Student Number

Print name

Sign name

- Sit where you are asked to.
- Wait for the signal to begin.
- The exam lasts 45 min .
- Remain seated until given permission to move about. No exceptions.
- No extra papers, no calculators, cell phones put away.
- You must neither take the exam apart nor write on anything else.
- Stop writing at once when the signal is given and pass exam ahead.
- Keep your eyes on you own work. No talking.
- Avoid the appearance of flagrantly leaving your paper open to view.
- Point penalties will be exacted for answers given without substantiation.
- Point penalties will be exacted for writing after the signal to stop.
- Any person arriving more than 5 min late will not take the exam.
- Any person leaving without permission will be failed for the course.
- Any person present in a section exam but not enrolled there will be failed.
- Leave fractions unevaluated and do not reduce them.
- Points will be withdrawn for sloppy work.
- Show work in spaces provided. Record your answers in boxes provided.

$$
P(O I L)=0.3, P(+\mid O I L)=0.7, P\left(+\mid O I L^{C}\right)=0.2 .
$$

1. Determine $P(-)$.

P (OIL -) + P (nOOIL -)
$P(O I L) P(-\mid O I L)+P(n o O I L) P(-\mid n o O L L)$
$=.3 .3+.7 .8$ (e.g. $\mathrm{P}(-\mid$ noOIL $)=1-.2)$
2. Determine $P(O I L \mid-)$.

P (OIL -) / P (-)
$=.3 .3 /(.3 .3+.7 .8)$
$P(\mathrm{OIL})=0.5, P(\mathrm{OIL}+)=0.20$.
3. Determine $\mathrm{P}\left(\mathrm{OIL}^{-}\right)$.

$$
\begin{aligned}
& \mathrm{P}(\mathrm{OIL})=\mathrm{P}(\mathrm{OIL}+)+\mathrm{P}(\mathrm{OIL}-) \\
& 0.5=0.2+\mathrm{P}(\mathrm{OIL}-) \\
& \text { so } \mathrm{P}(\mathrm{OIL}-)=0.3
\end{aligned}
$$

4. Determine $\mathrm{P}(-\mid \mathrm{OIL})$.

P(OIL-) / P(OIL)
$=0.3 / 0.5$

Balls will be selected without replacement from $\{B \boldsymbol{B} \boldsymbol{B} \boldsymbol{Y} \boldsymbol{Y}\}$

5. Determine $\mathrm{P}(\mathrm{B} 2)$ using total probability (show all steps taking into account draw 1). $\mathrm{P}(\mathrm{B} 1 \mathrm{~B} 2)+\mathrm{P}(\mathrm{Y} 1 \mathrm{~B} 2)$
$=3 / 52 / 4+2 / 53 / 4$
6. Determine $\mathrm{P}(\mathrm{Y} 1 \mathrm{~B} 2 \mathrm{~B} 3)$.
$\mathrm{P}(\mathrm{Y} 1) \mathrm{P}(\mathrm{B} 2 \mid \mathrm{Y} 1) \mathrm{P}(\mathrm{B} 3 \mid \mathrm{Y} 1 \mathrm{~B} 2)$
$=2 / 5 \quad 3 / 4 \quad 2 / 3$
$P($ rain Sat $)=0.7, P($ rain Sun $)=0.9$, these two events are independent
7. Determine $P($ rain Sat AND rain Sun).
$\mathrm{P}($ Sat $) \mathrm{P}($ Sun I Sat $)=\mathrm{P}($ Sat $) \mathrm{P}($ Sun $)$ (by independence)
$=0.7 \quad 0.9$
8. Determine $\mathrm{P}($ rain Sat OR rain Sun).
$P($ Sat $)+P($ Sun $)-P($ Sat Sun $)$
$=0.7+0.9-0.70 .9$

Account imbalance X is normally distributed with expectation 100 and sd 2.

9. Determine the standard score of $x=102.22$ (by hand).
$(102.22-100) / 2=2.22 / 2=1.11$
10. Determine $\mathrm{P}(100<\mathrm{X}<102.22)$ using the Z method (no continuity correction).
z . 01
1.10 .3665
$r . v . X$ with $p(0)=0.25, p(2)=0.5, p(4)=0.25$.
11. Determine E X^{2}
$\mathrm{E} X^{2}=\sum x^{2} p(x)=0^{2} 0.25+2^{2} 0.5+4^{2} 0.25=6$
12. Determine Var X.
$\mathrm{EX}=\sum \mathrm{xp}(\mathrm{x})=00.25+20.5+40.25=2$
$\operatorname{Var} \mathrm{X}=\mathrm{E} X^{2}-(E X)^{2}=6-4=2$
r.v. X_{1}, \ldots, X_{100} are independent samples of accounts with $E X=5, \operatorname{Var} X=9$.
13. Determine $\mathrm{E}\left(X_{1}+X_{2}+\ldots+X_{100}\right)$.
$100 \mathrm{E} X=500$ (on the average, the total of 100 plays is 500)
14. Determine sd $\left(X_{1}+X_{2}+\ldots+X_{100}\right)$ (first get the variance).
$\operatorname{Var}($ total of 100 indep plays $)=100 \operatorname{Var} \mathrm{X}=900$
$\operatorname{sd}($ total of 100 independent plays $)=30($ root of variance $)$

data $\{3,4,5\}$

15. Determine the sample sd s for the above data.
mean is 4
root of $\frac{1}{3-1}\left((3-4)^{2}+(4-4)^{2}+(5-4)^{2}\right)$
$=\sqrt{1}=1$
16. Determine the sample mean \pm margin of error.
$4 \pm 1.96 \mathrm{~s} / \sqrt{n}$
$4 \pm 1.961 / \sqrt{3}$

The expected number of raisins in a cookie is 4 and the mix is random.

17. Sketch the normal approximation of the distribution of the number of raisins in a cookie (w/ labels).
mean 4, sd $=\sqrt{\text { mean }}=2$ (for Poisson) (draw normal curve)
18. Determine $\mathrm{p}(2)$, the probability that a cookie contains exactly two raisins.
A with - repl sample of 400 voters will be selected from a population of which 20% favor a particular ballot proposal. Let r.v. X denote the number of voters in the sample favoring this proposal.
19. Determine the mean and s.d. of X.

Binomial $n=400, p=0.2$ is the distribution of X .
mean $=n p=80$
$\mathrm{var}=\mathrm{npq}=400 \quad 0.2 \quad 0.8=64$
sd $=$ root var $=8$

Wait times for customers follows an exponential distribution with mean 5 min .

20. Determine the probability that a customer waits longer than 10 minutes. You need not compute it.

$$
\boldsymbol{e}^{-x / \text { mean }}=\boldsymbol{e}^{-10 / 5}=\boldsymbol{e}^{-2}
$$

data $\{3.4,4.1\}$

21. Determine the density portrait for the above data using the figure below.

ans. Obtain the average height of the two curves (midway between them) at a few points on the horizontal axis then join these with a smooth curve.
