Chapter 8 odd (exclude 8-19 to 8-27)

$\operatorname{In}[1]:=\mathbf{s}\left[x_{-}\right]:=\operatorname{Module}\left[\{n=\operatorname{Length}[x]\}, \operatorname{Sqrt}\left[\operatorname{Mean}\left[(x-\operatorname{Mean}[x])^{\wedge} 2 n /(n-1)\right]\right]\right]$

8-1. Norelco, Remington shaver scores (100 best, 0) paired

 difference scores d.```
norrem = {15, -8, 32, 57, 20, 10, -18, -12, 60,
 72, 38, -5, 16, 22, 34, 41, 12, - 38, 16, -40, 75, 11, 2, 55, 10}
{15,-8, 32, 57, 20, 10, -18, -12, 60, 72, 38,
 -5, 16, 22, 34, 41, 12, - 38, 16, -40, 75, 11, 2, 55, 10}
Length[norrem]
2 5
Mean[norrem] 1.
19.08
s[norrem] 1.0
30.6715
(Mean[norrem] - 0) / (s [norrem] / Sqrt[25]) 1.0
3.11038
```

pSIG for two sided z-test $=0.0018$ (below)
Seems to be fairly strong evicence (pSIG is small)
2 (.5-.4991)
0.0018

8-3 domestic and international oriented businesses, scored by returns on invest.

```
dom}={10,12,14,12,12,17,9,15, 8.5,11, 7, 15
{10, 12, 14, 12, 12, 17, 9, 15, 8.5, 11, 7, 15}
```

```
int ={11, 14, 15, 11, 12.5, 16, 10, 13, 10.5, 17, 9, 19}
{11, 14, 15, 11, 12.5, 16, 10, 13, 10.5, 17, 9, 19}
diff = dom- int
{-1,-2,-1, 1, -0.5, 1, -1, 2, -2., -6, -2, -4}
Length[diff]
1 2
Mean[diff]
 -1.29167
(Mean[diff] - 0) /(s[diff]/Sqrt[12])
-2.03405
```

I interpret as two-sided. So pSIG $=0.0424$ when calculated from z-table. When calculated from t -table pSIG is between $5 \%$ and $10 \%$, even less than for z . This is not particularly strong evidence against the hypothesis of no difference.

```
2(.5-0.4788)
0.0424
```

8-5 Sales before vs atter new shelf facings. Difference scores normal.

```
before = {57, 61, 12, 38, 12, 69, 5, 39, 88, 9, 92, 26, 14, 70, 22}
{57, 61, 12, 38, 12, 69, 5, 39, 88, 9, 92, 26, 14, 70, 22}
after = {60, 54, 20, 35, 21, 70, 1, 65, 79, 10, 90, 32, 19, 77, 29}
{60, 54, 20, 35, 21, 70, 1, 65, 79, 10, 90, 32, 19, 77, 29}
Length[before]
1 5
1.0 (Mean[after] - Mean[before])
3.2
(Mean[after - before] - 0) / (s[before - after] / Sqrt[15]) 1.0
1.46907
```

One sided test for alpha $=0.05 . \mathrm{t}($ alpha $)=\mathrm{t}(0.05)=1.761$.
The test statistic of 1.46907 fails to exceed 1.761 .
FAIL TO REJECT H0

8-7

8-9 Without LINC, time to code is $x 1 B A R=26 \mathrm{~min}$
s1 = 8 minutes
n1 = 45 programmers timed
With LINC
$x 2 B A R=21 \mathrm{~min}$
$\mathrm{s} 2=6 \mathrm{~min}$
n2 = 32 programmers timed
HO: LINC does not shorten mean time.
I have oriented noLINC - LINC.
(26.-21)/Sqrt[8^2/45+6^2/32]
3.13283
pSIG for one sided z -test is $\mathrm{pSIG}=0.0009$ which is small (see below).
Strong evidence to reject H0.
(.5-.4991)
0.0009

8-11 Bel Air vs Marin County, which has pricier homes?
For Bel Air:
avg $345650 \quad s=48500 \quad n=32$
For Marin County:
avg $289440 \quad s=87090 \quad n=35$
Two sided H0: diff of means is zero.

