$\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$ addition rule
$\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B} \mid \mathrm{A})$ multiplication rule $P(B \mid A)=P(A \cap B) / P(A)$ variant of above $P(B \mid A)=P(B)$ is equivalent to A independent of B $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B})$ is equivalent to A independent of B
$\mu_{X}=\mathrm{E} \mathrm{X}=\sum_{x} x p(x)$ expectation, or mean, of r.v. X $=\int x f(x) d x$ expectation in continuous case
$\sigma_{X}=\sqrt{E(X-E X)^{2}}$ standard deviation of r.v. X
$=\sqrt{E X^{2}-(E X)^{2}}$ another way to calculate it
$E(a X+b Y+c)=a E X+b E Y+c$ for r.v. X, Y constants $\mathrm{a}, \mathrm{b}, \mathrm{c}$
$E(X Y)=(E X) E(Y)$ if r.v. X, Y are independent
$\sigma_{X+Y}=\sqrt{\sigma_{X}^{2}+\sigma_{Y}^{2}}$ for independent r.v. X, Y
$\sigma_{a X+b}=\operatorname{lal} \sigma_{X}$ in particular $\sigma_{X}=\sigma_{-X}$

$$
\sigma_{\bar{X}}=\frac{\sigma_{X}}{\sqrt{n}} \quad \bar{X}=\text { the average of } n \text { independent } r . v X_{i}
$$

$\sigma_{\bar{X}}=\sqrt{\frac{N-n}{N-1}} \frac{\sigma_{X}}{\sqrt{n}}$ when the samples are without replacement from a population of size N
$\mathrm{E} \bar{X}=\mathrm{E} \mathrm{X} \quad$ in each of the above two cases
Central Limit Theorem (CLT): The distribution of \bar{X} is approximately normal (bell) in both cases above.

