \(\overline{x} \pm 2 \) for the mean selling price in dollars. A PRELIMINARY sample of \(n_0 = 50 \) is taken from which we find that its sample s.d. \(S_0 = 16.8 \). In order to achieve our objective Stein’s method requires us to continue the sampling to a total sample size of \(n = (1.96 S_0 / \Delta)^2 = (1.96 \times 16.8 / 2)^2 = 271.063 \) or around 271. We do so. Suppose that we find our \(\overline{x} \) from all of the 271 in the expanded sample is 84.6. Then our Stein’s 95% c.i. for the mean selling price in all retail outlets is around 84.6 +/- 2. We say "around" because we rounded 271.063 to 271. In exchange for taking the larger sample we are entitled to the greater precision of +/- 2 (dollars) in our 95% c.i..

Example 4: (0-1 scores) The proportion \(p \) of retail outlets discounting our shoes is to be estimated. But REMEMBER \(\mu = p \) and \(\sigma = \sqrt{pq} \). We sample \(n = 55 \) retail outlets and find that for our sample there are 12 outlets discounting our shoes. That is \(\overline{x} = \hat{p} = 12 / 55 \). Our 95% c.i. for \(p \) (i.e. \(\mu \)) could be just as before
\[
\overline{x} \pm 1.96 s / \sqrt{n} \quad \text{(where \(\overline{x} \) is 12/55)}
\]
But it is more usual to use the n-divisor form
\[
\overline{x} \pm 1.96 \sqrt{\frac{(\hat{p}Q\hat{p})}{n}} / \sqrt{n} \\
= 12 / 55 \pm \sqrt{((12/55)(43/55)) / 55} \\
= \{0.109029, 0.327335\}