```
(345650. - 289440) /Sqrt[48500^2 / \(\left.32+87090^{\wedge} 2 / 35\right]\)
```

3.29956
pSIG for two sided is $\mathrm{pSIG}=0.001$ which is small (see below).
The evidence is strong to rejct.
$2(.5-.4995)$
0.001

8-13. Commercials: for teens, does rock music sell better than words?
For rock music oriented ADs
$\operatorname{avg}=23.5 \quad s=12.2 \quad n=128$
For verbal ADs
$\operatorname{avg}=18 \quad s=10.5 \quad n=212$
Two sided H0: diff of means is zero.
Population of teens is so large the samples are effectively independent.
(23.5-18) $/$ Sqrt[12.2^2/128 + $\left.10.5^{\wedge} 2 / 212\right]$
4.23974
pSIG $<0.00006$ for two sided $z$-test (see below).
This is exceedingly stron evidence with which to reject H 0 .
2(.5-. 49997)
0.00006

8-15 Do models of Liz Claiborne clothing earn more than models of
Calvin Klein?
HO: Liz Claiborne no better than Calvin Klein. One-sided z-test for alpha $=0.05$.
For Lis Claiborne: avg \$4238 $s=1002.5 \quad n=32$
For Calvin Klein:
avg 3888.72 $\mathrm{s}=876.05 \mathrm{n}=37$
(4238-3888.72) / Sqrt[1002.5^2/32 + 876.05^2 / 37]
1.52951
one sided
alpha $=0.05$ and $z(0.05)=1.645$
fail to reject since test statistic 1.52951 does not exceed 1.645.
Confirm: pSIG $=\mathrm{P}(\mathrm{Z}>1.53)=(.5-0.437)=0.563$ not $<.05$
Re-do for sample sizes of $\mathrm{n} 1=10$ and $\mathrm{n} 2=11$. pSIG is much worse (larger).
$(4238-3888.72) / \operatorname{Sqrt}\left[1002.5^{\wedge} 2 / 10+876.05^{\wedge} 2 / 11\right]$
0.846456

I don't use the $t$ here!
8-17 Earnings (percent of investment) for "researched" investments vs "non-researched." told dBAR $=2.54 \%$ in favor of researched. $d=$ res - nonres.
Non-researched:
$\mathrm{s}=0.64 \% \quad \mathrm{n}=255$
Researched:
$\mathrm{s}=.85 \% \quad \mathrm{n}=300$
Want $95 \% \mathrm{CI}$ for $\mu_{d}$.
$2.54+1.96\{-1,1\} \operatorname{Sqrt}\left[.64^{\wedge} 2 / 255+.85^{\wedge} 2 / 300\right]$
$\{2.41581,2.66419\}$

## 8-29 Northwest on-time

85/ 100 before merger with Republic 68/ 100 after merger indep samples of 100 $\mathrm{HO}=$ no CHANGE since merger H1 = decline since merger before-after
(. $85-.68$ ) -0
0.17

Pooled estimate, sensible if no difference after merger
$(85 .+68) / 200$
0.765

Pooled estimate of sd of p1HAT-p2HAT valid if merger made no change

```
Sqrt[.765 . 235 (1/100 + 1/100)]
0.0599625
(.85-.68-0) / Sqrt[.765 .235 (1/100 + 1/ 100)]
2.83511
```

pSIG for one sided z-test is 0.0023 (see below). It is rahter small so rather convincing evidence against H 0 that merger has changed nothing.
(.5-.4977)
0.0023

Same problem, BUT ignoring the use of the pooled estimate. It does not differ by much from the pooled approach.

