## TO START THIS MATHEMATICA NOTEBOOK YOU CLICK ITS FILENAME. You will have to use a computer in a university lab (e.g. Wells Hall B-Wing)

This Mathematica notebook contains a number of useful functions described in the handout and briefly indicated below. The first time you attempt to use one of these functions a panel will pop up asking "Do you want to evaluate all the initialization cells?" to which you must answer yes.

To enter a given command line you click on the screen whereupon a horizontal line should appear at the cursor. When right brackets are in view on the Mathematica panel you want to click at a place where a horizontal line will extend between two such brackets if you desire a new line. If you attempt to type multiple commands into a single bracketed location Mathematica will become confused.

Type the command you wish to execute then PRESS THE ENTER KEY ON THE NUMERIC KEYPAD. This is required because Mathematica wants to use the return or other enter key to move to the next line. You do nor want to move to a new line. You want to enter a command. That is why you must use the ENTER key on the numeric keypad.

To save your work select save from the pull down file menu, which saves it as a Mathematica .nb (notebook) file. If you wish to print your work at home select print then the option of saving as a PDF. You will be unable to work with the .nb Mathematica file itself unless you have Mathematica installed (unlikely) but you can transport and print the .pdf file virtually anywhere.

## Click the line below and press ENTER on the numeric keypad.

```
In[229]:=
    size[{4.5, 7.1, 7.8, 9.1}]
```

Out[229]=
4

Just above, I clicked to open a new line then typed size[\{4.5, 7.1, 7.8, 9.1\}]
followed by a press of the numeric keypad ENTER key. Notice that off to the right of the entry there are nested brackets joining the command line and its output $4=$ the number of data items in $\{4.5,7.1,7.8,9.1\}$.

## - A complete list of the commands in this notebook and what they do.

```
size[{4.5, 7.1, 7.8, 9.1}] returns 4
mean[{4.5, 7.1, 7.8, 9.1}] returns the mean 7.125
median[{4.5,7.1,7.8, 9.1}] returns the median of the list {4.5, 7.1, 7.8, 9.1}
s[{4.5, 7.1, 7.8, 9.1}] returns the sample standard deviation s=1.93628
\boldsymbol{sd}[{4.5,7.1,7.8, 9.1}] returns the n-divisor version of standard deviation s=1.67686
sample[{4.5,7.1,7.8, 9.1},10] returns 10 samples from{4.5, 7.1, 7.8, 9.1}
ci[{4.5, 7.1, 7.8, 9.1}, 1.96] returns a 1.96 coefficient CI for the mean from given data
bootci[mean, {4.5, 7.1, 7.8, 9.1}, 10000, 0.95] returns 0.95 bootstrap ci for pop mean
smooth[{4.5,7.1, 7.8, 9.1}, 0.2] returns the density for data at bandwidth 0.2
smooth2[{4.5, 7.1, 7.8, 9.1}, 0.2] returns the density for data at bandwidth 0.2
    overlaid with normal densities having sd = 0.2 around each data value
smoothdistribution[{{1,700},{4,300}}, 0.2] returns the density at bandwidth 0.2
    for a list consisting of }700\mathrm{ ones and }300\mathrm{ fours.
popSALES is a file of 4000 sales amounts used for examples
entering popSALES will spill }4000\mathrm{ numbers onto the screen. To prevent
that enter popSALES; instead (the appended semi-colon suppresses output).
In[230]:=
    Mean [popSALES]
Out[230]=
    14.8951
In[231]:=
    sd [popSALES]
Out[231]=
    9.34
```

The next line finds a sample of 40 from popSALES. The line below that finds a $95 \% \mathrm{z}$-CI for the population mean. It outputs $\{$ mean, $\mathrm{n}, \mathrm{s}, \mathrm{z}($ or t$), \mathrm{CI}\}$.

In Mathematica the percent character \% refers to the output of the very last command execution.

```
In[232]:=
    mysample = sample[popSALES, 40];
In[233]:=
    ci[mysample, 1.96]
Out[233]=
    {13.8223,40., 8.81266, 1.96, {11.0912, 16.5533}}
```

```
In[234]:=
    bootci[mean, mysample, 10000, 0.95]
Out[234]//MatrixForm=
    Confidence Level 0.95
    Estimator mean
    Estimate 13.8223
    Sample Size 40
    bs Replications #1 10000
    bootstrap C ci Half Width 2.68175
    CI {11.1405,16.504}
In[235]:=
    median [popSALES]
Out[235]=
    12.61
In[236]:=
    median[mysample]
Out[236]=
    13.395
In[237]:=
    bootci[median, mysample, 10000, 0.95]
Out[237]//MatrixForm=
\(\left(\begin{array}{ll}\text { Confidence Level } & 0.95 \\ \text { Estimator } & \text { median } \\ \text { Estimate } & 13.395 \\ \text { Sample Size } & 40 \\ \text { bs Replications \#1 } & 10000 \\ \text { bootstrap Cci Half Width } & 3.315 \\ \text { CI } & \{10.08,16.71\}\end{array}\right)\)
In[238]:=
    smooth[popSALES, 4]
```



```
Out[238]=
- Graphics -
```


## In[239]:=

smooth [mysample, 4]


Out[239]=

- Graphics -

In[240]:=
Show [\%, \%\%]


Out[240]=

- Graphics -

In[241]:=
smoothdistribution [\{\{1, 700\}, \{4, 300\}\}, 1]


Out[241]=

- Graphics -

Reproducing the curves of Figure 7.13 produced by smoothing data $\{84,49,61,40,83,67,45,66,70,69,80,58,68,60,67,72,73,70,57,63,70,78,52,67,53$ $, 67,75,61,70,81,76,79,75,76,58,31\}$ according to the method:
bandwidth $=\lambda$ time the sample standard deviation of data,
for the two values $\lambda=0.5$ and $\lambda=0.2$.

Sample standard deviation of a list of numbers is defined on pg. 71. It may be computed:
sd[\{84,49,61,40,83,67,45,66,70,69,80,58,68,60,67,72,73,70,57,63,70,78,52,67
, 53,67,75,61,70,81,76,79,75,76,58,31\}]
which returns smaple standard deviation 11.9888 (just below).

```
In[242]:=
    sd[{84, 49, 61, 40, 83, 67, 45, 66, 70, 69, 80, 58, 68, 60, 67, 72, 73,
        70, 57, 63, 70, 78, 52, 67, 53, 67, 75, 61, 70, 81, 76, 79, 75, 76, 58, 31}]
Out[242]=
    11.9888
In[243]:=
    smooth[{84, 49, 61, 40, 83, 67, 45, 66, 70, 69, 80, 58, 68, 60, 67, 72, 73, 70, 57,
            63,70,78, 52, 67, 53, 67, 75, 61, 70, 81, 76, 79, 75, 76, 58, 31},.5 11.99]
```



Out[243]=

## In[244]:=

$\operatorname{smooth}[\{84,49,61,40,83,67,45,66,70,69,80,58,68,60,67,72,73,70,57$,
$63,70,78,52,67,53,67,75,61,70,81,76,79,75,76,58,31\}, .211 .99]$


Out[244]=

- Graphics -

In[245]:
The figures just above are indeed those of Figure 1.13.pg. 335.
Out[245]=
above are Figure figures indeed just of The those 1.13.pg. 335 .

In[246]:=
smooth2[\{4.5, 7.1, 7.8, 9.1\}, 0.2]




Out[246]=

- Graphics -