```
(.85-.68)
0.17
(.85-.68-0) / Sqrt[.85.15 / 100 + .68.32 / 100]
2.89385
(.5-.4981)
0.0019
```

Textbook has instead used the pooled estimate 2.835 leading to pSIG .0023 .

## 8-31 Two corporate raiders. Who succeeds most? Raider A: <br> 11 of 31 success rate in takeovers

## Raider B:

19 of 50 success rate in takeovers. BUT ARE THESE IDENDEPEDENT, AND ARE THEY EVEN SAMPLES?
Maybe takeovers are getting harder, expecially for A. Poor example.

```
{11./ 31, 19./50}
{0.354839,0.38}
```

```
(11./ 31-19./50)
-0.0251613
```

Pooled estimate $\hat{p}_{\text {pooled }}=(11 .+19) /(31+50)=0.37037$.
It assumes there is no difference.
$(11 .+19) /(31+50)$
0.37037
(11./31-19./50) / Sqrt [0.37 0.63((1/31)+(1/50))]
$-0.227974$

The test statistic is very near 0 , so we obviously fail to reject the hypothesis of no difference.
Now, the same hypothese tested without pooling. It gives almost the same.

```
(11./31-19./50)
\(-0.0251613\)
(11./31-19./50) / Sqrt[(11/31 20/31)/31+(19/50 31/50)/50] \(-0.228769\)
```


## 8-33 Refer 8-32 Before ad: <br> $13 \%$ of 2060 prefer California wines. After ad: <br> $19 \%$ of 5000 prefer California wines. <br> Is there more than $5 \%$ added by the ad push?

```
((.19-.13) - 0.05)/Sqrt[(.13 . 87)/2060 + (.19.81)/5000]
1.08032
```

Not very significant at all. Here is a $95 \%$ CI. It overlaps 0.05 .

```
(.19-.13) + 1.96{-1, 1} Sqrt[(.13 . 87) / 2060 + (.19.81)/5000]
{0.0418572,0.0781428}
```

34./120-41/200
0.0783333

## 8-37

48 of 200 men shown Esquire say they would subscribe.
61 of 200 men shown GQ say
Test equality of p1 p2 at alpha $=.01$.
(48./200-61./200)
$-0.065$
pooled est of $p$
$(48 .+61) /(200+200)$
0.2725
$\operatorname{In}[3]:=(48 . / 200-61 . / 200) / \operatorname{Sqrt}[0.27250 .7275(1 / 200+1 / 200)]$
Out[3]= -1.45987
$\mathrm{pSIG}=2 \mathrm{P}(\mathrm{Z}>1.46) \quad$ 2-sided
$2(.5-.4279)$
0.1442

Since .1442 is not less than .01 fail to reject

Same test but not pooled is almost the same!
(48./200-61./200)
$-0.065$
$\operatorname{In}[4]:=(48 . / 200-61 . / 200) / \operatorname{Sqrt}[(48 . / 200152 / 200) / 200+(61 / 200139 / 200) / 200]$
Out[4]= -1.46377
pSIG for this test is the same!

## 8-39 Tests of guidance systems. Motorola: <br> 101 of 120 trials succeed. <br> Blaupunkt: <br> 110 of 200 trials succeed. <br> Evidence to conclude Motorola superior? <br> Try H0: Motorola not superior <br> (bending over backwards to resist false claim).

101./120-110/200
0.291667

Pooled est
$(101 .+110) /(120+200)$
0.659375
$\operatorname{In}[5]:=(101 . / 120-110 / 200) / \operatorname{Sqrt}[0.6593750 .340625(1 / 120+1 / 200)]$
Out[5]= 5.32982
pSIG
$\operatorname{In}[6]:=\operatorname{Exp}\left[-5.32982^{\wedge} 2\right.$ /2]/(5.32982Sqrt[2Pi])
out $[6]=5.07808 \times 10^{-8}$

Unpooled analysis is not so close this time, but both are "highly significant."

In[7]:= (101./120-110/200) / Sqrt[(101/120 19/120)/120 + (110/200 90/200)/200]
Out[7]= 6.01914

Exceeding rare by either method.

